1. At vise hvordan man kan bruge et CAS-program som Maple i sin undervisning.
|
|
|
- Ingeborg Sigrid Torp
- 9 år siden
- Visninger:
Transkript
1 Page 1 of 19 Konvergens af Newton's metode og relationerne til Fraktaler og Juliamængder. Dette foredrag har to delmål: 1. At vise hvordan man kan bruge et CAS-program som Maple i sin undervisning. 2. At vise lidt (sjov) matematik som en gymnasieelev (nok) kan forstå. Lad os starte med "Newtons metode" som mange gymnasieelever stifter bekendskab med: Newton's metode Mål: Find et nulpunkt for en given funktion (reel eller kompleks, skalær eller vektor). Lad os bare sige skalær. Vælg et "startgæt" Iterer med formlen for Hvordan kan Maple hjælpe med forståelsen? > restart; > with(student[calculus1]); (1)
2 Page 2 of 19 > NewtonsMethodTutor(exp(x)-3/2-arctan(x),4); Sæt antallet af iterationer til 10. Bemærk at der først begynder at "ske noget" efter lidt begyndelses "fnidder". Iteration 5: 1 korrekt ciffer Iteration 6: 3 korrekte cifre Iteration 7: 5 korrekte cifre Iteration 8: 10 korrekte cifre. Bemærk den fordobling af antallet af korrekte cifre i hvert trin som karakteriserer en kvadratisk konvergent iteration. Lad os finde det andet nulpunkt:
3 Page 3 of 19 > NewtonsMethodTutor(exp(x)-3/2-arctan(x),-4); Forklaring af trin i proceduren: Start med et punkt Følg grafens tangent i punktet til skæring med x-aksen. Skæringspunktet er så (forudsat at ). Stopkriteriet: eller eller. Problemet med flade grafer: En afledet med en værdi tæt på 0 kan sende iterationen på afveje: > g:=x->sin(piecewise(x<-1,-pi/2-1/x,1<x,pi/2+1/x,(1+pi/2)*x));
4 Page 4 of 19 (2) > plot(g(x),x=-5..5,y=-2..2); Things may be very sensitive to the initial guess: Here: while divergence): gives convergence gives divergence (take first N=2 iterations and then increase to 3 to see the > NewtonsMethodTutor(g(x),-0.5);
5 Page 5 of 19 > NewtonsMethodTutor(g(x),-0.55); Error analysis for Newton's method:
6 Page 6 of 19 Afrundingsfejl (ser vi ikke på her): Computeren laver fejl pga endelig præcision. Diskretiseringsfejl (ser vi på her): Vi laver fejl fordi ikke er identisk med sin tangent. Kald et nulpunkt for for ( er ukendt), så Benævn fejlen før 'te trin med Antag at (simpelt nulpunkt i ) Lad Bemærk at tælleren er de første to led i en Taylorudvikling og derfor for et eller andet fordi Så (dvs. Kvadratisk konvergens) Bemærk, at kvadratisk konvergens ikke automatisk giver konvergens. Det er nødvendigt, at startgættet er tilstrækkeligt godt eller at C er tilstrækkelig lille. Hvor godt startgættet skal være afhænger af. Standard konvergenssætning for Newton's metode: Hvis så findes der en konstant og en omegn om så hvis newton's metode startes i den omegn så vil og tilfredsstille Så Newton konvergerer hvis startgættet er tilstrækkeligt godt. Nej!
7 Page 7 of 19 Newton konvergerer hvis startgættet er tilstrækkeligt godt eller hvis C er tilstrækkelig lille. Jamen hvornår sker det da så? Lad os lege lidt: Definition: Tiltrækningsområdet for en rod er de punkter i den komplekse plan hvorfra Newton's metode konvergerer mod roden. Eksperiment (med Maple): Find tiltrækningsområderne for alle rødder for. Vælg forskellige farver for hver rod: Alle punkter som giver konvergens mod en given rod er farvet i rodens farve. Hvis der ikke er konvergens bruges sort. Procedure: Tag en masse punkter i C. Brug Newtons metode på hvert punkt og se hvis den konvergerer og i givet fald til hvilken rod den "tiltrækkes". De farvede mængder er så tiltrækningsområderne. Den sorte mængde kaldes Julia mængden for > restart; Definer og : > p:=z->z^5+1; p1:=z->5*z^4;
8 Page 8 of 19 (3) Definer Newton-opdateringen: > update:=proc(z) evalf(z-p(z)/p1(z)) end proc: Kør 20 Newton-opdateringer fra et givent startpunkt og put startpunktet på en af farvelisterne: > Newt:=proc(z0) local y,i; global Blue,Red,Green,Yellow,Orange,Black; y:=z0; for i from 1 to 20 do y:=update(y); end do; if abs(y-proots[1])<0.25 then Blue:=Blue,[Re(z0),Im(z0)] elif abs(y-proots[2])<0.25 then Red:=Red,[Re(z0),Im(z0)] elif abs(y-proots[3])<0.25 then Green:=Green,[Re(z0),Im(z0)] elif abs(y-proots[4])<0.25 then Yellow:=Yellow,[Re(z0),Im(z0)] elif abs(y-proots[5])<0.25 then Orange:=Orange,[Re(z0),Im(z0)] else Black:=Black,[Re(z0),Im(z0)] end if; end proc: Find 's 5 komplekse rødder: > proots:=[solve(p(z)=0)]; (4) De kan også angives på trigonometrisk form: > qroots:=[seq(-cos(2*pi*k/5)-i*sin(2*pi*k/5),k=0..4)]; (5)
9 Page 9 of 19 > evalf(proots); (6) > evalf(qroots); (7) > for i from 1 to 5 do simplify(p(proots[i])); simplify(p(qroots [i])) end do; (8) Vi kan ikke regne symbolsk det tager for lang tid, så evaluer rødderne: > proots:=evalf(proots); (9) Put en rod på hver af farvelisterne, og initialiser den sorte liste med (0,0):
10 Page 10 of 19 > Blue:=[Re(proots[1]),Im(proots[1])]; Red:=[Re(proots[2]),Im(proots[2])]; Green:=[Re(proots[3]),Im(proots[3])]; Yellow:=[Re(proots[4]),Im(proots[4])]; Orange:=[Re(proots[5]),Im(proots[5])]; Black:=[0,0]; (10) Lad os lige se placeringen af de 5 rødder grafisk: > plotcolor:=proc(blue,red,green,yellow,orange,black) global pb0,pr0,pg0,py0,po0,px0; pb0:=plots[pointplot] ([Blue],color=blue,symbol=solidbox,symbolsize=20); pr0:=plots[pointplot] ([Red],color=red,symbol=solidbox,symbolsize=20); pg0:=plots[pointplot] ([Green],color=green,symbol=solidbox,symbolsize=20); py0:=plots[pointplot] ([Yellow],color=yellow,symbol=solidbox,symbolsize=20); po0:=plots[pointplot] ([Orange],color=orange,symbol=solidbox,symbolsize=20); px0:=plots[pointplot] ([Black],color=black,symbol=solidbox,symbolsize=20); plots[display]([pb0,pr0,pg0,py0,po0,px0]); end proc; (11)
11 Page 11 of 19 > plotcolor(blue,red,green,yellow,orange,black); > for k in 0.22,0.17,0.11,0.099,0.077,0.055 do #for k in 0.22,0.17,0.11,0.099,0.077,0.055,0,044,0.033,0.022,0.011 do for i from -1 to 1 by k do for j from -1 to 1 by k do Newt(i+j*I) end do; end do; pb:=plots[pointplot]([blue],view=[-1..1,- 1..1],symbol=solidbox,color=blue): pr:=plots[pointplot]([red],view=[-1..1,- 1..1],symbol=solidbox,color=red): pg:=plots[pointplot]([green],view=[-1..1,- 1..1],symbol=solidbox,color=green): py:=plots[pointplot]([yellow],view=[-1..1,- 1..1],symbol=solidbox,color=yellow): po:=plots[pointplot]([orange],view=[-1..1,- 1..1],symbol=solidbox,color=orange): px:=plots[pointplot]([black],view=[-1..1,- 1..1],symbol=solidbox,color=black): plots[display]([pb,pr,pg,py,po,px,pb0,pr0,pg0,py0,po0,px0]); end do; >
12 Page 12 of 19
13 Page 13 of 19
14 Page 14 of 19
15 Page 15 of 19
16 Page 16 of 19 > for k in 0.044,0.033,0.022,0.011 do #for k in 0.22,0.17,0.11,0.099,0.077,0.055,0.044,0.033,0.022,0.011 do for i from -1 to 1 by k do for j from -1 to 1 by k do Newt(i+j*I) end do; end do; pb:=plots[pointplot]([blue],view=[-1..1,- 1..1],symbol=solidbox,color=blue): pr:=plots[pointplot]([red],view=[-1..1,- 1..1],symbol=solidbox,color=red): pg:=plots[pointplot]([green],view=[-1..1,- 1..1],symbol=solidbox,color=green): py:=plots[pointplot]([yellow],view=[-1..1,- 1..1],symbol=solidbox,color=yellow): po:=plots[pointplot]([orange],view=[-1..1,- 1..1],symbol=solidbox,color=orange): px:=plots[pointplot]([black],view=[-1..1,- 1..1],symbol=solidbox,color=black): plots[display]([pb,pr,pg,py,po,px]); end do;
17 Page 17 of 19
18 Page 18 of 19
19 Page 19 of 19 Det ser jo helt fraktalagtigt ud! >
Newton-Raphsons metode
Newton-Raphsons metode af John V. Petersen Indhold Indledning: Numerisk analyse og Newton-Raphsons metode... 2 Udlede Newtons iterations formel... 2 Sætning 1 Newtons metode... 4 Eksempel 1 konvergens...
Matematik og IT Anton Vilhelm Wiinstedt Clausen 3.b Studieretningsprojekt Numeriske metoder Frederiksberg Tekniske gymnasium 13/12 2010
Indholdsfortegnelse Abstract...2 Indledning...3 Konvergens...3 Konvergenskriterier...3 Konvergensorden...3 Fejlestimater...3 Stopkriterier...4 Taylor's Theorem...4 Numeriske metoder...4 Newtonsmetode...4
Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:
Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså
Matematisk modellering og numeriske metoder. Lektion 15
Matematisk modellering og numeriske metoder Lektion 15 Morten Grud Rasmussen 1. november, 2013 1 Numerisk analyse [Bogens afsnit 19.1 side 788] 1.1 Grundlæggende numerik Groft sagt handler numerisk analyse
Matematik A-niveau Delprøve 1
Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±
Billeder af Julia-mængder
1 Billeder af Julia-mængder af Gert Buschmann Vi identificerer planen med de komplekse tal og lader f(z) være en afbildning af planen på sig selv som er defineret og kontinuert-differentiabel næsten overalt.
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave
Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet
Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N
11. Funktionsundersøgelse
11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med
Matematisk modellering og numeriske metoder
Matematisk modellering og numeriske metoder Morten Grud Rasmussen 14. september 016 1 Numerisk analyse 1.1 Grundlæggende numerik Groft sagt handler numerisk analyse om at bringe matematiske problemer på
Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1
Oversigt [S]. Nøgleord og begreber Retningsafledt Gradientvektor Gradient i flere variable Fortolkning af gradientvektoren Agst, opgave 5 Delvis afledt [S]. Directional derivatives and te... Definition
Matematik A, STX. Vejledende eksamensopgaver
Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Eksponentielle sammenhænge
Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6
Brugervejledning til Graph (1g, del 1)
Graph (brugervejledning 1g, del 1) side 1/8 Steen Toft Jørgensen Brugervejledning til Graph (1g, del 1) Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet
Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari
Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen
Procedurer og funktioner - iteration og rekursion
Procedurer og funktioner - iteration og rekursion Procedurer De første procedurer vi så på var knyttet til handlinger, der skulle udføres, fx at klikke på en knap for at lukke en form eller afslutte et
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd
Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.
Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt
Teoretiske Øvelsesopgaver:
Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere
Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning
Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
1 monotoni & funktionsanalyse
1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig
Grafværktøjer til GeoMeter Grafværktøjer Hjælp Grafværktøjer.gsp Grafværktøjer
Grafværktøjer til GeoMeter Bjørn Felsager, Haslev Gymnasium & HF, 2003 Når man installerer GeoMeter på sin maskine følger der en lang række specialværktøjer med. Men det er også muligt at skræddersy sine
Taylor s approksimationsformler for funktioner af én variabel
enote 4 1 enote 4 Taylor s approksimationsformler for funktioner af én variabel I enote 19 og enote 21 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier i
Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium
Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,
Taylor s approksimationsformler for funktioner af én variabel
enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier
Skabelon til funktionsundersøgelser
Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være
Matematisk modellering og numeriske metoder. Lektion 8
Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er
Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium
Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium
Komplekse tal og Kaos
Komplekse tal og Kaos Jon Sporring Datalogisk Institut ved Københavns Universitet Universitetsparken 1, 2100 København Ø August, 2006 1 Forord Denne opgave er tiltænkt gymnasiestuderende med matematik
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd
Matematik B. Studentereksamen
Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.
Differentialregning. Ib Michelsen
Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af
Elementær Matematik. Trigonometriske Funktioner
Elementær Matematik Trigonometriske Funktioner Ole Witt-Hansen Indhold. Gradtal og radiantal.... sin x, cos x og tan x... 3. Trigonometriske ligninger...3 4. Trigonometriske uligheder...5 5. Harmoniske
Eksamen maj 2019, Matematik 1, DTU
Eksamen maj 2019, Matematik 1, DTU NB: Nedenstående udregninger viser flere steder mere end én metode. Det er der IKKE tid til eksamen! Ligeledes er der ikke krav om eller tid til at illustrere med plots.
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver
Mere om differentiabilitet
Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget
Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium
Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...
Noter til C# Programmering Iteration
Noter til C# Programmering Iteration Programflow Programmer udfører det meste af deres arbejde vha. forgrening og løkker. Løkker Mange programmeringsproblemer kan løses ved at gentage en handling på de
Algoritmer og invarianter
Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.
Some like it HOT: Højere Ordens Tænkning med CAS
Some like it HOT: Højere Ordens Tænkning med CAS Bjørn Felsager, Haslev Gymnasium & HF, 2001 I år er det første år, hvor CAS-forsøget er et standardforsøg og alle studentereksamensopgaverne derfor foreligger
19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse.
19 Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. Sammenligning af hashtabeller og søgetræer. 281 Hashing-problemet (1). Vi ønsker at afbilde n objekter på en tabel
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2008-juni 2011 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene
q-værdien som skal sammenlignes med den kritiske Chi-i-Anden værdi p-værdien som skal sammenlignes med signifikansniveauet.
Introduktion: Chi-i-Anden test (Goodness of Fit) på computeren fungerer som en "black-boks"- kommando, hvor eleverne med udgangspunkt i en nulhypotese (H ) taster de forventede og de observerede talværdier
Matematik A August 2016 Delprøve 1
Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,
gl. Matematik A Studentereksamen
gl. Matematik A Studentereksamen gl-2stx131-mat/a-29052013 Onsdag den 29. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er
Løsningsforslag MatB December 2013
Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor
z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w
Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation
Første del af rapporten består af et diagram, der viser, hvor mange point eleverne på landsplan fik i de enkelte opgaver.
Til matematiklæreren Dette er en rapport omtaler prøven med hjælpemidler maj 2016. Rapporten kan bruges til at evaluere dit arbejde med klassen og få ideer til dit arbejde med kommende klasser i overbygningen.
Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018
Besvarelser til Calculus Ordinær Eksamen - 5. Januar 18 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Ting man gør med Vektorfunktioner
Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Matematik A. Studentereksamen
Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg
Matematik B-niveau 31. maj 2016 Delprøve 1
Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres
Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet
Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
Uendelige rækker og Taylor-rækker
Uendelige rækker og Taylor-rækker Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 200 Thomas Bolander, FUKBH 0 s. /24 Forhold mellem endelighed
Excel regneark. I dette kapitel skal I arbejde med noget af det, Excel regneark kan bruges til. INTRO EXCEL REGNEARK
Excel regneark Et regneark er et computerprogram, der bl.a. kan regne, tegne grafer og lave diagrammer. Regnearket kan bruges i mange forskellige sammenhænge, når I arbejder med matematik. Det kan gøre
Brugervejledning til Graph
Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,
Evaluering Matematik på htx
Evaluering af Matematik på htx Sommeren 2006 1 Indholdsfortegnelse Forord... 3 Eksamensresultaterne i tal... 4 Matematik B... 4 Matematik A (ordinær prøve)... 5 Matematik A (forsøgsprøve)... 6 Vurdering
Ting man gør med Vektorfunktioner
Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Graph brugermanual til matematik C
Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 13/14 Institution Grenaa HTX Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Bo Paivinen Ullersted
Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?
Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange
Differentialregning 2
Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()
APPENDIX A INTRODUKTION TIL DERIVE
APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer
