Matematik A-niveau Delprøve 1
|
|
- Anna Maria Holmberg
- 5 år siden
- Visninger:
Transkript
1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = ( 35) = 144 Vi regner for x. x = b ± d 2 a Vi indsætter tallene. Altså x = 2 ± = 2 ± 12 2 x = 7 x = 5 = 5 7 Som er det ønskede. Opgave 2 løsning: Der opstilles en model i formen: f(x) = ax + b Oplysningerne indsættes. f(x) = 25x Hvor 420 fortæller antallet af medlemmer fra år 2010, og dette øges hvert år med 25 medlemmer.
2 Opgave 3 løsning: Funktionen: f(x) = (x 2 + 7) ln(x), x > 0 Her differentieres f(x). f (x) = 2x ln (x) + x x Som er den differentierede funktion. Tallet 1 indsættes idet f (1). Der reduceres på det. f (1) = 2 1 ln(1) f (1) = = 8
3 Opgave 4 løsning: Her regnes forstørrelsesfaktoren k. Tallene indsættes. k = AB DE k = 6 4 = 3 2 = 1.5 BC = CE k Tallene indsættes. Vi trækker nu CE fra BC og det giver BE. BC = = 4.5 Dette er den ønskede længde. BE = = 1.5
4 Opgave 5 løsning: Vi integrerer funktionen. F(x) = 8 Vi indsætter punktet og løser en ligning for k x x1+1 + x + k = 2x 4 3x 2 + x + k 6 = k 6 = k 6 = 22 + k k = 28 Dvs. F(x) = 2x 4 3x 2 28 Som er det ønskede. Opgave 6 løsning: En mulig ligning kan bestemmes ved følgende metode: (x x 0 ) 2 + (y 0 ) = f(x) Toppunktet indsættes i formlen. (x 4) = f(x) f(x) = x 2 8x + 19 Som er den ønskede parabel.
5 Matematik A-niveau STX 7. december 2015 Delprøve 2 Opgave 7 - Analytisk plangeometri Delopgave a) Vi undersøger, om vektor og er ortogonale. (1.1.1) (1.1.2) (1.1.3) Vektorerne er ikke ortogonale. Delopgave b) Vi ved, at linjen er parallelt med og passerer igennem punktet. Vi kan bruge linjens ligning. Vi indsætter vores kendte oplysninger. isolate for y Så linjen der er parallelt med vektor er blevet fundet. (1.2.1) (1.2.2)
6 Opgave 8 - Trigonometri Delopgave a) Vi bestemmer AB med følgende kommando som kan benyttes via Maple. Oplysningerne indsættes. (2.1.1) Her blev AB bestemt til Bemærk, at i udregningen blev der sat, hvor der skulle stå men Maple regner ikke med andre bogstaver, andet end A, B og C samt a, b og c. Vi bestemmer BC med samme kommando som før. Oplysningerne indsættes. (2.1.2) Her blev BC bestemt til Bemærk, at i udregningen blev der sat, hvor der skulle stå men Maple regner ikke med andre bogstaver, andet end A, B og C samt a, b og c. Delopgave b) Vi regner vinkel B for trekant ABC. Dette gøres ved at lægge begge vinkler fra delopgave a sammen. Vinkel B: (2.2.1) Som er den ønskede vinkel. Vi regner nu arealet af trekant ABH og ABC og skal argumentere for, at den er 2.5 gange større. Areal for trekant ABH: Dette er arealet af trekanten ABH. Vi ønsker nu at bestemme arealet af trekanten ABC. (2.2.2) (2.2.3) (2.2.4)
7 Dette er arealet for trekant ABC, dvs. arealet af trekanten ABH og BCH. De lægges sammen og derfra fås arealet af trekanten ABC. Vi skal undersøge, at trekanten ABC er 2.5 gange større end trekant ABH. Dette passer, at arealet af trekant ABC er 2.5 gange større end ABH. (2.2.5) Opgave 9 - Eksponentielle funktioner Delopgave a) Vi laver regression over den eksponentielle funktion. Vi definerer vores og. (3.1.1) Vi benytter kommandoen for regressionen: (3.1.2)
8 Her får vi tallene og samt vi får bestemt en forskrift: Hvor og. (3.1.3) Delopgave b) Vi skal give en fortolkning af tallet Vi indsætter tallet. solve for r Dette ganges med 100. (3.2.1) (3.2.2)
9 Så for hvert år der går, stiger aktiekursen med 22.4% (3.2.3) Vi ønsker også at bestemme fordoblingskonstanten. Vi indsætter tallet. (3.2.4) at 5 digits Dvs. aktierne er fordoblet efter 3.4 år. (3.2.5) Delopgave c) Her løses en ligning for funktionen ved at sætte den lig med 500. solve for x I år 2018 vil aktierne overstige 500 pga. årsafslutning.. (3.3.1) (3.3.2) Opgave 10 -Trigonometriske funktioner Delopgave a) Vi starter ud med at definere funktionen. I Maple kan man anvende ekstrema for at undersøge det. Her skal man vide, at ét døgn er i 24 timer, derfor er intervallet Her anvendes følgende kommandoer. (4.1.1) 5. (4.1.2)
10 9. Man kan også regne dem således, da simusfunktionen angiver det i intervallet [-1,1], altså (4.1.3) og Som er det mindste og største værdi for vandbassinet. Herved har man, at 5m er den mindste og 9m er den maksimale dybde. Opgave 11 - Integralregning Delopgave a) Vi bestemmer funktionen. Vi plotter grafen. (5.1.1)
11 Vi bestemmer først arealet mellem 0 og 1. (5.1.2) Vi bestemmer nu arealet for 1 og 4. (5.1.3) Arealerne fra før lægges sammen.
12 at 5 digits Hvilket er det ønskede (5.1.4) (5.1.5) Delopgave b) Vi ønsker at udregne omdrejningslegemet. Dette gøres ligesom før. Vi bestemmer først volumen mellem 0 og 1. (5.2.1) Vi bestemmer nu volumen for 1 og 4. (5.2.2) Dette er volumen af begge arealer, når de er roteret begge: rundt om førsteaksen. Volumen for dem (5.2.3) at 5 digits Som er det ønskede. (5.2.4) Opgave 12 - Potensfunktioner Delopgave a) Funktionen defineres i Maple. Vi bestemmer. (6.1.1)
13 Så dvs. at efter 100 timer er der udledt 120 olie pr. time. (6.1.2) Delopgave b) Vi definerer den nye funktion. Vi indsætter 1.5 på 's plads. (6.2.1) (6.2.2) Dvs. ved en oliemængde på 1.5 giver et areal på For at bestemme tiden, sættes arealet lig med funktionen solve for t Så efter 142 timer fås arealet af (6.2.3) (6.2.4) Opgave 13 - Rumgeometri Delopgave a) Følgende oplyses: og Dette indsættes i kuglens ligning. Vi indsætter. Dette er kuglens ligning. (7.1.1) Vi skal gøre rede for, at punktet ligger på kuglen. Vi indsætter det i ligningen.
14 Det passer. Punktet ligger i kuglen. Dette kan visualiseres. (7.1.2) Delopgave b) Vi bestemmer en tangentplan til kuglen på følgende måde: (7.2.1)
15 (7.2.2) (7.2.3) Dette bruges til planens ligning. Vi indsætter tallene. Dette er planen. (7.2.4)
16 Delopgave c) Vi indsætter parameterfremstillingen i planen. (7.3.1)
17 Da betyder det, at ligger i planen. (7.3.2) Vi indsætter det samme i kuglens ligning. solve for t (7.3.3) (7.3.4) Her er der tale om komplekse tal, dvs. den skærer ikke kuglen. Opgave 14 - Optimering Delopgave a) Vi skal optimere. Vi oplyser følgende: (8.1.1) Vi indsætter 1000 som volumen. (8.1.2) solve for h (8.1.3) (8.1.4) Da kender vi nu. Dette indsættes i den anden formel og dette udtrykkes ved. Delopgave b) (8.2.1) Dette er vores udtryk. Vi differentierer den.
18 (8.2.2) (8.2.3) solve for a (8.2.4) Vi får komplekse rødder. Men vi skal kun bruge den reelle rod. Vi vælger tal for at gøre prøve. Der vælges 7 og Vi ved hvornår funktionen er voksende og aftagende. Herved ved vi, hvornår funktionen er mindst muligt. (8.2.5) (8.2.6) Hvilket er det ønskede.
19 Opgave 15 - Differentialligninger Delopgave a) Vi har fået angivet differentialligningen. Vi indsætter oplysningerne. Vi indsætter. (9.1.1) solve DE (9.1.2) Dette er regneforskriften for. (9.1.3) Vi sætter (9.1.4) solve for t (9.1.5) (9.1.6) at 5 digits Så efter 5.4 år står der kr på kontoen. (9.1.7) Delopgave b)
20 Vi gør næsten det samme. solve DE (9.2.1) (9.2.2) Her skal den faste årlige indbetaling regnes. Dette gøres sådan: (9.2.3) solve for s (9.2.4) (9.2.5) (9.2.6) at 5 digits Så der skal indbetales kr hvert år, for at man får 70000kr. (9.2.7)
Matematik A-niveau STX 1. juni 2010 Øvelse DELPRØVE 1 & DELPRØVE 2
Matematik A-niveau STX 1. juni 2010 Øvelse DELPRØVE 1 & DELPRØVE 2 -----------------------------------------------------DELPRØVE 1------------------------------------------------------- Opgave 1 - Reduktion
Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning
Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001
Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari
Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen
Matematik A eksamen 14. august Delprøve 1
Matematik A eksamen 14. august 2014 www.matematikhfsvar.page.tl Delprøve 1 Info: I denne eksamensopgave anvendes der punktum som decimaltal istedet for komma. Eks. 3.14 istedet for 3,14 Opgave 1 - Andengradsligning
Matematik B. Anders Jørgensen
Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren
Matematik A, STX. Vejledende eksamensopgaver
Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres
Matematik B-niveau 31. maj 2016 Delprøve 1
Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =
Matematik B-niveau STX 7. december 2012 Delprøve 1
Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme
DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015
DELPRØVE 1 Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1, maj 2008 Følgende opgaver i delprøve 1 er løst i hånden, hvorefter det er skrevet ind i Word, så det er lettere at læse og evt. kommentere på udregningerne.
Matematik A August 2016 Delprøve 1
Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,
MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX
MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX Anders Jørgensen & Mark Kddafi 2016 matematikhfsvar.page.tl 8. august 2016 15. august 2016 Anders Jørgensen & Mark Kddafi MATEMATIK
Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!
Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.
Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående
Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:
Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså
Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren
Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave
Matematik A STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik A, STX 18 maj Matematik A, STX 23 maj Matematik A, STX 15 august
GL. MATEMATIK B-NIVEAU
GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver
Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4
Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat
Løsninger til eksamensopgaver på B-niveau 2017
Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen
STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet
STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
Løsninger til matematik B-niveau HF maj 2016 April 2017
Løsninger til matematik B-niveau HF maj 2016 April 2017 www.matematikhfsvar.page.tl Cristina Sissee Jensen Side 1 af 4 Løsninger til matematik B-niveau HF maj 2016 April 2017 www.matematikhfsvar.page.tl
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette
TERMINSPRØVE APRIL x MA, 3z MA og 3g MA/2 MATEMATIK. onsdag den 11. april Kl
TERMINSPRØVE APRIL 2018 3x MA, 3z MA og 3g MA/2 MATEMATIK onsdag den 11. april 2018 Kl. 09.00 14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
Stx matematik B maj 2009
Ib Michelsen Svar stxb maj 2009 1 Stx matematik B maj 2009 Opgave 1 Bestem f ' ( x), idet f (x )=2 x 3 +4 x 2 f ' ( x)=(2 x 3 +4 x 2 )'=(2 x 3 )'+(4 x 2 )'=2 ( x 3 )' +4 ( x 2 )'=2 3 x 3 1 +4 2 x 2 1 =6
Løsninger til eksamensopgaver på A-niveau 2018
Løsninger til eksamensopgaver på A-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler 2 Opgave 1: 2 2 12 0 Man kan løse andengradsligningen med diskriminantmetoden, men man kan også som her forkorte
Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler
Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 2016 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 Dette
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2013/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen 7Ama1V13
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold December 2015 vinter VUC Vestegnen stx Mat A Gert Friis
ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex
ADGANGSKURSUS AALBORG UNIVERSITET Formelsamling Brush-up Flex 2016 Indholdsfortegnelse 1. Brøkregning... 2 2. Parenteser... 3 3. Kvadratsætningerne:... 3 4. Potensregneregler... 4 5. Andengradsligninger...
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver
Eksamensspørgsmål. Spørgsmål 1: Funktioner
. Spørgsmål 1: Funktioner Gør rede for udvalgte sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne
Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011
Matematik A Studentereksamen stx113-mat/a-09122011 Fredag den 9. december 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver
Repetition til eksamen. fra Thisted Gymnasium
Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2012 Institution Uddannelse Fag og niveau VUF - Voksenuddannelsescenter Frederiksberg GSK Matematik
Løsninger til eksamensopgaver på A-niveau 2017
Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på
Løsningsforslag MatB Juni 2013
Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / Juni 2016 Institution Den Jyske Håndværkerskole Uddannelse Fag og niveau Lærer Hold EUX - Tømre Matematik
MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi
MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A-24052016 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik
Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A
Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler
Eksamensspørgsmål. Spørgsmål 1: Funktioner
. Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne for en
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj-juni 2015 HTX Vibenhus
Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier.
Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister 1. Polynomier. Redegør for andengradspolynomiets graf og udled en formel for koordinatsættet til parablens toppunkt. 2.
GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2
GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve
Matematik A. Studentereksamen
Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a
gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
Vejledende Matematik A
Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes
Ib Michelsen Vejledende løsning stxb 101 1
Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er
Løsningsforslag Mat B August 2012
Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave
Matematik A. Studentereksamen
Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
MATEMATIK A. Indhold. 92 videoer.
MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer
GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet
GU HHX MAJ 2009 MATEMATIK A Onsdag den 13. maj 2009 Kl. 9.00 14.00 Undervisningsministeriet GL091-MAA Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / Juni 2017 Institution Den Jyske Håndværkerskole Uddannelse Fag og niveau Lærer Hold EUX - Tømre Matematik
Matematik A. Studentereksamen
Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2014 Studenterkurset
Løsningsforslag MatB Juni 2012
Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion
1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller
1 Ligninger a. Fortæl om algebraisk og grafisk løsning af ligninger ud fra ét eller flere eksempler. b. Gør rede for algebraisk løsning af andengradsligningen ax 2 + bx + c = 0. 2 Ligninger a. Fortæl om
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2016 Institution Uddannelse Fag og niveau Lærer(e) Hold Hansenberg Gymnasium htx Matematik A Thomas Voergaard.
Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven
2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,
MATEMATIK A-NIVEAU 2g
NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,
Matematik A. Studentereksamen. Gammel ordning. Fredag den 25. maj 2018 kl gl-1stx181-mat/a
Matematik A Studentereksamen Gammel ordning gl-1stx181-mat/a-25052018 Fredag den 25. maj 2018 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af 6 spørgsmål. Delprøven
Matematik A. Studentereksamen
Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2017 Institution Erhvervsgymnasiet Grindsted Uddannelse Fag og niveau Lærer(e) Htx Matematik A Anders
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er
Matematik B. Studentereksamen
Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Løsninger til eksamensopgaver på B-niveau 2018
Løsninger til eksamensopgaver på B-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler Opgave 1: Da trekant ABC er retvinklet, kan længden af hypotenusen bestemmes med Pythagoras: 2 2 2 AB AC BC 2 2
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2018 Rybners
Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )
Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,
Undervisningsbeskrivelse for Matematik A 2. E 2011/2012
Undervisningsbeskrivelse for Matematik A 2. E 2011/2012 Termin Undervisningen afsluttes den 16. maj 2012 Skoleåret hvor undervisningen har foregået: 2011-2012 Institution Skive Teknisk Gymnasium Uddannelse
Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG
Matematik A Studentereksamen Skriftlig prøve (5 timer) STX MAA 581710_STX093-MAA.indd 1 LQGG Fredag den. december kl... 03/11/09 10:53:00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Mette
Løsninger til eksamensopgaver på A-niveau 2016
Løsninger til eksamensopgaver på A-niveau 2016 24. maj 2016: Delprøven UDEN hjælpemidler Opgave 1: Da trekanterne er ensvinklede, er forholdene mellem korresponderende linjestykker i de to trekanter det
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2019 Institution Uddannelse Fag og niveau Lærer(e) Hold Undervisningstid VUC Vestegnen, Albertslund Gymnasievej
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 12/13 og maj/juni 13/14 Institution Teknisk gymnasium Thisted, EUC - nordvest Uddannelse Fag og niveau
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund
STUDENTEREKSAMEN MAJ-JUNI 2009 2009-8-2 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER
STUDENTEREKSAMEN MAJ-JUNI 009 009-8- MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Mandag den 11. maj 009 kl. 9.00-10.00 BESVARELSEN AFLEVERES KL. 10.00 Der tildeles
Delprøven uden hlælpemidler
Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.
Løsning til aflevering - uge 12
Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj -Juni 2022 Institution Hotel- og Restaurantskolen Uddannelse Fag og niveau Det Naturvidenskabelige Gymnasium
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
gl. Matematik A Studentereksamen
gl. Matematik A Studentereksamen gl-stx132-mat/a-14082013 Onsdag den 14. august 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2
MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar
MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi
MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012
Mundtlige spørgsmål til 2v + 2b. mat B, sommer Nakskov Gymnasium & Hf.
Mundtlige spørgsmål til 2v + 2b. mat B, sommer 2010. Nakskov Gymnasium & Hf. Eksaminator: Ulla Juul Franck Der er 20 spørgsmål i alt, og bilag til spørgsmål 14 og 15. 1. Andengradspolynomier og parabler.
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,
Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A
Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Kofi Mensah 7Ama1S15
Stx matematik B december 2007. Delprøven med hjælpemidler
Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2016til juni 2019 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid i
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016/2017, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold
Årsprøve i matematik 1y juni 2007
Opgave 1 Årsprøve i matematik 1y juni 2007 Figuren viser to ensvinklede trekanter PQR og P 1 Q 1 R 1 a) Bestem længden af siden P 1 Q 1 Skalafaktoren beregnes : k = 30/24 P 1 Q 1 = 20 30/24 P 1 Q 1 = 25