MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger
|
|
|
- Arthur Brandt
- 9 år siden
- Visninger:
Transkript
1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016
2 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette uddrag indeholder løsninger af differentialligninger. Der vil blive foretaget beregninger samt illustrationer i CAS programmer herunder GeoGebra. Maple 2016 anvendes til de mere komplicerede ligninger, idet man forudsætter, at man kan anvende CAS til eksamen. For anvendelse af dokumentet, anbefales det, at man prøver at løse opgaven først, inden man anvender løsningerne Side 1 ud af 18
3 Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Opgave STX matematik A niveau, kapitel 8 Differentialligninger Lad differentialligningen være givet dx = x + 2 y Tangentligningen kan bestemmes ved et punkt. Punktet P er givet. P = (2, 2) Punktets koordinater kan allerede indsættes i tangentligningen, så man mangler kun den afledede, og dette findes ved indsættelse af punktet i differentialligningen. Så tangenten til grafen er dx = = 2 y = 2(x 2) 2 y = 2x 2 Opgave Differentialligningen er givet = 2x y dx Punkterne for f er P = (1, e) og Q = ( 1, e). Disse indsættes i differentialligningen = 2 1 e = 2e dx = 2 ( 1) e = 2e dx Så kan man opstille to retningsvektorer. (MAT A s. 25) r 1 = ( 1 2e ), r 2 = ( 1 2e ) Så man anvender formlen for vinkel mellem vektorer. Dette udføres i Maple Side 2 ud af 18
4 Opgave Opgave Differentialligningen y = 5y Samt punktet er P = (0,4). Nedenfor er den fuldstændige løsning y = c e kx Da differentialligningen er af typen y = ky. Differentialligningen indsættes i formlen samt punktet P, så c isoleres. Så har man løsningen Differentialligningen 4 = c e = c e 0 4 = c 1 c = 4 y = 4 e 5x y + 3y = 20 Samt punktet er P = (1,4). Nedenfor er den fuldstændige løsning y = b + c e ax a Da differentialligningen er af typen y + ay = b. Differentialligningen indsættes i formlen samt punktet P, så c isoleres. 4 = c e = c e 3 1 c = c = e 3 1 Så har man løsningen y = e 3x 3 Side 3 ud af 18
5 Opgave Differentialligningen y + y = 20x + 3 Samt punktet er P = (1,4). Nedenfor er den fuldstændige løsning y = e G(x) e G(x) h(x)dx Da differentialligningen er af typen y + g(x) y = h(x). Differentialligningen indsættes i formlen samt punktet P. Først ses hvad der er hvad. Så indsættes ovenstående. G(x) = x, h(x) = 20x + 3 y = e x e x (20x + 3)dx y = e x ((20x 17) e x + c) y = e x (20ex 17ex + c) Punktet indsættes 4 = e 1 (20e 1 17e 1 + c) c = e Ligningen løses for c vha. CAS-værktøjet WordMat. Altså er funktionen y = e x (20ex 17ex + e) Side 4 ud af 18
6 Opgave Opgaven løses i Maple a) Asffassaf Side 5 ud af 18
7 Opgave Opgaven løses i Maple a) Sfasafsfasfa Side 6 ud af 18
8 Opgave Opgaven løses i Maple a) asfsdsdggds b) asfasasffas c) sfasfssas d) sffasfsfsaa Fortsættes næste side Side 7 ud af 18
9 Opgave a) Ud fra oplysningerne opstilles en differentialligning. = y b) Her anvendes den fuldstændig løsning y = c e kx Man indsætter oplysningerne. y(7) = 10 e = 18 Så efter 7 døgn vil der være 18 individer. c) Her anvendes den fuldstændig løsning m y = 1 + c e kmx Differentialligningen = y (100 y) dx Den indsættes i den fuldstændige løsning. 100 y = 1 + c e x Man kan finde c ved indsættelse af punktet fra spm. b) = 1 + c e Ligningen løses for c vha. CAS-værktøjet WordMat. c = Så man har 100 y = e x Så sættes ligningen lig med = e x Ligningen løses for x vha. CAS-værktøjet WordMat. x = Så efter 24 døgn vil der være ca. 90 individer. Side 8 ud af 18
10 Opgave Opgaven løses i Maple a) Fassfa Fortsættes næste side Side 9 ud af 18
11 b) Fassffas Opgave Differentialligningen (den samme som opgave 8.010) er givet ved ds t = S t (12 S t ) a) Man indsætter 4 på S t, så man får væksthastigheden. ds t = (12 4) = Så den vokser med 0.184cm pr. døgn efter en længde på 4cm. b) Man indsætter følgende i differentialligningen 0.5, 6, 12 Så man har ds t = (12 0.5) = ds t = (12 6) = ds t = (12 12) = 0 Skitsen ses her. x = længde, y = væksthastighed pr. døgn. Side 10 ud af 18
12 Opgave Differentialligningen dx = y (x2 9), y > 0 a) Punktet P indsættes, både i ligningen ovenfor og tangentligningen, man har så dx = 2 (22 9) = 10 Så y = 10(x 2) + 2 y = 10x + 22 b) Monotoniforholdene bestemmes. = 0, y > 0 dx Så er x 2 9 = 0 x 2 = 9 x ± 3 Det ses, at det er en voksende parabel med benene opad, hvor c = 9, altså er funktionen f; voksende i intervallet ] ; 3] samt [3; [ og aftagende i intervallet [ 3; 3] En monotonilinje tegnes. Side 11 ud af 18
13 Opgave Opgave a) En differentialligning opstilles. dn = N (10 6 N) Så har man differentialligningen. b) Den fuldstændige løsning til differentialligningen er m y = 1 + c e kmx Værdierne indsættes samt punktet t = 0 er = Altså er løsningen N(t) = 1 + c e c = Ligningen løses for c vha. CAS-værktøjet WordMat e t c) Når væksthastigheden er størst i logistisk vækst, er det når m, altså er det Den sættes lig med ovenstående funktion e t = Ligningen løses for t vha. CAS-værktøjet WordMat. t = Så efter 70 døgn, er der størst vækst i populationen. a) En differentialligning opstilles. dn = N (10 6 N) Så har man differentialligningen. b) Da man har punktet, er det muligt at finde konstanten c i den fuldstændige løsning, som er givet nedenfor. m y = 1 + c e kmx Værdierne indsættes samt punktet N(0) = = c e c = 4 Ligningen løses for c vha. CAS-værktøjet WordMat. Fortsættes næste side Side 12 ud af 18
14 Opgave Så er løsningen til differentialligningen 10 6 N(t) = e t d) Så undersøges det, hvornår væksthastigheden er størst. I logistisk vækst, er det når m, altså er det Den sættes lig med ovenstående funktion e t = Ligningen løses for t vha. CAS-værktøjet WordMat. t = Så efter 70 døgn, er der størst vækst i populationen. Der er givet en differentialligning N (t) = N(t) (10 6 N(t)) a) Væksthastigheden bestemmes ved indsættelse af på N(t). N (t) = ( ) = 5000 Altså vokser populationen med 5000 individer, når væksthastigheden er størst. b) Grafen tegnes. Først regnes nogle punkter. N (0) = (10 6 0) = 0 N (500000) = ( ) = 5000 N ( ) = ( ) = 0 Grafen ses: Bemærk, at x aksen er antal individer og y aksen er væksthastigheden af individer pr. døgn. Side 13 ud af 18
15 Opgave Opgave Differentialligningen (nu den fjerde af samme slags som ovenstående opgaver) er givet. N (t) = N(t) (10 6 N(t)) a) Her er t 1 = , altså indsættes dette i differentialligningen. N (t) = ( ) = 5000 Så her vokser populationen med 5000 individer i døgnet. Da er halvdelen af det maksimale, den logistiske vækst kan bære, vil det være der, hvor væksthastigheden er størst, efterfølgende vil det dale med væksten, selvom der er en stigning i populationen, inil den når individer. Opgaven løses i Maple a) Afssfa Fortsættes næste side Side 14 ud af 18
16 b) Saeid Jafari Opgave a) Forskriften findes i Maple Der anvendes lineære regression. b) Da der er tale om væksthastigheden (ovenstående model) er differentialligningen 1 N dn = t c) Forskriften kan bestemmes via Maple 2016, men også ved separation af de variable. 1 dn = ( t ) N ln N = t t + k e ln(n) = e t t+k N = e t t e k N = c e t t Så har man t = 7 samt N = 780. Altså er forskriften 780 = c e c = N(t) = e t t Side 15 ud af 18
17 Opgave Der opstilles en differentialligning Opgave a) dh = k h Der opstilles en differentialligning Opgave a) dp = 0.02 (1000 p) Der opstilles en differentialligning Opgave a) = k (y 0 y) Der opstilles en differentialligning om rygter a) Saf dr = r (500 r) Side 16 ud af 18
18 Opgave Der er givet en differentialligning Samt funktionen dh 3 = 20 h(t) 2 h(t) = ( 50 t ) 2 5 a) Hvis man differentierer funktionen h(t), og sætter den lig med differentialligningen, bør det være en løsning, hvis man også indsætter funktionen i differentialligningen. I Maple 2016 differentieres funktionen h(t) og dette udføres nedenfor: Side 17 ud af 18
19 Opgave Det ses, at differentialligningen dn = ( t) N Beskriver befolkningens størrelse, altså den tilvækst der er. a) Det ses, at t er tid og N er befolkningstilvæksten. Man antager, at der vokser 2.5% for hvert år, inil man når et bestemt år, for væksten aftager gradvist. Altså man har t = 0 Ligningen løses for t vha. CAS-værktøjet WordMat. t = 62.5 Så efter 62.5 år vil mængden falde, da dette er toppunktet for væksthastigheden. Slut på kapitel 8 - Differentialligninger Kapitel 9 handler om Eksamensopgaver fra år 2008 til 2012 fra bogen: Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Disse opgaver løses ikke, der henvises til Side 18 ud af 18
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver
Matematik A, STX. Vejledende eksamensopgaver
Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Matematik A-niveau STX 1. juni 2010 Øvelse DELPRØVE 1 & DELPRØVE 2
Matematik A-niveau STX 1. juni 2010 Øvelse DELPRØVE 1 & DELPRØVE 2 -----------------------------------------------------DELPRØVE 1------------------------------------------------------- Opgave 1 - Reduktion
MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX
MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX Anders Jørgensen & Mark Kddafi 2016 matematikhfsvar.page.tl 8. august 2016 15. august 2016 Anders Jørgensen & Mark Kddafi MATEMATIK
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 5 Funktioner og grafer, modellering af variabelsammenhænge 2016 MATEMATIK A-NIVEAU Vejledende eksempler
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
GL. MATEMATIK B-NIVEAU
GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver
MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi
MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A-24052016 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik
Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari
Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen
Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning
Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001
Matematik A STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik A, STX 18 maj Matematik A, STX 23 maj Matematik A, STX 15 august
Matematik A eksamen 14. august Delprøve 1
Matematik A eksamen 14. august 2014 www.matematikhfsvar.page.tl Delprøve 1 Info: I denne eksamensopgave anvendes der punktum som decimaltal istedet for komma. Eks. 3.14 istedet for 3,14 Opgave 1 - Andengradsligning
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
Matematik A August 2016 Delprøve 1
Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,
Matematik B-niveau STX 7. december 2012 Delprøve 1
Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme
Differentialligninger. Ib Michelsen
Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3
Matematik A-niveau Delprøve 1
Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±
Løsningsforslag MatB December 2013
Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor
Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4
Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat
Matematik B. Anders Jørgensen
Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren
Matematik B-niveau 31. maj 2016 Delprøve 1
Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =
Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!
Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres
Løsningsforslag Mat B 10. februar 2012
Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016/2017, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette
STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet
STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5
Løsninger til eksamensopgaver på B-niveau 2017
Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver
Løsninger til eksamensopgaver på A-niveau 2017
Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på
DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015
DELPRØVE 1 Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1, maj 2008 Følgende opgaver i delprøve 1 er løst i hånden, hvorefter det er skrevet ind i Word, så det er lettere at læse og evt. kommentere på udregningerne.
Matematik A. Studentereksamen. Fredag den 6. december 2013 kl stx133-mat/a
Matematik A Studentereksamen stx133-mat/a-06122013 Fredag den 6. december 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Løsning MatB - januar 2013
Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]
Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:
Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså
Differentialregning 2
Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()
Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion
1 Indledning Dette afsnit omhandler første delprøve, den uden hjælpemidler. Dette afsnit bygger på vejledningen til lærerplanen og lærerplanen for matematik b-niveau, samt eksamensopgaverne fra 2014-2012,
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 2016 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 Dette
Projekt: Logistisk vækst med/uden høst
Projekt: Logistisk vækst med/uden høst I dette projekt skal vi arbejde med differentialligninger, specielt med logistisk vækst og med en udvidelse, hvor der indgår høst. Den eksponentielle vækst (type:
Matematik A. Studentereksamen
Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet
Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx131-MATn/A-29052013 Onsdag den 29. maj 2013 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret
UNDERVISNINGS MINISTERIET KVALITETS- OG TI LSYNSSTYRELSEN. Maten1atik A. Studenterel<sam.en. Fredag den 22. maj 2015 kl. 9.00-14.
- UNDERVISNINGS MINISTERIET KVALITETS- OG TI LSYNSSTYRELSEN Maten1atik A Studenterel
Løsninger til matematik B-niveau HF maj 2016 April 2017
Løsninger til matematik B-niveau HF maj 2016 April 2017 www.matematikhfsvar.page.tl Cristina Sissee Jensen Side 1 af 4 Løsninger til matematik B-niveau HF maj 2016 April 2017 www.matematikhfsvar.page.tl
Differentialligninger med TI-Interactive!
Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår forår 2019, eksamen maj-juni 2019 Institution Kolding HF & VUC Uddannelse STX Fag og niveau Matematik
Løsningsforslag Mat B August 2012
Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave
20 = 2x + 2y. V (x, y) = 5xy. V (x) = 50x 5x 2.
17 Optimering 17.1 Da omkræsen skal være 0cm har vi at 0 = x + y. Rumfanget V for kassen er en funktion der afhænger af både x og y givet ved V (x, y) = 5xy. Isolerer vi y i formlen for omkredsen og indsætter
Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren
Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave
Løsninger til eksamensopgaver på A-niveau 2016
Løsninger til eksamensopgaver på A-niveau 2016 24. maj 2016: Delprøven UDEN hjælpemidler Opgave 1: Da trekanterne er ensvinklede, er forholdene mellem korresponderende linjestykker i de to trekanter det
a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 :
Eksemplarisk løsning af eksamensopgave Nedenstående opgaver er delprøven med hjælpemidler fra Matematik B eksamen d. 22 maj 2014 restart with Gym : Opgave 7 a) For at bestemme a og b i y=ax+b defineres
Matematik A. Studentereksamen
Matematik A Studentereksamen 1stx111-MAT/A-18052011 Onsdag den 18. maj 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Løsninger til eksamensopgaver på B-niveau 2018
Løsninger til eksamensopgaver på B-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler Opgave 1: Da trekant ABC er retvinklet, kan længden af hypotenusen bestemmes med Pythagoras: 2 2 2 AB AC BC 2 2
MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi
MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012
11. Funktionsundersøgelse
11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med
Matematik A. Studentereksamen
Matematik A Studentereksamen 1stx111-MAT/A-18052011 Onsdag den 18. maj 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Matematik B. Studentereksamen
Matematik B Studentereksamen 2stx111-MAT/B-24052011 Tirsdag den 24. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
MM501 forelæsningsslides
MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele
TERMINSPRØVE APRIL x MA, 3z MA og 3g MA/2 MATEMATIK. onsdag den 11. april Kl
TERMINSPRØVE APRIL 2018 3x MA, 3z MA og 3g MA/2 MATEMATIK onsdag den 11. april 2018 Kl. 09.00 14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven
2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten
Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler
Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for
Stx matematik B maj 2009
Ib Michelsen Svar stxb maj 2009 1 Stx matematik B maj 2009 Opgave 1 Bestem f ' ( x), idet f (x )=2 x 3 +4 x 2 f ' ( x)=(2 x 3 +4 x 2 )'=(2 x 3 )'+(4 x 2 )'=2 ( x 3 )' +4 ( x 2 )'=2 3 x 3 1 +4 2 x 2 1 =6
Løsninger til eksamensopgaver på A-niveau 2019 ny ordning
Løsninger til eksamensopgaver på A-niveau 2019 ny ordning Opgave 1: r ( t) Q( 7,8) 21. maj 2019: Delprøven UDEN hjælpemidler 2t + 1 = 2 t 1 a) Funktionsværdien bestemmes ved indsættelse af t-værdien: 2
Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:
Ang. skriftlig matematik B på hf
Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet
STUDENTEREKSAMEN MAJ 2008 MATEMATIK A-NIVEAU. Onsdag den 14. maj 2008. Kl. 09.00 14.00 STX081-MAA
STUDENTEREKSAMEN MAJ 008 MATEMATIK A-NIVEAU Onsdag den 14. maj 008 Kl. 09.00 14.00 STX081-MAA Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål. Delprøven
Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )
Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,
Løsningsforslag MatB Jan 2011
Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen
STUDENTEREKSAMEN AUGUST 2007 MATEMATIK B-NIVEAU. Torsdag den 16. august Kl STX072-MAB
STUDENTEREKSAMEN AUGUST 2007 MATEMATIK B-NIVEAU Torsdag den 16. august 2007 Kl. 09.00 13.00 STX072-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål og
Differential- ligninger
Differential- ligninger Et oplæg 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der kan gennemgås før man går i gang med en lærebogs fremstilling af emnet differentialligninger Læreren skal
Vejledende besvarelse
Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer
MATEMATIK A-NIVEAU-Net
STUDENTEREKSAMEN MAJ AUGUST 2007 2011 MATEMATIK A-NIVEAU-Net torsdag 11. august 2011 Kl. 09.00 14.00 frs112-matn/a-11082011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret formelsamling
Projekt 4.9 Bernouillis differentialligning
Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:
Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet
Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs102-matn/a-12082010 Torsdag den 12. august 2010 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve
PeterSørensen.dk : Differentiation
PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 4 Statistik & sandsynlighedsregning 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2016 Institution Uddannelse Fag og niveau Lærer(e) Hold Hansenberg Gymnasium htx Matematik A Thomas Voergaard.
Løsningsforslag 27. januar 2011
Løsningsforslag 27. januar 2011 Opgave 1 (5%) Isolér t i udtrykket: 3x + 4 = 2x + t t 3x + 4 = 2x + t t og t 0 t(3x + 4) = 2x + t 3tx + 4t t = 2x t(3x + 4 1) = 2x t = 2x 3x + 3 og G = R\{-1} Opgave 2 (5%)
Matematik B. Studentereksamen
Matematik B Studentereksamen stx103-mat/b-10122010 Fredag den 10. december 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium
Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium
10. Differentialregning
10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side
MATEMATIK A. Indhold. 92 videoer.
MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer
Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014
Matematik A Studentereksamen stx143-mat/a-05122014 Fredag den 5. december 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Løsninger til eksamensopgaver på A-niveau 2018
Løsninger til eksamensopgaver på A-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler 2 Opgave 1: 2 2 12 0 Man kan løse andengradsligningen med diskriminantmetoden, men man kan også som her forkorte
A U E R B A C H M I K E # e z. a z. # a. # e x. # e y. a x
M A T E M A T I K A 3 M I K E A U E R B A C H WWW.MATHEMATICUS.DK z a z # e z # a a x # e x ay # e y y x Matematik A3. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2015 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse Flexhold Matematik
Løsningsforslag MatB Juni 2014
Løsningsforslag MatB Juni 2014 Opgave 1 (5 %) a) Bestem en ligning for den rette linje l, der indeholder punkterne P( 2,4) og Q(4, 1) Løsning: Da de to punkter er givet kan vi beregne hældningen på følgende
Repetition til eksamen. fra Thisted Gymnasium
Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes
STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT
STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve
