Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2
|
|
|
- Trine Villadsen
- 9 år siden
- Visninger:
Transkript
1 Eulers metode Tom Pedersen //Palle Andersen Aalborg University Eulers metode p. 1/2
2 Differentialligninger m(t) H(t) d(h(t)) dt = m(t) H(t) hvor m(t) er kendt og H(t) skal løses. Eulers metode p. 2/2
3 Euler løsning Generel differentialligning, t uafhængig variable, x afhængig variabel dx(t) = f(x,t) dt afhængighed af t bruges til tidsvarierende input (m(t)) Eulers skema til løsning: hvor h er tidsskridtet x(t + h) = x(t) + hf(x,t) Eulers metode p. 3/2
4 Euler løsning vandkar For vandkar ligningen bliver Euler approximationen H(t + h) = H(t) + h(0.0125m(t) H(t) I Matlab venlig notation, hvor t = (k 1)h H(k + 1) = H(k) + h(0.0125m(k) H(k) Eulers metode p. 4/2
5 Euler i Matlab h=10; % Skridttid H(1)=0; % Begyndelseshojde m=0.0643; % Indgangsflow %Euler beregning af hojde for jj=1:300 H(jj+1)=H(jj)+h*0.0125*m... -h* *sqrt(h(jj)); end tid=1:h:length(h)*h; % Tidsvektor figure(1) plot(tid,h),grid title( Euler simulering, fontsize,16 ) xlabel( Tid [sek], fontsize,16) ylabel( Hojde [meter], fontsize,16) Eulers metode p. 5/2
6 Euler med input-vektor h=10; %Skridttid H(1)=0; %Begyndelseshojde m=[0.05*ones(1,100) 0.05:0.0001: *sin(-(0:0.01:2.8))+0.06]; %Euler beregning af hojde for jj=1:length(m) H(jj+1)=H(jj)+h*0.0125*m(jj)... -h* *sqrt(h(jj)); end Eulers metode p. 6/2
7 Differentialligningssystemer Newtons lov: Ma = M dv dt = M d2 x dt 2 = F hvor F er summen af kræfter, M er massen, a,v, x er acceleration, hastighed og position. Vi bruger ofte notationen dx dt = ẋ d2 x dt 2 = ẍ Eulers metode p. 7/2
8 Frit fald Mẍ = Mg b f ẋ ẋ Der vælges to nye variable x 1 = x og x 2 = ẋ = v. Ligningssystemet giver nu x 1 = v = x 2 x 2 = a = g b f M x 2 x 2 Eulers metode p. 8/2
9 Generel differentialligning ẋ = f(x,t) hvor x og ẋ er vektorer og f(x,t) er en vektorfunktion. I vores tilfælde er der ingen afhængighed af t x 1 = f 1 (x 1,x 2 ) = x 2 x 2 = f 2 (x 1,x 2 ) = g b f M x 2 x 2 Eulers metode p. 9/2
10 Euler skema Differentiallilgningssystemet ẋ = f(x) tilnærmes med x(t + h) = x(t) + hf(x(t),t) eller på Matlab form: x(k + 1) = x(k) + hf(x(k),k) Eulers metode p. 10/2
11 Frit fald Vi skal kende begyndelsesbetingelserne for x 1 og x 2 x 1,k+1 = x 1,k + hx 2,k x 2,k+1 = x 2,k + h( g b f M x 2,k x 2,k ) I prøven skal I selv programmere dette eksempel plus noget mere Eulers metode p. 11/2
12 Euler metode Vi vil se på løsningsskemaer skemaer til differentialligninger af formen ẋ = f(x,t) hvor x og ẋ er vektorer og f(x,t) er en vektorfunktion. Eulers forward-skema findes ved trunkering af Taylor rækken x(t + h) = x(t) + hẋ(t) + h2 2! ẍ(t) + R... Den fejl man gør ved trunkering har en størrelse, som x(k + 1) = x(k) + hf(x(k),k) + h2 2! x(ζ) hvor x(k) er indført som betegnelse for x til tiden (k 1) h Eulers metode p. 12/2
13 Plot med fejl af Euler løsning 2.8 Euler løsning med forskellig stepstørrelse løsninger x(t) tid Eulers metode p. 13/2
14 Lokal og global fejl Eulers metode p. 14/2
15 Lokal og global fejl Den lokale trunkeringsfejl bliver x 1 x(t 1 ) = h2 2! x(ζ) Mh 2 Den globale trunkeringsfejl er af typen x N x(t N ) NMh 2 = M(t N t 0 )h Den globale trunkeringsfejl er altså af orden h, O(h) Eulers metode p. 15/2
16 Runge Kutta metoder Taylor række udvikling x(t + h) = x(t) + hẋ(t) + h2 2! ẍ(t) + R... Ved Eulers metode ser manbort fra restleddet af 2. orden Med Runge Kutta metoder laver man en bedre tilnærmelse således at at den lokale fejl vil være af typen O(h 3 ) for Runge Kuttas 2. ordens metode. Eulers metode p. 16/2
17 Runge Kutta 2. orden Skemaet for en 2. ordens Runge Kutta er hvor x k+1 = x k + h[k 1 (1 1 2α ) + k 2 2α ] k 1 = f(t k,x k ) k 2 = f(t k + αh,x k + αhk 1 ) α vælges mellem 0 og 1 med det formål at få restleddet mindst muligt. Forskellige valg er egnet til forskellige typer differentialligninger Eulers metode p. 17/2
18 Korrigeret Euler Specialtilfældet α = 1 2 x k+1 = x k + hk 2 = x k + hf(t k + h/2,x k + hk 1 /2) Eulers metode p. 18/2
19 Modificeret Euler Specialtilfældet α = 1 x k+1 = x k + h 2 (k 1 + k 2 ) Eulers metode p. 19/2
20 Multistep metoder Ved multistep metoder bruger man information fra tidligere beregnede løsningsværdier, som i Adams metoder givet ved skemaet x k+1 = x k +h[β 0 f(t k+1,x k+1 )+β 1 f(t k,x k )+β 2 f(t k 1,x k 1 )+ ] et special tilfælde som også kalde Backward Euler, hvor β 0 = 1 og de øvrige β-værdier er 0 fås x k+1 = x k + hf(t k+1,x k+1 ) Det bemærkes at den næste værdi indgår på såvel højre sompå venstre side, hvilket indebærer at for at bestemme x k+1 skal man løse en ulineær ligning. Metoder af denne karakter kaldes implicitte metoder. Eulers metode p. 20/2
21 Stabilitet af løsningsskemaer Ved stabilitet menes at løsningen af en differentialligning den numeriske løsningen ikke divergerer fra den eksakte løsning. Som eksempel ses på differentialligningen som har løsningen Eulers (forward) skema giver ẋ = 1 τ x x(t) = x 0 e t/τ x(t k ) = x 0 e kh/τ x k+1 = x k h τ x k = x k (1 h τ ) = x 0(1 h τ )k+1 hvis h 2τ bliver parantesen numerisk større end 1 og løsningen divergerer Eulers metode p. 21/2
22 Stabilitet af backward Euler Eulers backward skema giver x k+1 = x k h τ x k+1 x k+1 = x k h τ = x 0 1 (1 + h τ )k+1 Det ses at denne altid konvergerer uanset valget af h Eulers metode p. 22/2
Matematisk modellering og numeriske metoder. Lektion 19
Matematisk modellering numeriske metoder Lektion 19 Morten Grud Rasmussen 15. november, 2013 1 Mangeskridtsmetoder til løsning af førsteordens ODE er [Bens afsnit 21.2 side 908] 1.1 Adams-Bashforth-metoder
Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan
Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles
Numeriske metoder - til løsning af differentialligninger - fra borgeleo.dk
Numeriske metoder - til løsning af differentialligninger - fra borgeleo.dk Eksakte løsninger: fuldstændig løsning og partikulær løsning Mange differentialligninger kan løses eksakt. Fx kan differentialligningen
Numeriske metoder i matlab
NMM minimodul 6 p. 1/2 Numeriske metoder i matlab Lektion 6 Tom Søndergaard Pedersen Palle Andersen Aalborg University NMM minimodul 6 p. 2/2 Interpolation Polynomium, splines, mindste kvadraters metode.
Matematik-teknologi 3. semester Projekt introduktion
Matematik-teknologi 3. semester Projekt introduktion Thomas Arildsen, Arne Jensen, Rafael Wisniewski Version 3 31. august 2015 1 Indledning Dette dokument giver en introduktion til projektmodulet på 3.
Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1
1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy
Koblede differentialligninger.
2. 3. 4. Koblede differentialligninger. En udvidelse af Newtons afkølingslov løst numerisk ved hjælp af integralkurver. Sidste gang så vi på, hvordan vi kunne opstille og løse en model for afkølingen af
Numeriske metoder 2011: Adams-Bashforth-Moulton Predictor-Corrector method
Numeriske metoder 2011: Adams-Bashforth-Moulton Predictor-Corrector method Rasmus Søgaard Christensen (2008 4030) 10. juli 2011 Indhold Indhold 1 1 Introduktion 2 1.1 Systemet under betragtning.......................
Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve.
Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid) Tangenthældninger langs en kurve x Retningsfelter x x(t) sin(π t) + x / π cos(π t) Jeppe Revall Frisvad
Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen
Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen
Differentialligninger med TI Nspire CAS version 3.1
Differentialligninger med TI Nspire CAS version 3.1 Der er tilføjet en ny graftype til Graf værkstedet kaldet Diff lign. Denne nye graftype er en implementering af differentialligningerne som vi kender
Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet
Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning
2 Den lineære bølgeligning
Sidse Damgaard Årskortnummer 20062443 1 Indledning I denne opgave skal vi se på den numeriske løsning af den ikke-lineære bølgeligning. Den ikke-lineære bølgeligning beskriver longitudinale trykbølger
Note om Laplace-transformationen
Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at
Matematisk modellering og numeriske metoder. Lektion 5
Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at
Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2005
Fononiske Båndgab Køreplan 01005 Matematik 1 - FORÅR 2005 1 Baggrund Bølgeudbredelse i materialer og medier (som f.eks. luft) er et fænomen, der kendes af alle og som observeres i forskellige former i
Modulpakke 3: Lineære Ligningssystemer
Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system
Simulering I. Don t panic! * Morten Dam Jørgensen. * Large friendly letters
Simulering I Don t panic! * Morten Dam Jørgensen * Large friendly letters Oversigt Hvad I skal tage med fra denne forelæsning Hvad er simulering Fra model til simulering Numerisk løsning af differentialligninger
Ting man gør med Vektorfunktioner
Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Fysik 2 - Den Harmoniske Oscillator
Fysik 2 - Den Harmoniske Oscillator Esben Bork Hansen, Amanda Larssen, Martin Qvistgaard Christensen, Maria Cavallius 5. januar 2009 Indhold 1 Formål 1 2 Forsøget 2 3 Resultater 3 4 Teori 4 4.1 simpel
Anvendt Lineær Algebra
Anvendt Lineær Algebra Kursusgang 3 Anita Abildgaard Sillasen Institut for Matematiske Fag AAS (I17) Anvendt Lineær Algebra 1 / 38 Vi betragter et lineært ligningssystem (af m ligninger med n ubekendte)
Ting man gør med Vektorfunktioner
Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2004
Fononiske Båndgab Køreplan 01005 Matematik 1 - FORÅR 2004 1 Baggrund Bølgeudbredelse i materialer og medier (som f.eks. luft) er et fænomen, der kendes af alle og som observeres i forskellige former i
Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG
Matematik A Studentereksamen Skriftlig prøve (5 timer) STX MAA 581710_STX093-MAA.indd 1 LQGG Fredag den. december kl... 03/11/09 10:53:00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består
Oversigt [S] 8.7, 8.8, 8.9
Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Potensrækker og opgaver Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger
Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet
Klassisk kaos Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er uforudsigelige, dvs. løsninger der opfører sig kaotisk: Faserum Forudsigelige Integrable systemer
Lektion 13 Homogene lineære differentialligningssystemer
Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer
Udledning af Keplers love
Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg
Matematisk modellering og numeriske metoder. Overskrifter
Matematisk modellering og numeriske metoder Overskrifter Morten Grud Rasmussen 25. november, 2013 Lektion 1 Ordinære differentialligninger ODE er helt grundlæggende Løsninger Begyndelsesværdiproblemer
Tillæg til noter om rentestrukturteori
Tillæg til noter om rentestrukturteori 1 Forward Renter Lidt notation, hvor i afhængigheden af kalendertid undertrykkes. R (t) Den t årige nulkuponrente (spotrente) i procent p.a. d (t) den t årige diskonteringsfaktor
Differentialligninger af første orden
Differentialligninger af første orden Preben Alsholm Februar 2006 Basale begreber. Eksistens og entydighed. En differentialligning af første orden er en ligning, der sammenknytter differentialkvotienten
af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning
EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens
DesignMat Uge 5 Systemer af lineære differentialligninger II
DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem
Computerstøttet beregning
CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist [email protected] Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/
Matematisk modellering og numeriske metoder
Matematisk modellering og numeriske metoder Morten Grud Rasmussen 5. september 2016 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).
Vektorfelter. enote Vektorfelter
enote 24 1 enote 24 Vektorfelter I enote 6 indføres og studeres vektorer i plan og rum. I enote 16 ser vi på gradienterne for funktioner f (x, y) af to variable. Et gradientvektorfelt for en funktion af
MM502+4 forelæsningsslides
MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for
Dynamiske Systemer. SIR-modellen. Matematik 3. semester 08 Gr. G2-104
Dynamiske Systemer SIR-modellen Matematik 3. semester 08 Gr. G2-104 Titel: Dynamiske systemer -SIR-modellen Tema: Dynamiske systemer -iteration og approksimation Projektperiode: MAT1, 3. semester 2008
En besvarelse af Mat-A Fys-A Projekt nr. 1
En besvarelse af Mat-A Fys-A Projekt nr. 1 Ole G. Mouritsen og Hans Jørgen Munkholm 21. oktober 2003 1 Hængebroen Et stykke af kablet af den omtalte form har i vort koordinatsystem endepunkter med koordinater
Projekt 4.9 Bernouillis differentialligning
Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,
Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5
Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5 Nøgleord og begreber Vækstmodel Bevægelsesligninger Retningsfelt Eulers metode Separable ligninger Logistisk ligning Eksponentiel vækst Begyndelsesværdiproblem Calculus
STUDENTEREKSAMEN GUX MAJ MATEMATIK A-NIVEAU. Prøveform a. Kl GUX-MAA
STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform a 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne 1 til 10 med i alt 5 spørgsmål. De 5 spørgsmål
2. ordens differentialligninger. Svingninger.
arts 011, LC. ordens differentialligninger. Svingninger. Fjederkonstant k = 50 kg/s s X S 80 kg F1 F S er forlængelsen af fjederen, når loddets vægt belaster fjederen. X er den påtvungne forlængelse af
Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium
Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium
Numerisk løsning af differentialligninger
KU-LIFE; Matemati og modeller 009 Numeris løsning af differentialligninger Thomas Vils Pedersen 1 Numerise metoder Ved numeris analyse forstås tilnærmet, talmæssig løsning af problemer, som ie, eller un
Differentialligninger og nummeriske metoder. Thomas G. Kristensen 7. februar 2002
Differentialligninger og nummeriske metoder Thomas G. Kristensen 7. februar 2002 1 INDHOLD 2 Indhold 1 Indledning 3 2 Definition af 1. og 2. ordens differentialligninger 3 2.1 1. ordens differentialligninger....................
MM501 forelæsningsslides
MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele
Matematisk modellering og numeriske metoder. Lektion 10
Matematisk modellering og numeriske metoder Lektion 10 Morten Grud Rasmussen 2. november 2016 1 Partielle differentialligninger 1.1 Det grundlæggende om PDE er Definition 1.1 Partielle differentialligninger
Kræfter og Arbejde. Frank Nasser. 21. april 2011
Kræfter og Arbejde Frank Nasser 21. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Opgaver til Maple kursus 2012
Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, [email protected] Martin Gyde Poulsen, [email protected] October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +
STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet
STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5
GUX. Matematik. A-Niveau. Torsdag den 1. juni Kl Prøveform a GUX171 - MAA
GUX Matematik A-Niveau Torsdag den 1. juni 017 Kl. 09.00-14.00 Prøveform a GUX171 - MAA 1 Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne 1 til 1 med i alt 5 spørgsmål. De 5 spørgsmål
Matematik A. Studentereksamen
Matematik A Studentereksamen stx122-mat/a-15082012 Onsdag den 15. august 2012 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Differentialligninger. Ib Michelsen
Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3
Bedste rette linje ved mindste kvadraters metode
1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem
Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik
Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.
DesignMat Lineære differentialligninger I
DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En
TERMINSPRØVE APRIL x MA, 3z MA og 3g MA/2 MATEMATIK. onsdag den 11. april Kl
TERMINSPRØVE APRIL 2018 3x MA, 3z MA og 3g MA/2 MATEMATIK onsdag den 11. april 2018 Kl. 09.00 14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
BASE. Besvarelse til individuel skriftlig test
BASE Besvarelse til individuel skriftlig test Tirsdag d. 21. marts 2006 Tinne Hoff Kjeldsen Bitten Plesner 1 Opgave 1 Vandet i en pool med et volumen på 10.000 gallon indeholder 0,01% klor. Til tiden t
Eksamen i Mat F, april 2006
Eksamen i Mat F, april 26 Opgave Lad F være et vektorfelt, givet i retvinklede koordinater som: Udregn F og F: F x F = F x i + F y j + F z k = F y = z 2 F z xz y 2 F = F x + F y + F z = + + x. F = F z
Differentialligninger
en blid start på Differentialligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
Approksimation af løsninger til systemer af første ordens differentialligninger. Anvendt på tennisbold med topspin
Approksimation af løsninger til systemer af første ordens differentialligninger Anvendt på tennisbold med topspin KORT AFGANGSPROJEKT (4. SEMESTER, MSC) MAJBRITT SLOTH THOMASSEN MATEMATIK & STATISTIK AALBORG
Matematisk modellering og numeriske metoder. Lektion 6
Matematisk modellering og numeriske metoder Lektion 6 Morten Grud Rasmussen 24. september, 2013 1 Forcerede oscillationer [Bogens afsnit 2.8, side 85] 1.1 Et forstyrret masse-fjeder-system I udledningen
Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra
Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ
Matematisk modellering og numeriske metoder. Lektion 14
Matematisk modellering og numeriske metoder Lektion 4 Morten Grud Rasmussen 3 november 6 Numeriske metoder til løsning af differentialligninger Bevarelseslove I det følgende vil vi skrive p for et punkt
Løsningsforslag til opgavesæt 5
Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden
Fourier transformationen
MODUL 6 Fourier transformationen Forfattere: Øistein WIND-WILLASSEN & Michael ELMEGÅRD 4. juni 4 Indhold Fourier transformationen 5. Definition og oprindelse.............................. 5.. Funktioner
Matematisk modellering og numeriske metoder. Lektion 11
Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 17. oktober, 2013 1 Partielle differentialligninger 1.1 D Alemberts løsning af bølgeligningen [Bogens sektion 12.4 på side 553]
Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo
SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den
Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )
Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,
Differentialligninger med TI-Interactive!
Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4
C R. Figur 1 Figur 2. er eksempler på kredsløbsfunktioner. Derimod er f.eks. indgangsimpedansen
Kredsløbsfunktioner Lad os i det følgende betragte kredsløb, der er i hvile til t = 0. Det vil sige, at alle selvinduktionsstrømme og alle kondensatorspændinger er nul til t = 0. I de Laplace-transformerede
HTX. Matematik A. Onsdag den 11. maj Kl GL111 - MAA - HTX
HTX Matematik A Onsdag den 11. maj 2011 Kl. 09.00-14.00 GL111 - MAA - HTX 1 2 Side 1 af 7 sider Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte
DesignMat Uge 4 Systemer af lineære differentialligninger I
DesignMat Uge Systemer af lineære differentialligninger I Preben Alsholm Efterår 008 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden I Lineært differentialligningssystem
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
Epistel E2 Partiel differentiation
Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +
MATEMATIK ( 5 h ) DATO: 5. juni 2008 (formiddag) Lommeregner hverken grafisk eller programmerbar
EUROPÆISK STUDENTEREKSAMEN 2008 MATEMATIK ( 5 h ) DATO: 5. juni 2008 (formiddag) PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER: Europaskolernes formelsamling Lommeregner hverken grafisk
MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen
MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible
Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med
Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform
Noter til An0 DIFFERENTIALLIGNINGER MED KONSTANTE KOEFFICIENTER
UDKAST 7122009 Noter til An0 Inst f Matematiske Fag Gerd Grubb December 2009 DIFFERENTIALLIGNINGER MED KONSTANTE KOEFFICIENTER 1 Generelle resultater 11 Introduktion I tidligere kurser er der gennemgået
GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet
GU HHX MAJ 2009 MATEMATIK A Onsdag den 13. maj 2009 Kl. 9.00 14.00 Undervisningsministeriet GL091-MAA Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og
Epidemi. Matematik. Indermohan Singh Walia, Egedal Gymnasium & HF
Matematik Epidemi Indermohan Singh Walia, Egedal Gymnasium & HF Denne artikel er skrevet som den matematiske teori til beskrivelse af udvikling af en epidemi i en befolkning. Den matematiske model indeholder
