Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2004

Størrelse: px
Starte visningen fra side:

Download "Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2004"

Transkript

1 Fononiske Båndgab Køreplan Matematik 1 - FORÅR Baggrund Bølgeudbredelse i materialer og medier (som f.eks. luft) er et fænomen, der kendes af alle og som observeres i forskellige former i dagligdagen, som f.eks. udbredelsen af lydbølger. Skitsen i reflekteret bølge mur indkommen bølge transmitteret bølge Figur 1: Lydbølge rammer en mur og en del transmitteres igeenem muren via elastiske bølger. Figur 1 viser en lydbølge der rammer en mur. En del af den indkomne bølge reflekteres, men en del transmitteres gennem mur-materialet og udstråles på den modsatte side. Transmissionen af bølgen gennem muren foregår via elastiske svingninger i materialet. Et andet velkendt eksempel på bølger er udbredelsen af synligt lys. Der har i det seneste årti været stor fokus på bølgeudbredelse i periodiske materialer og strukturer. Det har vist sig, at man med et nøje afstemt periodisk arrangement af materialer med forskellige fysiske egenskaber 1 kan opbygge strukturer, hvorigennem bølger med visse frekvenser ikke kan udbrede sig. Disse gab i frekvensbåndet kaldes båndgab. I Figur 2 ses nogle eksempler på sådanne periodiske båndgabstrukturer i én, to og tre dimensioner. Båndgab for elastiske bølger kaldes fononiske båndgab, og tilsvarende bruger man betegnelsen fotoniske båndgab, når det drejer sig om lys eller mere generelt om elektromagnetiske bølger. 1 Eksempelvis massefylde, stivhed (E-modul), refraktions-index og lign. Mat1 03/04 side 1

2 Figur 2: Én-, to- og tre-dimensionelle periodiske båndgabstrukturer. Med et sådant effektivt middel til at stoppe bølgeudbredelse er der mulighed for en masse spændende høj-teknologiske anvendelser. Bølge-reflektorer (spejle) og mekaniske filtre er en oplagt anvendelse. Et af de mest spændende anvendelsesområder er inden for bølgeledere (waveguides), se Figur 3. En periodisk struktur er her opbygget således, at bølger med en bestemt frekvens (båndgabsfrekvensen) ikke kan udbredes (Figur 3b), hvorimod bølger med en anden frekvens godt kan slippe igennem (Figur 3a). Ved at lave en defekt i det periodiske arrangement kan man ved båndgabsfrekvensen (Figur 3d) få bølgerne til at følge defekten, og man har således konstrueret en effektiv bølgeleder. Figur 3: Opbygning af en bølgeleder. a) og c): frekvens uden for båndgabet, b) og d): båndgabsfrekvens. Eksistensen af båndgab kan illustreres ved et simpelt eksperiment. En én-dimensional båndgabsstruktur i form af en tynd stav er vist i Figur 4. Staven består af 5 stykker aluminium og 4 stykker plastik, der er limet sammen i enderne, og som påvirkes af en periodisk kraft i den ene ende vha. Mat1 03/04 side 2

3 et rystebord. I stavens modsatte ende måles vibrations-niveauet, og man får således et mål for bølgeudbredelsen gennem staven. Figur 4: Eksperimentel opstilling. Ved beregninger på en fysisk model for staven kan man forudsige to båndgab i det hørbare område, fra ca til ca Hz og igen fra ca til ca Hz (se Figur 5 til venstre). I disse to frekvensbånd kan der således ikke udbrede sig elastiske bølger gennem staven, og vibrationsniveauet i stavens modsatte ende burde således være lavt. Dette bekræftes af målingerne, se Figur 5 til højre [db/1.00 (m/s )/N] FRF (Magnitude) Working : PMMA-Alu-11-seg-7.5cm ref : Input : FFT Analyzer db Hz 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k [Hz] Figur 5: Vibrationsniveau i enden af staven. Venstre: beregninger, højre: eksperimentelle resultater. Formålet med de efterfølgende opgaver er at opstille en simpel fysisk model, der kan beskrive vibrationerne i en elastisk stav. Dette muliggør design og optimering af en mekanisk båndgabsstruktur. 2 Introduktion Som en simpel fysisk model til at beskrive bølgeudbredelse og vibrationer i et elastisk materiale benyttes et diskret masse-fjeder system, der består af 11 masser forbundet med hinanden via 10 fjedre (se Figur 6). Massernes størrelse betegnes m 1 m 11 og fjeder-konstanterne k 1 k 10. Systemet tænkes ophængt, således at det kun kan bevæge sig longitudinalt. m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 Figur 6: System med 11 masser og 10 fjedre. Mat1 03/04 side 3

4 I de efterfølgende opgaver skal forskellige egenskaber vedrørende svingninger i masse-fjeder systemet undersøges, og opgaven afsluttes med en optimeringsopgave, hvor masser og fjedre skal vælges, så svingnings-amplituden af den sidste masse er mindst muligt. Bevægelsesligningerne for systemet kan opstilles ved brug af Newtons 2. lov. 1. Vis, med fortegnskonventionen for forskydningerne af masserne x i defineret som i Figur 7, at bevægelsesligningerne kan skrives som m 1 ẍ 1 k 1 x 1 x 2 0 (1) m i ẍ i k i x i x i 1 k i 1 x i x i 1 0 for i 2 10 (2) m 11 ẍ 11 k 10 x 11 x 10 0 (3) hvor betyder differentitation 2 gange mht. til tidsvariablen t. x1 x2 x11 m 1 k 1 k 2 k 10 m2 m11 Figur 7: Fortegnskonvention for forskydningerne af masserne. Forskydningerne af de 11 masser x 1 x 11 samles nu i vektoren x x 1 x 2 x Vis at bevægelsesligningerne kan skrives på matrixform som: T. Mẍ Kx 0 (4) hvor M er en såkaldt massematrix: M m m (5) 0 0 m 11 og K er en såkaldt stivhedsmatrix: k 1 k 1 0 k 1 k 1 k 2 k 2 0 K k 10 k 10 (6) Når masserne svinger, vil der foregå en hvis dæmpning af bevægelsen. Her modelleres dæmpningen som en såkaldt viskos dæmpning. Det antages, at hver masse påvirkes af en kraft cẋ i modsat rettet bevægelsesretningen, hvor c er en dæmpningsfaktor, der blandt andet afhænger af massernes form og det omgivende medies viskositet (Figur 8). Mat1 03/04 side 4

5 " " $ xi k i-1 mi ki. cx i Figur 8: En masse med dæmpningskraft. 3. Vis, at bevægelseligningen paa matrixform nu kan skrives som Mẍ Cẋ Kx 0 (7) hvor C er en dæmpningmatrix, der er givet ved C!" c c # $ 0 0 c (8) Systemet er yderligere påvirket af en periodisk kraft med størrelsen f 1 cos% Ωt&, der virker på den første masse (Figur 9). For at simplificere analysen bruges i det følgende den eksponentelle notation (jf Analyse 1 bogen). x1 k1 f1cos(ωt) m1 Figur 9: Den første masse med harmonisk belastning. 4. Vis at bevægelsesligningen for den første masse ændres til m 1 ẍ 1 cẋ 1 k 1 % x 1 ' x 2 &( f 1 cos% Ωt&) Re % f 1 e iωt & I kompleks notation har denne ligning således formen (9) m 1 ẍ 1 cẋ 1 k 1 % x 1 ' x 2 &( f 1 e iωt (10) og matrix-ligningen for det samlede system skrives som: hvor f * f 1 0 $ $ $ 0+ T er en konstant belastningsvektor. Mẍ Cẋ Kx fe iωt (11) Mat1 03/04 side 5

6 3 System med én masse og én fjeder Som en indledende analyse betragtes først et system bestående af én masse og én fjeder (Figur 10). Differentialligningen for massen bliver således: mẍ, cẋ, kx - f 1 cos. Ωt/10 (12) x fcos(ωt) m. cx k Vi vælger nu m - k - 1. Figur 10: System med én masse og én fjeder. 5. Betragt den til (12) svarende homogene differentialligning med nul på højresiden. Find for c - 0, c , c - 2 og c - 5 den fuldstændige løsning til den homogene ligning. Benyt MAPLE, men kontrollér løsningerne i hånden. Vælg begyndelsesbetingelserne x. 0/ og ẋ. 0/3-00 0, og find de dertil hørende partikulære løsninger, og plot dem i MAPLE. 6. Find en partikulær løsning til ligning (12) ved at bruge den komplekse gætte-metode (gerne i Maple). 7. Vi betragter nu den inhomogene differentialligning (12), hvor vi sætter f 1-1 og Ω - 1. Vælg begyndelsesbetingelserne x. 0/ og ẋ. 0/5-00 0, og find for c - 0, c , c - 2 og c - 5 de dertil hørende partikulære løsninger, og plot dem i MAPLE. 4 Matrix system uden dæmpning og uden harmonisk belastning Nu betragtes det fulde system med 11 masser og 10 fjedre. Systemet betragtes i første omgang uden dæmpning c - 0 og ligeledes uden den harmoniske belastning f 1-0. Bevægelsen af masserne er således givet ved ligning (4). Der skal nu findes egenværdier og egenvektorer for matrix ligningssystemet. Gæt på en løsning til ligning (4) på formen x - ve iωt 6 (13) hvor v er en konstant vektor og ω er en egenfrekvens. Mat1 03/04 side 6

7 7 8. Vis, at dette resulterer i følgende ligning (et generaliseret egenværdiproblem): 7 K 8 ω 2 M9 v : 0 ; (14) og vis yderligere at dette kan omskrives til en ligning på følgende form: 7 S 8 ω 2 I9 v : 0 ; (15) hvor S er en ny matrix. 9. Vælg m 1 : m 2 :=< < <>: m 11 : 1 og k 1 : k 2 :=< < <?: k 10 : 1, og find alle egenfrekvenser ω og tilhørende egenvektorer v. Plot egenvektorernes koordinater som funktion af koordinatnummeret. 5 Matrix system uden dæmpning og med harmonisk påvirkning Ligningsystemet for det udæmpede system med en harmonisk påvirking er givet ved Kx : fe iωt < (16) Den komplekse gætte metode bruges nu til at finde en partikulære løsning til ligning (16). 10. Indsæt i (16) en løsning på formen x : ae iωt ; (17) hvor a er en konstant vektor, og vis, at dette resulterer i ligningen K 8 Ω 2 M9 a : f < (18) Da de frie svingninger (løsningen til den tilsvarende homogene ligning) hurtigt dæmpes (som vi også så i opgave 8), ignorerer man normalt disse, og kun de tvungne svingninger repræsenteret ved den fundne partikulære løsning betragtes. 11. Vælg igen f 1 : 1 og m 1 : m 2 :A< < <B: m 11 : 1 og k 1 : k 2 :A< < <B: k 10 : 1 og plot svingningsamplituden D af den 11 te masse C a 11 C som funktion af den påtrykte frekvens Ω i intervallet 0;2 D. Sammelign kurven med de udregnede egenværdier (egenfrekvenserne) (jf (15)). Giv et bud på, hvordan egenværdierne kan fortolkes. 6 Varierende masser og fjedre Optimering Vi vil nu undersøge, hvad der sker, når masserne og fjedrene tillades at variere i størrelse. Systemet betragtes igen uden dæmpning, dvs. c : 0. Lad som før k 1 : k 2 :E< < <?: k 10 : 1, men nu er m 1 : m 3 :F< < <G: m 11 : 1 og m 2 : m 4 :=< < <>: m 10 : m. 12. Lad f 1 : 0, og plot egenfrekvenserne for et antal værdier af m i intervallet D 0< 5;4 D. Mat1 03/04 side 7

8 13. Lad f 1 H 1, og plot svingningsamplituden I a 11 I af den 11 te masse som funktion af Ω i intervallet J 0;2J med m H 0K 5 (plot evt. i db, dvs. plot 20log 10 I a 11 I som funktion af tiden). 14. Lad nu yderligere k 1 H k 2 H K K K H k 10 H k og find den kombination af k og m, der giver den minimale værdi af I a 11 I for parametrene Ω H 0K 8, f 1 H 1. Brug f.eks. Maples LNM>OQPRM>SUTWVRXQM?P til at finde en tilnærmelse. Overvej, hvordan man kan finde en mere præcis værdi. 15. Overvej nogle designkriterier for båndgab. 7 Extra A Egenværdierne for det dæmpede system: skal nu findes. Mẍ Y Cẋ Y Kx H 0 Z (19) 16. Omskriv først ligning (19) til et første-ordens differentialligningssystem på formen ẏ H Ay Z (20) og find egenværdier og egenvektorer [ λz v\ i for systemet, ved at indsætte y H ve λt Z (21) som en mulig løsning til (20). Sammenlign egenværdierne for varierende værdier af c med egenværdierne fundet for det udæmpede system. Hvordan kan man fortolke henholdsvis den reelle og den imaginære del af λ? Plot svingningsamplituden af den 11 te masse I a 11 I for Ω i intervallet J 0;2J for forskellige værdier af c. 8 Extra B 17. Nu får I frie hænder til at variere alle masser og fjedre. Brug de tilgængelige redskaber (og lidt kreativitet) til at finde det system, der har den mindste værdi af I a 11 I for Ω H 0K 8, f 1 H 1 og c H 0. Mat1 03/04 side 8

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2005

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2005 Fononiske Båndgab Køreplan 01005 Matematik 1 - FORÅR 2005 1 Baggrund Bølgeudbredelse i materialer og medier (som f.eks. luft) er et fænomen, der kendes af alle og som observeres i forskellige former i

Læs mere

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2009

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2009 Fononiske Båndgab Køreplan 01005 Matematik 1 - FORÅR 2009 1 Baggrund Bølgeudbredelse i materialer og medier (som f.eks. luft) er et fænomen, der kendes af alle og som observeres i forskellige former i

Læs mere

Fysik 2 - Den Harmoniske Oscillator

Fysik 2 - Den Harmoniske Oscillator Fysik 2 - Den Harmoniske Oscillator Esben Bork Hansen, Amanda Larssen, Martin Qvistgaard Christensen, Maria Cavallius 5. januar 2009 Indhold 1 Formål 1 2 Forsøget 2 3 Resultater 3 4 Teori 4 4.1 simpel

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge Forår 0 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En differentialligning,

Læs mere

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler Lektion 12 2. ordens lineære differentialligninger homogene inhomogene eksempler højere ordens lineære differentiallininger 1 Anden ordens lineære differentialligninger med konstante koefficienter A. Homogene

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote 7 enote 7 Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses Der bruges egenværdier og egenvektorer i løsningsproceduren,

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

Fysik 2 - Oscillator. Amalie Christensen 7. januar 2009

Fysik 2 - Oscillator. Amalie Christensen 7. januar 2009 Fysik 2 - Oscillator Amalie Christensen 7. januar 2009 1 Indhold 1 Forsøgsopstilling 3 2 Forsøgsdata 3 3 Teori 4 3.1 Den udæmpede svingning.................... 4 3.2 Dæmpning vha. luftmodstand..................

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til.

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. DESIGNMAT FORÅR 2012: UGESEDDEL 13 INSTITUT FOR MATEMATIK 1. Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. 2. Aktiviteter mandag 13 17 2.1.

Læs mere

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet Klassisk kaos Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er uforudsigelige, dvs. løsninger der opfører sig kaotisk: Faserum Forudsigelige Integrable systemer

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Matematisk modellering og numeriske metoder. Lektion 6

Matematisk modellering og numeriske metoder. Lektion 6 Matematisk modellering og numeriske metoder Lektion 6 Morten Grud Rasmussen 24. september, 2013 1 Forcerede oscillationer [Bogens afsnit 2.8, side 85] 1.1 Et forstyrret masse-fjeder-system I udledningen

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Harmonisk oscillator. Thorbjørn Serritslev Nieslen Erik Warren Tindall

Harmonisk oscillator. Thorbjørn Serritslev Nieslen Erik Warren Tindall Harmonisk oscillator Thorbjørn Serritslev Nieslen Erik Warren Tindall November 27, 2007 Formål At studere den harmoniske oscillator, som indgår i mange fysiske sammenhænge. Den harmoniske oscillator illustreres

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve.

Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve. Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid) Tangenthældninger langs en kurve x Retningsfelter x x(t) sin(π t) + x / π cos(π t) Jeppe Revall Frisvad

Læs mere

Note om Laplace-transformationen

Note om Laplace-transformationen Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at

Læs mere

Den frie og dæmpede oscillator

Den frie og dæmpede oscillator Ida Nissen - 80385 Maria Wulff - 140384 Jacob Bjerregaard - 7098 Morten Badensø - 40584 Fysik Lab.øvelser Uge Den frie og dæmpede oscillator Formål Formålet med denne øvelse er at studere den harmoniske

Læs mere

Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum?

Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum? Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum? - om fysikken bag til brydningsindekset Artiklen er udarbejdet/oversat ud fra især ref. 1 - fra borgeleo.dk Det korte svar:

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Temaøvelse i differentialligninger Biokemiske Svingninger

Temaøvelse i differentialligninger Biokemiske Svingninger Temaøvelse i differentialligninger Biokemiske Svingninger Rev. 12. november 2009 I denne temaøvelse studerer vi en simpel model for gærglykolyse. Vi starter i Del 1 med at beskrive modellen. Denne model

Læs mere

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1 1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet Klassisk kaos 11.1 Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er uforudsigelige, dvs. løsninger der opfører sig kaotisk: Faserum Forudsigelige Integrable systemer

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Eksempel på 2-timersprøve 2 Løsninger

Eksempel på 2-timersprøve 2 Løsninger Eksempel på -timersprøve Løsninger Preben lsholm Februar 4 Opgave Maplekommandoerne expand( (z-*exp(i*pi/))*(z-*exp(-i*pi/))*(z-exp(i*pi/))*(z-exp(-i*pi/))): sort(%); resulterer i polynomiet z 4 z + z

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Lineære 2. ordens differentialligninger med konstante koefficienter

Lineære 2. ordens differentialligninger med konstante koefficienter enote 13 1 enote 13 Lineære 2. ordens differentialligninger med konstante koefficienter I forlængelse af enote 11 og enote 12 om differentialligninger, kommer nu denne enote omkring 2. ordens differentialligninger.

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator øvelse Formål Øvelse med oscillator, hvor frekvensen bestemmes, for den frie og dæmpede svingning. Vi vil tilnærme data fra

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum)

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum) Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Forelæsningsnote 8 NB: Noten er ikke en del af pensum Eksempel på brug af egenværdier og egenvektorer Måske er det stadig

Læs mere

Løsninger til øvelser i kapitel 1

Løsninger til øvelser i kapitel 1 Øvelse 1.1 Øvelse 1. Øvelse 1.3 Afspil animationerne og forklar med dine egne ord, hvad du ser. a) Afspil lydfilerne og forklar med dine egne ord, hvad du hører. Frekvenserne fordobles for hver oktav.

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005

Læs mere

Førsteordens lineære differentialligninger

Førsteordens lineære differentialligninger enote 16 1 enote 16 Førsteordens lineære differentialligninger I denne enote gives først en kort introduktion til differentialligninger i almindelighed, hvorefter hovedemnet er en særlig type af differentialligninger,

Læs mere

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen S.&P. DIFFERENTIALLIGNINGER 2. februar 2006 Oversigt nr. 1 I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen [EP] Elementary differential equations with boundary

Læs mere

Målinger på Bølgevippen, WGPC-III

Målinger på Bølgevippen, WGPC-III Målinger på Bølgevippen, WGPC-III Indledende undersøgelser v/ Povl-Otto Nissen Vippegeneratoren er her opstillet med vægtstangsforholdet 30: 94, idet midten af magnetsættet på den lange arm er 94 cm fra

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

3 Overføringsfunktion

3 Overføringsfunktion 1 3 Overføringsfunktion 3.1 Overføringsfunktion For et system som vist på figur 3.1 er overføringsfunktionen givet ved: Y (s) =H(s) X(s) [;] (3.1) Y (s) X(s) = H(s) [;] (3.2) Y (s) er den Laplacetransformerede

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

Matematisk modellering og numeriske metoder. Lektion 13

Matematisk modellering og numeriske metoder. Lektion 13 Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 3. november 206 Numerisk metode til Laplace- og Poisson-ligningerne. Finite difference-formulering af problemet I det følgende

Læs mere

Elektromagnetisme 14 Side 1 af 9 Elektromagnetiske bølger. Bølgeligningen

Elektromagnetisme 14 Side 1 af 9 Elektromagnetiske bølger. Bølgeligningen Elektromagnetisme 14 Side 1 af 9 Bølgeligningen Maxwells ligninger udtrykker den indbyrdes sammenhæng mellem de elektromagnetiske felter. I det flg. udledes en ligning, der opfyldes af hvert enkelt felt.

Læs mere

Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen

Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen Elektromagnetisme 14 Side 1 af 1 Bølgeligningen Maxwells ligninger udtrykker den indbyrdes sammenhæng mellem de elektromagnetiske felter samt sammenhængen mellem disse felter og de feltskabende ladninger

Læs mere

Mat 1. 2-timersprøve den 5. december 2016.

Mat 1. 2-timersprøve den 5. december 2016. Mat. -timersprøve den 5. december 6. JE 4..6 Opgave > restart;with(linearalgebra): Et inhomogent lineært ligningssystem bestående at tre ligninger med fire ubekendte, x og x 4 har totalmatricen T = [A

Læs mere

VEKSELSPÆNDINGENS VÆRDIER. Frekvens Middelværdi & peak værdi (max) Effektiv værdi (RMS) Mere om effektiv værdi!

VEKSELSPÆNDINGENS VÆRDIER. Frekvens Middelværdi & peak værdi (max) Effektiv værdi (RMS) Mere om effektiv værdi! AC VEKSELSPÆNDINGENS VÆRDIER Frekvens Middelværdi & peak værdi (max) Effektiv værdi (RMS) Mere om effektiv værdi! Frekvens: Frekvensen (f) af et system er antallet af svingninger eller rotationer pr. sekund:

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Her skal du lære om Separable ligninger Logistisk ligning og eksponentiel vækst 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Vektorer og lineær regression

Vektorer og lineær regression Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

ELEKTRISKE KREDSLØB OG DYNAMISKE SYSTEMER

ELEKTRISKE KREDSLØB OG DYNAMISKE SYSTEMER EE Basis, foråret 2009 ELEKTRISKE KREDSLØB OG DYNAMISKE SYSTEMER Jan H. Mikkelsen EKDS6, F09 1 Emner for idag Komplekse tal sådan helt fra bunden DefiniHoner og regneregler Lidt flere definihoner og lidt

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

C R. Figur 1 Figur 2. er eksempler på kredsløbsfunktioner. Derimod er f.eks. indgangsimpedansen

C R. Figur 1 Figur 2. er eksempler på kredsløbsfunktioner. Derimod er f.eks. indgangsimpedansen Kredsløbsfunktioner Lad os i det følgende betragte kredsløb, der er i hvile til t = 0. Det vil sige, at alle selvinduktionsstrømme og alle kondensatorspændinger er nul til t = 0. I de Laplace-transformerede

Læs mere

Forsøg med udkraget bjælke og ramme. - Analyse af dynamisk påvirkede konstruktioner

Forsøg med udkraget bjælke og ramme. - Analyse af dynamisk påvirkede konstruktioner Forsøg med udkraget bjælke og ramme - Analyse af dynamisk påvirkede konstruktioner Titel: Emne: Forsøg med udkraget bjælke og ramme Dynamisk analyse af simple konstruktioner Udført af: Vejleder: Projektperiode:

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Koblede differentialligninger.

Koblede differentialligninger. 2. 3. 4. Koblede differentialligninger. En udvidelse af Newtons afkølingslov løst numerisk ved hjælp af integralkurver. Sidste gang så vi på, hvordan vi kunne opstille og løse en model for afkølingen af

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

DiploMat. Eksempel på 4-timersprøve.

DiploMat. Eksempel på 4-timersprøve. DiloMat. Eksemel å 4-timersrøve. Preben lsholm Maj 4 Ogave Vi skal løse ligningen e i 4 z 3 i = Løsningen skal angives å olær form, dvs. å formen re i, hvor r > og R. Først nder vi e i 4 z = 3 Heraf fås

Læs mere

Matematik-teknologi 3. semester Projekt introduktion

Matematik-teknologi 3. semester Projekt introduktion Matematik-teknologi 3. semester Projekt introduktion Thomas Arildsen, Arne Jensen, Rafael Wisniewski Version 3 31. august 2015 1 Indledning Dette dokument giver en introduktion til projektmodulet på 3.

Læs mere

Svingninger. Erik Vestergaard

Svingninger. Erik Vestergaard Svingninger Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2009. Billeder: Forside: Bearbejdet billede af istock.com/-m-i-s-h-a- Desuden egne illustrationer. Erik Vestergaard

Læs mere

Mat H 2 Øvelsesopgaver

Mat H 2 Øvelsesopgaver Mat H 2 Øvelsesopgaver 18. marts 1998 1) dx dt + 2t 1+t x = 1 2 1+t, fuldstændig løsning. 2 2) ẋ + t 2 x = t 2, fuldstændig løsning. 3) ẋ 2tx = t, x() = 1. 4) ẋ + 1 t x = 1 t 2, t >, undersøg løsningen

Læs mere

Den klassiske oscillatormodel

Den klassiske oscillatormodel Kvantemekanik 6 Side af 8 n meget central model inden for KM er den såkaldte harmoniske oscillatormodel, som historisk set spillede en afgørende rolle i de banebrydende beskrivelser af bla. sortlegemestråling

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

2. ordens differentialligninger. Svingninger.

2. ordens differentialligninger. Svingninger. arts 011, LC. ordens differentialligninger. Svingninger. Fjederkonstant k = 50 kg/s s X S 80 kg F1 F S er forlængelsen af fjederen, når loddets vægt belaster fjederen. X er den påtvungne forlængelse af

Læs mere

En harmonisk bølge tilbagekastes i modfase fra en fast afslutning.

En harmonisk bølge tilbagekastes i modfase fra en fast afslutning. Page 1 of 5 Kapitel 3: Resonans Øvelse: En spiralfjeder holdes udspændt. Sendes en bugt på fjeder hen langs spiral-fjederen (blå linie på figur 3.1), så vil den når den rammer hånden som holder fjederen,

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Matematisk modellering og numeriske metoder. Lektion 10

Matematisk modellering og numeriske metoder. Lektion 10 Matematisk modellering og numeriske metoder Lektion 10 Morten Grud Rasmussen 2. november 2016 1 Partielle differentialligninger 1.1 Det grundlæggende om PDE er Definition 1.1 Partielle differentialligninger

Læs mere

Den menneskelige cochlea

Den menneskelige cochlea Den menneskelige cochlea Af Leise Borg Leise Borg er netop blevet cand.scient. Artiklen bygger på hendes speciale i biofysik Introduktion Hørelsen er en vigtig sans for mennesket, både for at sikre overlevelse,

Læs mere

Kaotisk kuglebevægelse En dynamisk analyse

Kaotisk kuglebevægelse En dynamisk analyse Kaotisk kuglebevægelse En dynamisk analyse Ole Witt-Hansen 08 Kaotisk kuglebevægelse Kaotisk bevægelse Kaotiske bevægelser opstår, når bevægelsesligningerne ikke er lineære. Interessen for kaotiske bevægelser

Læs mere

Eksempel på 2-timersprøve 1 Løsninger

Eksempel på 2-timersprøve 1 Løsninger Eksempel på -timersprøve Løsninger Preben lsholm Marts 4 Opgave Vi skal løse ligningen () z (8 + i) e i 6 = Løsningen ønskes angivet på rektangulær form, dvs. på formen x + iy, hvor x; y R. Vi nder umiddelbart

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

DesignMat Uge 4 Systemer af lineære differentialligninger I

DesignMat Uge 4 Systemer af lineære differentialligninger I DesignMat Uge Systemer af lineære differentialligninger I Preben Alsholm Efterår 008 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden I Lineært differentialligningssystem

Læs mere

DesignMat Uge 11 Lineære afbildninger

DesignMat Uge 11 Lineære afbildninger DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen

Læs mere

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1 Udbredelseshastighed for bølger i forskellige stoffer 1 Bølgeligningen Indhold 1. Bølgeligningen.... Udbredelseshastigheden for bølger på en elastisk streng...3 3. Udbredelseshastigheden for longitudinalbølger

Læs mere

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J.

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J. Diffusionsligningen Fællesprojekt for FY50 og MM50 Marts 009 Hans J. Munkholm og Paolo Sibani Besvarelse fra Hans J. Munkholm 1 (a) Lad [x, x + x] være et lille delinterval af [a, b]. Den masse, der er

Læs mere

DesignMat Lineære ligningssystemer og Gauss-elimination

DesignMat Lineære ligningssystemer og Gauss-elimination DesignMat Lineære ligningssystemer og Gauss-elimination Preben Alsholm Uge Forår 010 1 Lineære ligningssystemer og Gauss-elimination 11 Om talrummet R n Om talsæt bestående af n tal R n er blot mængden

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

1. Vibrationer og bølger

1. Vibrationer og bølger V 1. Vibrationer og bølger Vi ser overalt bevægelser, der gentager sig: Sætter vi en gynge i gang, vil den fortsætte med at svinge på (næsten) samme måde, sætter vi en karrusel i gang vil den fortsætte

Læs mere

Jordskælvs svingninger i bygninger.

Jordskælvs svingninger i bygninger. Jordsælvssvingninger side 1 Institut for Matemati, DTU: Gymnasieopgave Jordsælvs svingninger i bygninger. Jordsælv. Figur 1. Forlaring på de tetonise bevægelser. Jordsælv udløses når de tetonise plader

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011 Matematik A Højere teknisk eksamen Forberedelsesmateriale htx112-mat/a-26082011 Fredag den 26. august 2011 Forord Forberedelsesmateriale til prøverne i matematik A Der er afsat 10 timer på 2 dage til

Læs mere

En f- dag om matematik i toner og instrumenter

En f- dag om matematik i toner og instrumenter En f- dag om matematik i toner og instrumenter Læringsmål med relation til naturfagene og matematik Eleverne har viden om absolut- og relativ vækst, og kan bruge denne viden til at undersøge og producerer

Læs mere

Den harmoniske svingning

Den harmoniske svingning Den harmoniske svingning Teori og en anvendelse Preben Møller Henriksen Version. Noterne forudsætter kendskab til sinus og cosinus som funktioner af alle reelle tal, dvs. radiantal. I figuren nedenunder

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet Forberedelsesmateriale frs-matn/a-270420 Onsdag den 27. april 20 Forberedelsesmateriale til stx-a-net MATEMATIK Der skal afsættes

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

Oversigt [LA] 10, 11; [S] 9.3

Oversigt [LA] 10, 11; [S] 9.3 Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus

Læs mere

Gamle eksamensopgaver (DOK)

Gamle eksamensopgaver (DOK) EO 1 Gamle eksamensopgaver ) Opgave 1. sommer 1994, opgave 1) a) Find den fuldstændige løsning til differentialligningen x 6x + 9x =. b) Find den fuldstændige løsning til differentialligningen Opgave 2.

Læs mere