Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling
|
|
|
- Marie Aagaard
- 8 år siden
- Visninger:
Transkript
1 Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de EM svingninger i en sortlegeme-kavitet som fotoner. De eneste to forskelle på foton- og fononmodellen er dels, at der i det strukturløse rum inde i kaviteten ikke er nogen øvre (nedre) grænse for de frekvenser (bølgelængder), der kan forekomme, og dels at de EM bølger udelukkende er transversale, sådan at udtryk (9.) erstattes med V dg = d ν ν. (0.) c Ifølge E-fordelingen i udtryk (9.9) er antallet af fotoner med ν [ νν ; + dν] dermed V ν ( ν ) dν = dν, (0.) hν c kt e og disse fotoner giver således anledning til energitætheden hν ρ ( ν) dν = ( ν) dν : V h ν ρν ( ) =. (0.) h c kt e ν For en grundlæggende beskrivelse af sortlegemestråling henvises til KM. Jf. EM4. emærk, at dette udtryk er identisk med KM udtryk (.). Thomas. Lynge, Institut for Fysik og anoteknologi, AAU 07//007
2 Statistisk mekanik 0 Side af 7 Som det vises i en opgave, er ( ) hν h kt ρν νe for hν kt ( Wiens lov ), (0.4) c kt ν for hν ( ) ρ ν c k T ( Rayleigh-Jeans lov ), (0.5) og Fig. -5 viser en sammenligning af Plancks lov i udtryk (0.) med de to ovenstående udtryk. Fra udtryk (0.) fås endvidere den samlede energitæthed 4 4 (9.6) 4 4 h ( ) ν kt x kt d d dx h x c kt 0 0 e ν c h e c h 0 ρ = ρ ν ν = ν = = 4 π 5 : 5 4 k = T, = ( Stefans lov ). (0.6) 5ch 4 ρ σ σ Thomas. Lynge, Institut for Fysik og anoteknologi, AAU 07//007
3 Statistisk mekanik 0 Side af 7 Paramagnetisme Som beskrevet i EM0 er et materiale paramagnetisk, hvis det er magnetisk lineært og isotropt og indeholder permanente magnetiske dipoler. Hvis der ses bort fra disse dipolers indbyrdes vekselvirkning, er et paramagnetisk materiale kendetegnet ved tre energibidrag i form af en indre, vibratorisk energi en indre, potentiel energi E pot,int E vib, for vekselvirkningen mellem dipolerne og E-feltet fra den resterende del af materialet 4 samt den potentielle energi E pot,eks for vekselvirkningen med et eksternt -felt: E = Evib + Epot,int + E. (0.7) Da energiniveauerne hørende til disse tre energibidrag er uafhængige, bliver systemets energiniveauer en sum som i udtryk (7.7) og tilstandssummen dermed et produkt som i udtryk (7.): Z = ZvibZpot,intZ. (0.8) I det flg. betragtes et assembly af skelnelige permanente magnetiske dipoler med et magnetisk dipolmoment på en ohr-magneton μ, og der ses bort fra E vib og E pot,int, sådan at Z = Z. Ifølge opg. J består assembliet således af spin- -partikler, hvis projektion af det magnetiske dipolmoment m på aksen defineret af -feltet er ± μ, svarende til at m er enten parallelt eller antiparallelt med feltet (spin op og spin ned). 4 De permanente magnetiske dipoler kunne f.eks. være ioner. Thomas. Lynge, Institut for Fysik og anoteknologi, AAU 07//007
4 Statistisk mekanik 0 Side 4 af 7 Ifølge EM udtryk (8.) er de mulige energiniveauer dermed ε = μ, ε =+ μ, (0.9) som er ikke-degenererede og kan indeholde et vilkårligt antal dipoler. Ifølge udtryk (5.4) fås dermed 5 μ Z kt e e = + μ kt μ = cos h. kt (0.0) Middelbesættelsestallene for dette M-system er ifølge udtryk (5.6) givet ved μ kt = e, = e Z Z sådan at det samlede magnetiske dipolmoment 6 er μ kt, (0.) μ μ M = μ = μ e e = μ Z Z kt kt ( ) sinh μ = μ tan h. kt Udtryk (0.) udgør den magnetiske tilstandsligning. μ kt (0.) 5 emærk, at Z løber over en enkelt dipols Hele assembliet er kendetegnet ved (j + ) svarende til flg. tilstandssum for hele assembliet: j + = + = energiniveauer og dermed er for en enkelt dipol. (degenererede) energiniveauer givet ved, m { j, }, E = αgμ, α = m j α i i i = i E gμ gμ gμ gμ m m m ass Z = e = e e e = e = Z α k T j j j m j k T k T k T k T α. i ass Da ln Z = ln Z er der kun marginal forskel på at udlede de termodynamiske egenskaber ud fra 6 Ikke at forveksle med magnetiseringen defineret i EM udtryk (0.). Z. ass Z eller Thomas. Lynge, Institut for Fysik og anoteknologi, AAU 07//007
5 Statistisk mekanik 0 Side 5 af 7 Feltet vil søge at ensrette dipolerne parallelt med feltet, hvorimod dipolernes termiske bevægelse vil modvirke denne ensretning. For meget kraftige felter eller meget lave temperaturer vil dipolerne således være rettet ind efter feltet: og M sat μ lim M = lim M = μ, (0.) T 0 = kaldes derfor mætningsmagnetiseringen. For svage felter eller høje temperaturer fås der er kendt som Curies lov. μ M, μ kt, (0.4) k T Ifølge udtryk (0.) og (0.4) vokser magnetiseringskurven M ( T ) lineært for små argumenter og går asymptotisk mod M sat for store argumenter, jf. Fig. -6. Ifølge udtryk (5.4), (0.0) og (0.) er ln Z μμ E = E = kt = kt sinh T Z kt k T μ = μtanh kt = M, som ses at være i overensstemmelse med udtryk (5.4). (0.5) emærk, at E 0, idet E > 0 ifølge udtryk (0.) ville svare til, at der var flere partikler i det øverste energiniveau end i det nederste, og en sådan populationsinversion forekommer ikke (umiddelbart) inden for denne models rammer 7. Thomas. Lynge, Institut for Fysik og anoteknologi, AAU 07//007
6 Statistisk mekanik 0 Side 6 af 7 Ifølge udtryk (0.5) er E ( T, ), sådan at Dermed udtrykker C E E de = d + dt. (0.6) T T = = T kt k E μ μ k sech (0.7) T energitilvæksten pr. temperaturtilvækst ved en proces med fastholdt feltstyrke og kan derfor identificeres som systemets varmekapacitet for konstant feltstyrke. Ifølge udtryk (7.), (7.9), (0.0) og (0.5) er S * E F μ μ = = μtanh + ktln cosh : T T kt kt S μ μ μ = k ln cosh tanh kt kt kt. (0.8) Som det blev vist i opg. -6, er lim S = lim S = 0, (0.9) T 0 idet alle dipolerne i så fald ifølge udtryk (0.) er rettet ind efter feltet, svarende til at der kun er én mulig mikrotilstand: S = k ln = 0. Som det også fremgik, er lim S = lim S = k ln = k ln, (0.0) T 0 idet de skelnelige dipoler i så fald er vilkårligt fordelt imellem de to nu degenererede tilstande, svarende til mulige mikrotilstande. 8 7 Mere herom sidst i denne kursusgang. 8 emærk i den forbindelse, at udtryk (0.4) angiver, at magnetiseringen i så fald i middel er nul. Thomas. Lynge, Institut for Fysik og anoteknologi, AAU 07//007
7 Statistisk mekanik 0 Side 7 af 7 Fra udtryk (0.) fås egative temperaturer μ kt = e, (0.) og dermed T = μ k ln ln. (0.) Som det fremgår af udtryk (0.), er T > 0 for halvdelen af dipolerne er i det laveste energiniveau., svarende til at mindst Hvis -feltets retning vendes 80, vil der i sagens natur være byttet om på spin op og spin ned. Hvis en sådan ændring af feltorienteringen sker gradvist, vil der til stadighed være termisk ligevægt, idet middelbesættelsestallene vil justere sig i henhold til udtryk (0.). Men hvis ændringen sker pludseligt, vil der umiddelbart efter være populationsinversion, idet det overtal af dipoler, der før var spin op nu vil være spin ned og vice versa. Ifølge udtryk (0.) svarer dette til, at temperaturen skifter fortegn og bliver negativ. Muligheden for populationsinversion kan således inkluderes i modellen ved at tillade temperaturen at blive negativ. Thomas. Lynge, Institut for Fysik og anoteknologi, AAU 07//007
Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5.
Statistisk mekanik 5 Side 1 af 10 ilstandssummen Ifølge udtryk (4.28) kan M-fordelingen skrives og da er μ N e e k = N g ε k, (5.1) N = N, (5.2) μ k N Ne g = e ε k. (5.3) Indføres tilstandssummen 1 Z g
Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen
Elektromagnetisme 14 Side 1 af 1 Bølgeligningen Maxwells ligninger udtrykker den indbyrdes sammenhæng mellem de elektromagnetiske felter samt sammenhængen mellem disse felter og de feltskabende ladninger
Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi
Statistisk mekanik 2 Side 1 af 10 Entropi Entropi er en tilstandsvariabel 1, der løst formuleret udtrykker graden af uorden. Entropien er det centrale begreb i termodynamikkens anden hovedsætning (TII):
Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi
Statistisk mekanik 2 Side 1 af 10 Entropi Entropi er en tilstandsvariabel 1, der løst formuleret udtrykker graden af uorden i et system. Da der er mange flere uordnede (tilfældigt ordnede) mikrotilstande
Termodynamik. Esben Mølgaard. 5. april N! (N t)!t! Når to systemer sættes sammen bliver fordelingsfunktionen for det samlede system
Termodynamik Esben Mølgaard 5. april 2006 1 Statistik Hvis man har N elementer hvoraf t er defekte, eller N elementer i to grupper hvor forskydningen fra 50/50 (spin excess) er 2s, vil antallet af mulige
Den klassiske oscillatormodel
Kvantemekanik 6 Side af 8 n meget central model inden for KM er den såkaldte harmoniske oscillatormodel, som historisk set spillede en afgørende rolle i de banebrydende beskrivelser af bla. sortlegemestråling
Termodynamikkens første hovedsætning
Statistisk mekanik 2 Side 1 af 13 Termodynamikkens første hovedsætning Inden for termodynamikken kan energi overføres på to måder: I form af varme Q: Overførsel af atomar/molekylær bevægelsesenergi på
Elektromagnetisme 13 Side 1 af 8 Maxwells ligninger. Forskydningsstrømme I S 1
Elektromagnetisme 13 Side 1 af 8 Betragt Amperes lov fra udtryk (1.1) anvendt på en kapacitor der er ved at blive ladet op. For de to flader og S der begge S1 afgrænses af C fås H dl = J ˆ C S n da = I
Elektromagnetisme 13 Side 1 af 8 Maxwells ligninger. Forskydningsstrømme I S 1
Elektromagnetisme 13 Side 1 af 8 Betragt Amperes lov fra udtryk (1.1) anvendt på en kapacitor der er ved at blive ladet op. For de to flader og S der begge S1 afgrænses af C fås H dl = J ˆ C S n da = I
KOMPENDIUM TIL STATISTISK FYSIK
KOMPENDIUM TIL STATISTISK FYSIK 3. UDGAVE REVIDERET: 18. APRIL 2011 UDARBEJDET AF SØREN RIIS AARHUS SCHOOL OF ENGINEERING Ö Ô Ý º Ùº DETTE VÆRK ER TRYKT MED ADOBE UTOPIA 10PT LAYOUT OG TYPOGRAFI AF FORFATTEREN
Første og anden hovedsætning kombineret
Statistisk mekanik 3 Side 1 af 12 Første og anden hovedsætning kombineret I dette afsnit udledes ved kombination af I og II en række udtryk, som senere skal vise sig nyttige. Ved at kombinere udtryk (2.27)
Magnetisk dipolmoment
Kvantemekanik 9 Side 1 af 8 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π og
Magnetisk dipolmoment
Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I
Skriftlig eksamen i Statistisk Mekanik den fra 9.00 til Alle hjælpemidler er tilladte. Undtaget er dog net-opkoblede computere.
Skriftlig eksamen i Statistisk Mekanik den 18-01-2007 fra 900 til 1300 lle hjælpemidler er tilladte Undtaget er dog net-opkoblede computere Opgave 1: I en beholder med volumen V er der rgon-atomer i gasfasen,
Elektromagnetisme 8 Side 1 af 8 Magnetfelter 1. Magnetisk induktion. To punktladninger og q påvirker (i vakuum) som bekendt hinanden med en. qq C.
Elektroagnetise 8 Side 1 af 8 Magnetisk induktion To punktladninger og q påvirker (i vakuu) so bekendt hinanden ed en q1 elektrisk kraft (oulobkraft) F 1 qq 1 1 = 4πε 1 0 r1 r ˆ. (8.1) Hvis de to ladninger
Elektromagnetisme 10 Side 1 af 11 Magnetisme. Magnetisering
Elektroagnetise 10 Side 1 af 11 Magnetisering Magnetfelter skabes af ladninger i bevægelse, altså af elektriske strøe. I den forbindelse skelnes elle to typer af agnetfeltskabende strøe: Frie strøe, der
Elektromagnetisme 10 Side 1 af 12 Magnetisme. Magnetisering
Elektroagnetise 10 Side 1 af 12 Magnetisering Magnetfelter skabes af ladninger i bevægelse, altså af elektriske strøe. I den forbindelse skelnes elle to typer af agnetfeltskabende strøe: Frie strøe, der
Magnetisme. Ladede partikler i bevægelse kan mærke et magnetfelt. Lorentzkraften: F = ee + ev x B
Magnetisme Ladede partikler i bevægelse kan mærke et magnetfelt Lorentzkraften: F = ee + ev x B Magnetiske feltlinier Magnetfelt kan repræsenteres ved feltlinier Retning angiver feltets retning Størrelse
INDHOLD. 5 Lektion Opgave a b Opgave K Lynge opgave
. Indhold 1 Lektion 1 1 1.1 Opgave A............................... 1 1.1.1 A.a............................... 1 1.1. A.b.............................. 1.1.3 A.c............................... 1. Lynge
Eksamen 2014/2015 Mål- og integralteori
Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt
Youngs dobbeltspalteforsøg 1
Kvantemekanik Side af Youngs dobbeltspalteforsøg Klassisk beskrivelse Inden for den klassiske fysik kan man forklare forekomsten af et interferensmønster ud fra flg. bølgemodel. x Før spalterne beskrives
Eksamen i fysik 2016
Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.
Lærebogen i laboratoriet
Lærebogen i laboratoriet Januar, 2010 Klaus Mølmer v k e l p Sim t s y s e t n a r e em Lærebogens favoritsystemer Atomer Diskrete energier Elektromagnetiske overgange (+ spontant henfald) Sandsynligheder,
6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning
49 6 Plasmadiagnostik Plasmadiagnostik er en fællesbetegnelse for de forskellige typer måleudstyr, der benyttes til måling af plasmaers parametre og egenskaber. I fusionseksperimenter er der behov for
Kvantiseringsbegrebet
Kvantemekanik 1 Side 1 af 17 Kvantiseringsbegrebet I 1670 erne fremsatte Sir Isaac Newton en teori for lys, hvori han beskrev lys som en byge af partikler. I 1678 fremsatte hollænderen Christiaan Huygens
Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum?
Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum? - om fysikken bag til brydningsindekset Artiklen er udarbejdet/oversat ud fra især ref. 1 - fra borgeleo.dk Det korte svar:
Teoretiske Øvelser Mandag den 13. september 2010
Hans Kjeldsen [email protected] 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion
Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm
Elektromagnetisme 7 Side 1 af 12 Med dette emne overgås fra elektrostatikken, som beskriver stationære ladninger, til elektrodynamikken, som beskriver ladninger i bevægelse (elektriske strømme, magnetfelter,
Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter.
Atomer, molekyler og tilstande 3 Side 1 af 7 Sidste gang: Elektronkonfiguration og båndstruktur. I dag: Bindinger mellem atomer og molekyler, idet vi starter med at se på de fire naturkræfter, som ligger
Øvelse i kvantemekanik Elektron-spin resonans (ESR)
14 Øvelse i kvantemekanik Elektron-spin resonans (ESR) 3.1 Spin og magnetisk moment Spin er en partikel-egenskab med dimension af angulært moment. For en elektron har spinnets projektion på en akse netop
Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm
Elektromagnetisme 7 Side 1 af 1 Med dette emne overgås fra elektrostatikken, som beskriver stationære ladninger, til elektrodynamikken, som beskriver ladninger i bevægelse (elektriske strømme, magnetfelter,
Appendiks 1. I=1/2 kerner. -1/2 (højere energi) E = h ν = k B. 1/2 (lav energi)
Appendiks NMR-teknikken NMR-teknikken baserer sig på en grundlæggende kvanteegenskab i mange atomkerner, nemlig det såkaldte spin som kun nogle kerner besidder. I eksemplerne her benyttes H og 3 C, som
Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n.
Simple fejlforplantningslov Landmålingens fejlteori Lektion 6 Den generelle fejlforplantningslov Antag X, X,, X n er n uafhængige stokastiske variable, hvor Var(X )σ,, Var(X n )σ n Lad Y g(x, X,, X n ),
A4: Introduction to Cosmology. Forelæsning 2 (kap. 4-5): Kosmisk Dynamik
A4: Introduction to Cosmology Forelæsning (kap. 4-5): Kosmisk Dynamik 1-komponent modeller Robertson-Walker metrikken ds = c dt² a t [ Metrik med medfølgende koordinater (x,θ,φ), x= S κ (r) i den rumlige
Additionsformlerne. Frank Villa. 19. august 2012
Additionsformlerne Frank Villa 19. august 2012 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Atomare elektroners kvantetilstande
Stoffers opbygning og egenskaber 4 Side 1 af 12 Sidste gang: Naturens byggesten, elementarpartikler. Elektroner bevæger sig ikke i fastlagte baner, men er i stedet kendetegnet ved opholdssandsynligheder/
Lys på (kvante-)spring: fra paradox til præcision
Lys på (kvante-)spring: fra paradox til præcision Metrologidag, 18. maj, 2015, Industriens Hus Lys og Bohrs atomteori, 1913 Kvantemekanikken, 1925-26 Tilfældigheder, usikkerhedsprincippet Kampen mellem
Eksamen i Matematik F2 d. 19. juni Opgave 2. Svar. Korte svar (ikke fuldstændige)
Eksamen i Matematik F2 d. 9. juni 28 Korte svar (ikke fuldstændige Opgave Find realdelen, Re z, og imaginærdelen, Im z, for følgende værdier af z, a z = 2 i b z = i i c z = ln( + i Find realdelen, Re z,
MODERNE KOSMOLOGI STEEN HANNESTAD, INSTITUT FOR FYSIK OG ASTRONOMI
MODERNE KOSMOLOGI STEEN HANNESTAD, INSTITUT FOR FYSIK OG ASTRONOMI T (K) t (år) 10 30 10-44 sekunder 1 mia. 10 sekunder 3000 300.000 50 1 mia. He, D, Li Planck tiden Dannelse af grundstoffer Baggrundsstråling
Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning
Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf13 Landmåling involverer ofte bestemmelse af størrelser som ikke kan
Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala
3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter
Noter til elektromagnetisme
Noter til elektromagnetisme Martin Sparre www.logx.dk 20-06-2007 1 Elektrostatik Coloumbs lov F Q = 1 qq r r 4πε 0 r r 2 r r Det elektriske felt: F Q (r) = QE(r), E(r) = 1 q i r r i 4πε 0 r r i i 2 r r
DETTE OPGAVESÆT INDEHOLDER 5 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE
DETTE OPGAVESÆT INDEHOLDER 5 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE SPØRGSMÅL ENS. SPØRGSMÅLENE I DE ENKELTE OPGAVER KAN LØSES UAFHÆNGIGT AF HINANDEN. 1 Opgave 1 En massiv metalkugle
Energitæthed i et elektrostatisk felt
Elektromagnetisme 6 ie af 5 Elektrostatisk energi Energitæthe i et ektrostatisk ft I utryk (5.0) er en ektrostatiske energi E af en laningsforing utrykt ve ennes laningstæthe ρ, σ og tilhørene ektrostatiske
Benyttede bøger: Statistisk fysik 1, uredigerede noter, Per Hedegård, 2007.
Formelsamling Noter til Fysik 3 You can know the name of a bird in all the languages of the world, but when you re finished, you ll know absolutely nothing whatever about the bird... So let s look at the
Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.
M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
Forsøg del 1: Beregning af lysets bølgelængde
Forsøg del 1: Beregning af lysets bølgelængde Formål Formålet med denne forsøgsrække er, at vise mange aspekter inden for emnet lys med udgangspunkt i begrænset materiale. Formålet med forsøget er at beregne
Kalkulus 2 - Grænseovergange, Kontinuitet og Følger
Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning
Modul 12: Regression og korrelation
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................
Formelsamling til Fysik B
Formelsamling til Fysik B Af Dann Olesen og Søren Andersen Hastighed(velocity) Densitet Tryk Arbejde Definitioner og lignende Hastighed, [ ] Strækning, [ ] Volumen(rumfang), [ ] Tryk, [ ] : Pascal Kraft,
Differentiation af Trigonometriske Funktioner
Differentiation af Trigonometriske Funktioner Frank Villa 15. oktober 01 Dette dokument er en del af MatBog.dk 008-01. IT Teaching Tools. ISBN-13: 978-87-9775-00-9. Se yderligere betingelser for brug her.
Tillæg til partikelfysik (foreløbig)
Tillæg til partikelfysik (foreløbig) Vekselvirkninger Hvordan afgør man, hvilken vekselvirkning, som gør sig gældende i en given reaktion? Gravitationsvekselvirkningen ser vi bort fra. Reaktionen Der skabes
Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J.
Diffusionsligningen Fællesprojekt for FY50 og MM50 Marts 009 Hans J. Munkholm og Paolo Sibani Besvarelse fra Hans J. Munkholm 1 (a) Lad [x, x + x] være et lille delinterval af [a, b]. Den masse, der er
A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi
A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi ATTENUATION AF RØNTGENSTRÅLING Erik Andersen, ansvarlig fysiker CIMT Medico, Herlev, Gentofte, Glostrup Hospital Attenuation af røntgenstråling
KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE
KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Vejledende eksamensopgaver 16. januar 2008 Tilladte hjælpemidler: Medbragt litteratur, noter
Statistisk mekanik 1 Side 1 af 11 Introduktion. Indledning
Statistis meani Side af Indledning Statisti er et uundværligt matematis redsab til besrivelsen af et system med uoversueligt mange bestanddele. F.es. er der så mange luftmoleyler i blot mm 3 luft, at det
Løsningsforslag til fysik A eksamenssæt, 23. maj 2008
Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi
Protoner med magnetfelter i alle mulige retninger.
Magnetisk resonansspektroskopi Protoners magnetfelt I 1820 lavede HC Ørsted et eksperiment, der senere skulle gå over i historiebøgerne. Han placerede en magnet i nærheden af en ledning og så, at når der
Landmålingens fejlteori - Lektion 5 - Fejlforplantning
Landmålingens fejlteori Lektion 5 Fejlforplantning - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/30 Fejlforplantning Landmåling involverer ofte bestemmelse af størrelser som ikke
Partikelacceleratorer Eksperimentalfysikernes Ultimative Sandkasse
Partikelacceleratorer Eksperimentalfysikernes Ultimative Sandkasse Niels Bassler [email protected] Institut for Fysik og Astronomi Aarhus Universitet Partikelacceleratorer p.1/24 Standardmodellen H O
Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005)
Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (005) Indholdsfortegnelse Indholdsfortegnelse... Stamfunktion og integralregning...3 Numerisk integration...3 Areal under
Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at
Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn
Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion
ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit
1. Beregn sandsynligheden for at samtlige 9 klatter lander i felter med lige numre.
NATURVIDENSKABELIG GRUNDUDDANNELSE Københavns Universitet, 6. april, 2011, Skriftlig prøve Fysik 3 / Termodynamik Benyttelse af medbragt litteratur, noter, lommeregner og computer uden internetadgang er
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 11. august 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og
Formelsamling i astronomi. Februar 2016
Formelsamling i astronomi. Februar 016 Formelsamlingen er ikke komplet det bliver den nok aldrig. Men måske kan alligevel være til en smule gavn. Sammenhæng mellem forskellige tidsenheder Jordens sideriske
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 27. juni 2008
KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 27. juni 2008 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner. Der må besvares
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
MM502+4 forelæsningsslides
MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for
