OPGAVER 1. Løsning af ligningssystemer Disse første opgaver er introducerer til løsning af lineære ligningssystemer. De løses alle ved håndregning.



Relaterede dokumenter
OPGAVER 1. Approksimerende polynomier. Håndregning

3. Gå til Tools Options Interface Default format for new worksheets og skift til Worksheet. Afslut med Apply Globally.

Brug af Word til matematik

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Praktiske Maple kommandoer og arbejdsmåde

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Kom hurtigt i gang Maplesoft, 2014

APPENDIX A INTRODUKTION TIL DERIVE

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Kom godt i gang. Sluttrin

Introduktion til TI-Interactive!

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005)

Vejledning til Excel 2010

Matricer og lineære ligningssystemer

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

INTRODUKTION Maple Funktioner Regression

2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain).

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Aflevering 4: Mindste kvadraters metode

INTRODUKTION Maple Funktioner Regression

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

Lineære ligningssystemer og Gauss-elimination

Kom godt i gang. Mellemtrin

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015

Lad os prøve GeoGebra.

QR15 Vejledning i at bestemme kvartilsæt og at tegne sumkurver med Nspire, Maple og Geogebra

DesignMat Uge 1 Gensyn med forårets stof

De fire elementers kostbare spejl

Mathcad Survival Guide

Projekt 3.5 faktorisering af polynomier

Polynomier af én variabel

Lineære ligningssystemer

Nspire 4.2 kom godt i gang

Introduktion til TI-Nspire 1. Dokumentformat

Selvstudium 1, Diskret matematik

Polynomier af én variabel

INTRODUKTION Maple Funktioner Regression x-klasserne Gammel Hellerup Gymnasium

Noter om komplekse tal

Matematik og FormLineære ligningssystemer

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014

Lineær Programmering i GeoGebra Side 1 af 8

Brugervejledning til Graph

Oprids over grundforløbet i matematik

DesignMat Uge 1 Repetition af forårets stof

SÅDAN BRUGER DU REGNEARK INTRODUKTION

Vejledning til GYM17 Copyright Adept Nordic 2013

Vejledning i brug af Gym-pakken til Maple

Kvadratiske matricer. enote Kvadratiske matricer

Om tastaturgenveje i Noter

Excel for nybegyndere

MatematiKan Et matematisk skriveværktøj for hele skoleforløbet

How to do in rows and columns 8

Flemmings Maplekursus 1. Løsning af ligninger

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss

Ligningsløsning som det at løse gåder

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Start pä matematik. for gymnasiet og hf (2012) Karsten Juul

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium

Computerundervisning

Matematik: Stuktur og Form Lineære ligningssystemer

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden

Oktober Dokumentpakker

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010

Vejledning til Gym18-pakken

Undersøgelse af funktioner i GeoGebra

Doros nemme guide til: Sms-beskeder. En begynderguide til at skrive, sende og læse sms-beskeder

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

fortsætte høj retning mellem mindre over større

Sådan opretter du en elektronisk aflevering

Differentialregning med TI-Interactive! Indledende differentialregning Tangenter Monotoniforhold og ekstremum Optimering Jan Leffers (2009)

Lineære 2. ordens differentialligninger med konstante koefficienter

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

ALMINDELIGT ANVENDTE FUNKTIONER

Vejledning til Photofiltre nr. 108 Side 1. Lave visitkort i dankort størelse med eget foto

Kogebog til Maple 18

MathType 6.7e og 6.8 for elever og lærere på HAKA

Graph brugermanual til matematik C

Indledning. På de følgende sider vises, primært i tegneserieform, lidt om mulighederne i PC-AXIS for Windows.

Kom godt i gang. Begyndertrin

Andreas Lauge V. Hansen klasse 3.3t Roskilde HTX

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Vejledning til WordMat på Mac

Ligningssystemer - nogle konklusioner efter miniprojektet

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan

Fra Blåt Medlem til Excel.

Mat 1. 2-timersprøve den 5. december 2016.

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

Opsætte f.eks. en rejsebeskrivelse med tekst og billede i Draw side 1

Løsninger til eksamensopgaver på A-niveau 2016

Funktioner. 1. del Karsten Juul

Differentialregning. Ib Michelsen

Bilagskladder kaldes ved at vælge menupunktet Regnskab -> Kladde eller klikke på favoritikonet Bilagskladder på Winfinans skrivebordet.

Regneark II Calc Open Office

Brugervejledning til Graph (1g, del 1)

Annemette Søgaard Hansen/

Transkript:

OPGAVER 1 Opgaver til Uge 5 Store Dag Opgave 1 Løsning af ligningssystemer Disse første opgaver er introducerer til løsning af lineære ligningssystemer. De løses alle ved håndregning. a) Find den fuldstændige løsning til det lineære ligningssystem: x 1 + 2x 2 4x 3 = 2 x 2 2x 3 = 1 x 3 = 2 (1) b) Find den fuldstændige løsning til det lineære ligningssystem: x 1 x 3 + x 4 = 0 x 1 + x 2 + x 3 + x 4 = 1 4x 1 + 4x 2 + 4x 3 + 3x 4 = 5 (2) c) Find den fuldstændige løsning til det komplekse lineære ligningssystem: i x 1 2x 2 = i x 1 + (1 + i)x 2 = 1 (3) d) Find den fuldstændige løsningsmængde til det lineære ligningssystem: x 1 + 2x 2 + 2x 3 = 2 x 2 + 3x 3 = 3 x 1 + 4x 2 + 8x 3 = 9 (4)

OPGAVER 2 Opgave 2 Introduktion til Maple Matematikprogrammet Maple er ét blandt flere matematikprogrammer som bruges i undervisningen og til forskning på DTU. Her er en kort introduktion til de vigtigste aspekter. Det er vigtigt, at du bruger noget tid til at sætte dig ind i Maple, fordi du skal bruge det rigtig meget i Matematik 1. Hvor får jeg fat på Maple? Du henter Maple til din computer på http://gbar.dtu.dk/software. Log ind med din DTU-bruger, tryk på: Maple 2015, og vælg den installationsfil, som passer til dit styresystem. Noter installationsnøglen (Activation key Stand alone), den skal du bruge, når du installerer programmet. Opsætning af Maple Når du skal i gang med Maple, er der to options du skal tage stilling til: 1) Ønsker jeg at arbejde i worksheet-mode eller i document-mode, og 2) Ønsker jeg at skrive kommandolinjer med MapleNotation eller 2D-Math Notation. I undervisningen på DTU benyttes kombinationen worksheet-mode og MapleNotation. Hvis du indtiller din Maple til denne kombination, der fx benyttes i kursets MapleDemo er, skal du følge denne opskrift: Første gang du starter Maple: 1. Gå til Tools Options Interface Default format for new worksheets og skift til Worksheet. Afslut med Apply Globally. 2. Gå til Tools Options Display Input display og skift til Maple Notation. Afslut med Apply Globally. 3. Start Maple på ny nu er vi klar! Blandt de gymnasier som er begyndt at bruge Maple, er der mange der anbefaler 2D- Math Notation. En af fordelene er, at man så bedre kan benytte sig af paletter og højrekliksmenuer. På DTU anses den rå tekstkode, dvs. Maple Notation, for at være mere videnskabelig, idet dokumentationen for hvad der foregår, er mere klar. I er naturligvis velkomne til selv at eksperimentere med jeres Maple-opsætning. Tutorial i Maple og opgaver Start Maple. Maple fungerer efter princippet med spørgsmål (input) og svar (output): Du stiller spørgsmål på en kommandolinje (til højre for det røde > tegn) som input til Maple, og Maple svarer med et output, centreret og i blå således, at svar tydeligt kan kendes fra spørgsmål. Hvis du vil have Maple til at acceptere et input, men uden at vise svaret, skal du skrive kolon efter kommandoen. Som det allerførste input i ethvert Maple-ark skriver du

OPGAVER 3 > restart; Maple udfører kommandoen, når du trykker Enter. Denne kommando vil nulstille hukommelsen i arket, og da det er tit, du udfører alle kommandoerne i arket efter hinanden flere gange, er det nødvendigt at nulstille i toppen. Læg mærke til, at der ikke kommer noget svar fra Maple uanset om du slutter kommandoen med kolon eller ej. Prøv nu følgende regnestykke: > 2 + 2; Maple kan naturligvis fungere som lommeregner! Men programmets mere interessante egenskaber ligger i dets evne til at foretage symbolske matematiske operationer. For eksempel bliver sin x differentieret med hensyn til x med kommandoen > diff(sin(x), x) ; Prøv det. I dette tilfælde bruger man kommandoen diff. Til kommandoen hører to argumenter: sin(x) og x, som er adskilt med komma. Maple kan også plotte funktioner. Den simpleste plot-kommandoen er plot. Kommandoen har minimum to argumenter: Det, der skal plottes, og grænserne af den uafhængige variable. Hvis man eksempelvis ønsker at se funktionen sin x i intervallet mellem 0 og 5, benyttes kommandoen > plot(sin(x), x=0..5); Intervaller angives altid med to punktummer efter hinanden. For at få samme enheder på akserne skrives desuden scaling=constrained som tredje argument, altså: > plot(sin(x), x=0..5, scaling=constrained); Kan du se forskellen? Der er et hav af valgfri argumenter og kombinationsmuligheder til plot-kommandoen. Til at finde den, som passer bedst til dine behov, kan du enten bruge Maples hjælpefunktion i menulinjen eller også kan du skrive >?plot; At skrive et spørgsmålstegn foran virker med alle kommandoer. Her er endnu et eksempel på et plot, nu med flere funktioner og flere argumenter. Prøv at gætte hvad de gør eller slå op i Maples hjælpefunktion under plot-kommandoen. > plot([sin(x),x^2],x=0..5,y=-2..2,color=[red,blue],scaling=constrained); Du kan lave potenser ved at trykke på tasten. I dag har du lært lidt om lineær algebra, og det er derfor her, vi tager udgangspunkt for det, du i det følgende skal lære om Maple. Maple kan selvfølgelig regne med matricer, men før man kan gøre det, skal man inkludere en pakke i Maple, som vil lukke op for en række kommandoer, der har med lineær algebra at gøre. Pakken hedder LinearAlgebra og den inkluderes ved denne kommando:

OPGAVER 4 > with(linearalgebra): Læg mærke til, at kommandoen denne gang er skrevet med kolon til sidst. Prøv først at skrive kommandoen uden, og se derefter forskellen. Outputtet fra Maple er alle de kommandoer, som pakken inkluderer. Det er imidlertid overflødig information, og derfor kan det være en ide at afslutte kommandoen med kolon for at undgå outputtet. Læg også mærke til at LinearAlgebra indeholder et stort L og A. Maple skelner mellem små og store bogstaver, og derfor er det vigtigt at du skriver LinearAlgebra som det står her. Ellers får du en fejlmelding fra Maple. Det lille lineære ligningssystem 3x 7y = 1 2x y = 4 har koefficientmatricen [ 3 ] 7 2 1 I Maple ønsker vi at kalde denne matrix for A. Man tildeler en variabel i Maple en værdi ved hjælp af det dynamiske lighedstegn := (kolon lighedstegn). Det virker altså ikke, hvis man kun bruger et lighedstegn. Så tolker Maple nemlig inputtet som en ligning (som man eventuelt senere har lyst til at løse). Man kan i Maple skrive matricer ved hjælp af de fire tegn <>, på denne måde > A := < <3-7>, <-2-1> >; eller > A := < <3,-2> <-7,-1> >; Den sidste og nemmeste mulighed er dog at bruge Matrix-paletten til venstre for kommandovinduet: Tryk på Matrix-paletten angiv hvor mange rækker og søjler matricen skal have, og tryk derefter Insert Matrix. Udfyld det første felt som er highlighted og brug tabulatortasten til at komme videre til næste felt. Sådan kan du fortsætte. Prøv at se, hvad nogen af de andre paletter kan. Definer nu også højresiden b ved > b := <1,4>; eller med paletten. Man kan løse det lineære ligningssystem med kommandoen LinearSolve (husk igen forskellen på store og små bogstaver): > LinearSolve( A, b ); Vi kan også betragte de to ligninger med to ubekendte som et spørgsmål om skæring mellem to linjer i en plan. Hvis vi ønsker at illustrere det, skal vi bruge en anden pakke, skriv: (5) (6)

OPGAVER 5 > with(plots): Læg igen mærke til brugen af kolon til sidst. plots-pakken indeholder mere avancerede former for plots end kommandoen plot kan klare. Nu prøver vi at plotte de to linjer sammen: > linje1 := implicitplot( 3*x - 7*y = 1, x = -3.. 3, y = -3.. 3): > linje2 := implicitplot( -2*x - y = 4, x = -5.. 3, y = -3.. 3): Plottene kan herefter flettes sammen og vises med denne kommando (og scaling = constrained er også inkluderet som argument): > display([linje1, linje2], scaling=constrained); Gangetegnet skriver du med * (asterisk). Det er vigtigt, at du altid skriver gangetegnet og ikke udelader det som man ofte ellers vil gøre, når man skriver matematik. Hvis du i stedet for at skrive 3 x 7 y prøvede at skrive x3 y7 uden gangetegnene havde du fået en fejlmelding i Maple. Prøv! Så: Husk altid at skrive gangetegnene! Sammenlign skæringspunktets koordinater med den tidligere fundne løsning til de to ligninger for linjerne. Du kan aflæse koordinaterne ved at klikke på plottet og derefter på plotsymbolet i menulinjen. Vælg en af de tre nederste muligheder, og hold cursoren over plottet. Afprøv alle tre muligheder for aflæsning. Stemmer det overens (nogenlunde) med resultatet fra udregningen? Nu skal vi prøve at løse opgave 1b) i Maple. Skriv (og forstå!) følgende kommandoer: > restart: with(linearalgebra) : Der er givet ligningerne: > lign1 := x1 - x3 + x4 = 0 : > lign2 := x1 + x2 + x3 + x4 = 1: > lign3 := 4*x1 + 4*x2 + 4*x3 + 3*x4 = 5: Vi danner (genererer) ligningssystemets totalmatrix: > T :=<< 1, 1, 4 > < 0, 1, 4 > < 1, 1, 4 > < 1, 1, 3 > < 0, 1, 5 >>; Skriv de følgende kommandoer og se, om det bliver det samme, som da du regnede opgaven i hånden. > T1 := RowOperation(T, [2,1], -1); > T2 := RowOperation(T1, [3,1], -4); > T3 := RowOperation(T2, [3,2], -4); > T4 := RowOperation(T3, 3, -1); > trapt := RowOperation(T4, [1,3], -1);

OPGAVER 6 Prøve nu at opskrive det tilhørende fuldstændigt reducerede lineære ligningssystem. Man kan komme frem til trappeformen af en matrix straks ved hjælp af kommandoen > trapt2 := ReducedRowEchelonForm(T); Opskriv løsningsmængden på standardparameterform og sammenlign den med det følgende (som er den hurtigste løsningsmetode LinearSolve bliver din ven!): Først skal du definere koefficientmatricen > A:= og højresiden > b:=. Derefter forsøger du med: > LinearSolve(A,b,free=t); Giver alle løsningsmetoderne det samme? Tips, tricks og faldgruber (Genvejene er kun til Windows-versionen) Man kan indsætte en kommandolinje lige over den aktive kommandolinje ved at trykke Ctrl + K. For at indsætte en nedenunder bruges Ctrl + J. Man kan lave et felt til tekst ved at trykke på knappen eller bruge Insert Text. På samme måde kan man lave kommandolinjer til udregning ved at bruge eller Insert Maple Input / Insert 2-D Math alt efter hvilken input-typen man plejer at bruge. (Genvejene er Ctrl + T, Ctrl + M og Ctrl + R). I et tekstfelt (Insert Text) kan man skifte mellem at skrive normal tekst og pæn matematik (2-D Math) ved at bruge knapperne eller F5. Er du træt af at skrive lange kommando-navne? Prøv at skriv noget af navnet (for eksempel LinearA) og tryk derefter Esc eller Ctrl + Mellemrum. Nu får du nogle valgmuligheder, som du kan vælge imellem ved hjælp af piletasterne. På den samme måde kan du for eksempel også lave Pi om til π i 2-D Math mode (Maple skelner ikke mellem Pi og π, men det sidste ser pænere ud). Tallet π (3,141592654...) skrives i Maple med stort P! Altså Pi og ikke pi. Hvis man skriver det med lille associerer Maple ikke egenskaberne med π. Tilsvarende findes grundtallet e kun i form af funktionen exp i Maple! Hvis du vil skrive flere kommandoer i én kommandolinje, skal du adskille kommandoerne enten med kolon eller semikolon. Du kan gå en linje ned ved at bruge Shift + Enter. Du kan slette en hel kommandolinje ved at trykke Ctrl + Del. Brug Maples hjælpefunktion. Den er kanon!

OPGAVER 7 Opgave 3 Lineært ligningssystem med Maple Givet ligningssystemet x 1 + 2x 2 + 2x 3 = 6 x 2 + 3x 3 = 3 x 1 + 4x 2 + 8x 3 = 12 (7) a) Definér i Maple ligningssystemets koefficientmatrix A, højreside b og totalmatrix T. b) Afprøv de tre Maple-metoder: RowOperation, ReducedRowEchelonform og LinearSolve. c) Opskriv ligningssystemets løsningsmængde på standard parameterform Opgave 4 Introduktion til Maple med komplekse tal Download og gennemgå MapleDemo en om komplekse tal. Heri introduceres de relevante maplekommandoer for denne opgave. Det er i denne opgave meningen at du skal bruge Maple til at løse følgende opgaver. Du har tidligere løst tilsvarende opgaver med papir og blyant, tænk over hvad det er Maple giver som svar og omsæt det en løsning på opgaven. a) Hvad er i 2, i 3, i 4, i 5, ( i) 2, ( i) 3, ( i) 4 og ( i) 5? b) Bestem realdelen og imaginær værdien af og skriv tallet på rektangulær form. c) Givet w = 1 i. 1. Bestem w og arg(w). 2. Bestem e w og arg(e w ). 2 + 3i i d) Skriv følgende komplekse tal på rektangulær form: 1. e i π 2 2. 3e 1+πi e) Givet tallene z 0 = 1 + i 3, z 1 = 3 + i, z 2 = 1 i 3 og z 3 = 3 i.

OPGAVER 8 1. Angiv de fire tal på eksponentiel form. 2. Vis at der findes en binom ligning z 4 = w hvori alle fire tal er en løsning. f) Løs de binome ligninger z 2 = 4, z 2 = i og z 2 = 1 i. Skitsér løsningerne i den komplekse talplan. g) Løs de binome ligninger 1. z 3 = 1 2. z 3 = i 3. z 3 = 1 + i og skitsér løsningerne i den komplekse talplan. h) Find løsningerne for ligningen z 2 (1 + 5i)z = 0. i) Find løsningerne for ligningen z 2 + (2 + 2i)z 2i = 0. j) Vis at x 0 = 1 er rod i polynomiet P(x) = x 3 x 2 + x 1 og bestem et andengradspolynomium Q således at P(x) = (x 1) Q(x). k) Bestem samtlige komplekse rødder for 7. gradspolynomiet P(z) = (z 6 z 5 + z 4 z 3 )(z 1) og angiv røddernes multipliciteter, faktoriser herefter polynomiet. l) Find for enhvert t R differentialkvotienterne af følgende funktioner: f 1 (t) = t 2 + i sin(t) f 2 (t) = 1 + it 5 f 3 (t) = t 5 i f 4 (t) = 3 e it f 5 (t) = i e 2t+3it