Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller."

Transkript

1 Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen år. Parrene blev fulgt i 6 måneder eller indtil graviditet var opnået. Vi vil interessere os for følgende variable: ttp TTP in dage (kontinuert variabel) Kgravid censureringsvariabel (1=gravid, 0=censurering) Kryg ryge status for kvinden (0=Nej, 1=Ja) Mryg ryge status for manden (0=Nej, 1=Ja) Kalk antal genstande per uge for kvinden Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Spørgsmål 1 Data læses ind i R med ttpdata<-read.fwf("ttp.txt",header=f,sep=";", widths=c(4,7,12,6,11,10,10,10,10,10,10,10,10,8,8)) names(ttpdata)<-c("obs","fcyklus","ttp","fxid","kalk","kcof","mcof", "KMryg","Kryg","Mryg","Malk","Mryg","MMryg", "Mzkon0","Kgravid") hvor.fwf står for Fixed Widt Format, widths angiver søjlebredden på hver enkelt variabel (antal tegn til hver variabel i tekst-filen med data). Vi ser først på Kaplan-Meier kurverne opdelt på rygning for hhv kvinder og mænd. Follow-up-tiden er tid til graviditet dvs overlevelseskurven angiver sandsynligheden for at graviditet endnu ikke er indtruffet. 1

2 Kaplan-Meier-plottet laves med KM1<-survfit(Surv(ttp,Kgravid)~Kryg) plot(km1,mark.time=f,lty=1:2,cex=2,xlab="dage") legend(125,1,c("k ej ryger","k ryger"),lty=1:2) survdiff(surv(ttp,kgravid)~kryg) title("tid til graviditet opdelt på Kryg") og vi får følgende kurver: Tid til graviditet opdelt på Kryg K ej ryger K ryger Dage Vi ser at forskellen mellem de to grupper øges efter 50 dage. Gruppen af ikke-rygere har den laveste overlevelse hvilket indikerer, at par for hvilken kvinden er ikke-ryger hurtigere bliver gravide end par for hvilken kvinden 2

3 ryger. Tegner vi en vandret linie gennem overlevelsessandsynligheden svarende til 0.5, finder vi median tid til graviditet for gruppen med kvindelige ikke-ryger på ca 110 dage mens median tid til graviditet for gruppen med kvindelige rygere er ca 145 dage. På samme måde kan vi se på grupperne med mandlige rygere / ikke-rygere: KM2<-survfit(Surv(ttp,Kgravid)~Mryg) plot(km2,mark.time=f,lty=1:2,cex=2,xlab="dage") legend(125,1,c("m ej ryger","m Ryger"),lty=1:2) survdiff(surv(ttp,kgravid)~mryg) title("tid til graviditet opdelt på Mryg") Tid til graviditet opdelt på Mryg M ej ryger M Ryger Dage 3

4 Her ser vi det samme mønster, omend forskellen mellem de to grupper allerede optræder ved 20 dage. Igen bliver gruppen med mandlige ikke-rygere hurtigere gravide (median ca 120 dage) end gruppen med mandlige rygere (median ca 145 dage). Spørgsmål 2 Vi skal nu kvantificere effekten af Kryg og Mryg. Dette gøres vha Cox modellen. cox1<-coxph(surv(ttp,kgravid)~kryg) summary(cox1) coxph(formula = Surv(ttp, Kgravid) ~ Kryg) Kryg * Kryg Concordance= (se = ) Rsquare= (max possible= ) Likelihood ratio test= 5.9 on 1 df, p= Wald test = 5.58 on 1 df, p= Score (logrank) test = 5.64 on 1 df, p= Dvs harzard ratio for at blive gravid for par for hvilken kvinden ryger er ifht par for hvilken kvinden ikke ryger. Eller : chancen for at blive gravid er 41.2% større for ikke-rygere end for rygere. Vi bemærker at forskellen på ikke-rygere og rygere er signifikant med en p-værdi på

5 Tilsvarende kan vi beskrive forskellen for par for hvilken manden er ikke-ryger / ryger: cox2<-coxph(surv(ttp,kgravid)~mryg) summary(cox2) og vi får coxph(formula = Surv(ttp, Kgravid) ~ Mryg) Mryg Mryg Concordance= (se = ) Rsquare= (max possible= ) Likelihood ratio test= 2.08 on 1 df, p= Wald test = 2.03 on 1 df, p= Score (logrank) test = 2.04 on 1 df, p= Dvs HR for at blive gravid for par for hvilken manden ryger er ifht par for hvilken manden ikke ryger. Eller : par for hvilken manden ikke ryger, har 21.8% større chance for at blive gravide end par for hvilken manden ryger. Forskellen er dog ikke signifikant. Spørgsmål 3 Vi tester for mulig interaktion mellem Kryg og Mryg: cox3<-coxph(surv(ttp,kgravid)~kryg+mryg+kryg*mryg) summary(cox3) Bemærk at vi ikke behøver at lave dette test som et likelihood ratio test da interaktionen er beskrevet med 1 parameter og vi derfor kan aflæse p-værdien direkte i Wald-testet: 5

6 coxph(formula = Surv(ttp, Kgravid) ~ Kryg + Mryg + Kryg * Mryg) Kryg Mryg Kryg:Mryg Kryg Mryg Kryg:Mryg Concordance= (se = ) Rsquare= (max possible= ) Likelihood ratio test= 6.31 on 3 df, p= Wald test = 6.01 on 3 df, p= Score (logrank) test = 6.07 on 3 df, p= Med en p-værdi på for interaktionsleddet accepterer vi hypotesen om manglende interaktion og benytter i stedet den additive model og fitter denne med λ(t) = λ 0 (t) exp(β 1 Kryg + β 2 Mryg) cox4<-coxph(surv(ttp,kgravid)~kryg+mryg) summary(cox4) coxph(formula = Surv(ttp, Kgravid) ~ Kryg + Mryg) Kryg * Mryg

7 Kryg Mryg Concordance= (se = ) Rsquare= (max possible= ) Likelihood ratio test= 6.16 on 2 df, p= Wald test = 5.83 on 2 df, p= Score (logrank) test = 5.89 on 2 df, p= Justeret for mandlig ryger er HR for at blive gravid for par for hvilken kvinden ryger 0.73 ifht par for hvilken kvinden ikke ryger, dvs stort set uændret i forhold til den ujusterede analyse. Bemærk dog at p-værdien nu er tæt på de Der er stadig ingen signifikant effekt af mandlig ryger, omend det tyder på, at de par for hvilken manden ryger har en reduceret chance for at blive gravide ifht par for hvilken manden er ikke-ryger, HR=0.93. Spørgsmål 4 Vi skal bestemme HR for Mryg=1, Kryg=1 vs Mryg=0, Kryg=0, svarende til HR når begge er rygere i forhold til begge er ikke-rygere. Denne HR er exp(β 1 + β 2 ). Vi kan gange de to HR i output sammen, = Men vi skal også bruge et konfidensinterval og det kan vi ikke umiddelbart bestemme i hånden. Vi får derfor R til at udføre beregningerne, som angivet i opgaveteksten: install.packages("multcomp") library(multcomp) K2<-rbind("beta1+beta2"=c(1,1)) summary(glht(cox4,linfct=k2)) Vi bruger her pakken multcomp. K2 er en matrix med 1 række og 2 søjler. At denne skal dannes med rbind (=RowBIND) skyldes alene at funktionen glht kræver denne form. Vi vil estimere KI for β 1 + β 2 = 1 β β 2 - heraf de to 1-taller (vi kan angive en hvilken som helst lineær kombination af 7

8 parametrene her). glht kan nu bruges på det fittede coxph-objekt, resultatet fås med summary: Simultaneous Tests for General Linear Hypotheses Fit: coxph(formula = Surv(ttp, Kgravid) ~ Kryg + Mryg) Linear Hypotheses: Estimate Std. Error z value Pr(> z ) beta1+beta2 == * (Adjusted p values reported -- single-step method) Vi mangler nu at bestemme KI for exp(β 1 + β 2 ) og finder HR<- exp( ) lower<- exp( *0.1712) upper<- exp( *0.1712) HR ; lower ; upper [1] [1] [1] Dvs HR når begge er rygere i forhold til ikke-rygere er 0.67 med et KI på Dvs at chancen for at blive gravid er reduceret med 33% (= ) (KI 5%-52%) for de par for hvilken begge er rygere ifht de par for hvilken ingen ryger. Spørgsmål 5 Vi laver den nye variabel, som angiver om hhv manden, kvinden eller begge ryger og fitter Cox-modellen indeholdende denne variabel, dvs λ(t) = λ 0 (t) exp(β 1 1 (Kryg=0, Mryg=1) +β 2 1 (Kryg=1, Mryg=0) +β 3 1 (Kryg=1, Mryg=1) ) 8

9 MKryg<-ifelse(Mryg==1 & Kryg==0,1,0)+ 2*ifelse(Mryg==0&Kryg==1,1,0)+3*ifelse(Mryg==1&Kryg==1,1,0) cox4<-coxph(surv(ttp,kgravid)~factor(mkryg)) summary(cox4) og vi finder coxph(formula = Surv(ttp, Kgravid) ~ factor(mkryg)) factor(mkryg) factor(mkryg) factor(mkryg) * factor(mkryg) factor(mkryg) factor(mkryg) Concordance= (se = ) Rsquare= (max possible= ) Likelihood ratio test= 6.31 on 3 df, p= Wald test = 6.01 on 3 df, p= Score (logrank) test = 6.07 on 3 df, p= Vi ser, at par for hvilken begge ryger har en HR på 0.69 (KI ) for at blive gravide sammenlignet med par for hvilken ingen ryger (jvf spørgsmål 4), p=0.04. Vi prøver nu at lave et trend-test for at se, om vi i stedet for at opfatte MKryg som kategorisk med 4 niveauer kan benytte MKryg som en kvantitiv variabel (lineær model). cox4r<-coxph(surv(ttp,kgravid)~mkryg) LLR<--2*(cox4r$loglik[2]-cox4$loglik[2]) 9

10 LLR p<-1-pchisq(llr,df=2) p > LLR [1] > p<-1-pchisq(llr,df=2) > p [1] Antallet af frihedsgrader er 2 idet den fulde model bruger 3 parametre til at beskrive effekten af MKryg, mens modellen under hypotesen kun bruger 1 parameter (df=3-1). Vi kan derfor acceptere trend-modellen. 1 Spørgmsål 6 Vi vil nu fokusere på effekten af alkohol på chancen for at blive gravid og fitter modellen λ(t) = λ 0 (t) exp(β 1 gkalk) hvor gkalk er kvindens alkoholforbrug inddelt i 4 grupper: gkalk<-1+ifelse(kalk>0,1,0)+ifelse(kalk>5,1,0)+ifelse(kalk>10,1,0) cox5<-coxph(surv(ttp,kgravid)~factor(gkalk)) summary(cox5) Vi finder coxph(formula = Surv(ttp, Kgravid) ~ factor(gkalk)) factor(gkalk) * factor(gkalk) factor(gkalk) * 10

11 factor(gkalk) factor(gkalk) factor(gkalk) Concordance= 0.56 (se = ) Rsquare= (max possible= ) Likelihood ratio test= 8.26 on 3 df, p= Wald test = 8.27 on 3 df, p= Score (logrank) test = 8.39 on 3 df, p= Vi ser umiddelbart en signifikant forskel mellem gruppe 2 og 1, 4 og 1. Chancen for at blive gravid for kvinder med et alkoholindtag mellem 1-5 genstande om ugen er 0.71 gange chancen for at blive gravid for de kvinder som ikke drikker etc. Vi ønsker at lave et trend test cox5r<-coxph(surv(ttp,kgravid)~gkalk) LLR<--2*(cox5r$loglik[2]-cox5$loglik[2]) LLR p<-1-pchisq(llr,df=2) p > LLR [1] > p<-1-pchisq(llr,df=2) > p [1] og finder at vi kan acceptere hypotesen om en trend. > summary(cox5r) coxph(formula = Surv(ttp, Kgravid) ~ gkalk) gkalk * 11

12 gkalk Concordance= (se = ) Rsquare= (max possible= ) Likelihood ratio test= 5.92 on 1 df, p= Wald test = 5.72 on 1 df, p= Score (logrank) test = 5.73 on 1 df, p= Dvs for hver gang en kvinde øger sit alkoholforbrug svarende til disse 4 grupper, reduceres HR for at blive gravid med en faktor 0.84 (KI ). Spørgsmål 7 Vi starter med at teste for linearitet af Kalk: Kalk2<-Kalk^2 cox6<-coxph(surv(ttp,kgravid)~kalk+kalk2) summary(cox6) og finder coxph(formula = Surv(ttp, Kgravid) ~ Kalk + Kalk2) Kalk * Kalk Kalk Kalk Concordance= (se = ) 12

13 Rsquare= (max possible= ) Likelihood ratio test= 4.6 on 2 df, p= Wald test = 4.47 on 2 df, p= Score (logrank) test = 4.49 on 2 df, p=0.106 Vi konkluderer at vi kan udelade kvadratleddet, dvs at modellen er lineær på log-hazard-skalaen, svarende til modellen cox7<-coxph(surv(ttp,kgravid)~kalk) summary(cox7) coxph(formula = Surv(ttp, Kgravid) ~ Kalk) Kalk Kalk Concordance= (se = ) Rsquare= (max possible= ) Likelihood ratio test= 2.46 on 1 df, p= Wald test = 2.27 on 1 df, p=0.132 Score (logrank) test = 2.27 on 1 df, p= Ifølge denne model har alkoholindtaget ikke nogen effekt på chancen for at blive gravid. Dette stemmer ikke overens med trend-testet ovenfor. Det kunne derfor tyde på, at det ikke er rimeligt at inkludere alkoholindtaget lineært. Med den lineære model postuleres, at effekten af at indtag på 35 vs 34 er den samme som 5 vs 4, hvilket næppe er rimeligt. Vi prøver derfor at inkludere kvadratroden af Kalk i stedet (hvorfor ikke log?) sqkalk<-sqrt(kalk) cox8<-coxph(surv(ttp,kgravid)~sqkalk) summary(cox8) 13

14 coxph(formula = Surv(ttp, Kgravid) ~ sqkalk) sqkalk * sqkalk Concordance= (se = ) Rsquare= (max possible= ) Likelihood ratio test= 4.7 on 1 df, p= Wald test = 4.59 on 1 df, p= Score (logrank) test = 4.6 on 1 df, p= Vi finder igen en signifikant effekt af alkoholforbrug. Spørgsmål 7 Vi undersøger om der er interaktion mellem (kvindelig) rygning og alkoholindtag: cox9<-coxph(surv(ttp,kgravid)~sqkalk+kryg+kryg*sqkalk) summary(cox9) coxph(formula = Surv(ttp, Kgravid) ~ sqkalk + Kryg + Kryg * sqkalk) sqkalk Kryg sqkalk:kryg

15 sqkalk Kryg sqkalk:kryg Concordance= (se = ) Rsquare= (max possible= ) Likelihood ratio test= on 3 df, p= Wald test = 9.35 on 3 df, p= Score (logrank) test = 9.54 on 3 df, p= Vi ser at der ikke er interaktion mellem alkohol og rygning, dvs at effekten af alkohol ikke afhænger af rygning (og omvendt). Vi udelader interaktionsleddet og finder: cox10<-coxph(surv(ttp,kgravid)~sqkalk+kryg) summary(cox10) coxph(formula = Surv(ttp, Kgravid) ~ sqkalk + Kryg) sqkalk Kryg * sqkalk Kryg Concordance= (se = ) Rsquare= (max possible= ) Likelihood ratio test= 9.61 on 2 df, p= Wald test = 9.25 on 2 df, p= Score (logrank) test = 9.32 on 2 df, p= Vi ser fortsat en signifikant negativ effekt af rygning således at chancen for at blive gravid reduceres til gange chancen for at blive gravid for ikkerygere. Omvendt er der tilsyneladende ikke nogen effekt af alkohol, når vi 15

16 har justeret for rygning (omend p-værdien er borderline). Kan det skyldes, at de kvinder som ryger måske har en tendens til at drikke mere alkohol? 16

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Cox regression II Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside:

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Cox regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside:

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Cox regression III Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside:

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Overlevelsesanalyse. Faculty of Health Sciences

Overlevelsesanalyse. Faculty of Health Sciences Faculty of Health Sciences Overlevelsesanalyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Program Overlevelsesdata Kaplan-Meier estimatoren

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Statistiske Modeller 1: Kontingenstabeller i SAS

Statistiske Modeller 1: Kontingenstabeller i SAS Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.

Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere. Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes

Læs mere

Morten Frydenberg 14. marts 2006

Morten Frydenberg 14. marts 2006 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Uge 13 referat hold 4

Uge 13 referat hold 4 Uge 13 referat hold 4 Gruppearbejde 1a: Er variablen kvotient inkluderet på en hensigtsmæssig måde? Der er to problemer med kvotient: 1) Den er trunkeret ved 6.9 og 10.0, løsningen er at indføre dummyer

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion . februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom.

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. For at I skal kunne regne på tallene fra undersøgelsen har vi taget en delmængde af variablene

Læs mere

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: 1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk 21. marts 2013 Dagens program Chi-i-anden (χ 2 )-testet Sandsynligheder,

Læs mere

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Logistisk regression

Logistisk regression Logistisk regression http://biostat.ku.dk/ kach/css2 Thomas A Gerds & Karl B Christensen 1 / 18 Logistisk regression I dag 1 Binær outcome variable død : i live syg : rask gravid : ikke gravid etc 1 prædiktor

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Faculty of Health Sciences. Basal Statistik. Overlevelsesanalyse. Lene Theil Skovgaard. 12. marts 2018

Faculty of Health Sciences. Basal Statistik. Overlevelsesanalyse. Lene Theil Skovgaard. 12. marts 2018 Faculty of Health Sciences Basal Statistik Overlevelsesanalyse Lene Theil Skovgaard 12. marts 2018 1 / 12 APPENDIX vedr. SPSS svarende til diverse slides: Kaplan-Meier kurver, s. 3 Kumulerede incidenser

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke

Læs mere

Kommentarer til øvelser i basalkursus, 2. uge

Kommentarer til øvelser i basalkursus, 2. uge Kommentarer til øvelser i basalkursus, 2. uge Opgave 2. Vi betragter målinger af hjertevægt (i g) og total kropsvægt (målt i kg) for 10 normale mænd og 11 mænd med hjertesvigt. Målingerne er taget ved

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30.

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. oktober) En undersøgelse blandt fødende kvinder

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge

Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge Redegørelsen ovenfor er baseret på statistiske analyser, der detaljeres i det følgende, et appendiks for hvert afsnit. Problematikken

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25. Hjemmeopgave Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.-27 marts) Garvey et al. interesserer sig for sammenhængen mellem

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik ... september 1 Epidemiologi og biostatistik. Uge, mandag. september Michael Væth, Institut for Biostatistik. Ikke parametrisk statistiske test : Analyse af overlevelsesdata (ventetidsdata) Censurering

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4.

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4. 1 af 12 MAT A HHX Udskriv siden FACITLISTE TIL KAPITEL 8 Øvelser Øvelse 1 Graf tegnes med CAS. Øvelse 2 Bedste rette linie: Øvelse 3 Bedste rette linie: Øvelse 4 Bedste rette linie: Øvelse 5 ad øvelse

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med

Læs mere

Synopsis til eksamen i Statistik

Synopsis til eksamen i Statistik Synopsis til eksamen i Statistik Kandidatuddannelsen i Folkesundhedsvidenskab Københavns Universitet december 2010 Eksamensnummer: 12 Antal anslag: 23.839 (svarende til 9,9 normalsider) - 1 - Indholdsfortegnelse

Læs mere

Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test

Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test Formålet med øvelsen er at analysere risikoen for død forbundet med forskelligt alkoholforbrug. I denne øvelse skal analyserne foretages

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1 Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up

Læs mere

Et psykisk belastende arbejde har store konsekvenser for helbredet

Et psykisk belastende arbejde har store konsekvenser for helbredet Flere gode år på arbejdsmarkedet 5. maj 2017 Et psykisk belastende arbejde har store konsekvenser for helbredet Risikoen for at have et dårligt psykisk helbred mere end fordobles for personer med et belastende

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 Parret sammenligning, målemetoder med logaritmer Tosidet variansanalyse

Læs mere

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015 Faculty of Health Sciences Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 1 / 84 Logaritmer og kovariansanalyse Parret sammenligning, målemetoder med logaritmer Tosidet

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp

Læs mere

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable Faculty of Health Sciences Logistisk regression: Interaktion Kvantitative responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere