Besvarelse af opgave om Vital Capacity

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Besvarelse af opgave om Vital Capacity"

Transkript

1 Besvarelse af opgave om Vital Capacity hentet fra P. Armitage & G. Berry: Statistical methods in medical research. 2nd ed. Blackwell, Spørgsmål 1: Indlæs data og konstruer en faktor (klassevariabel) med beskrivende navne til de 3 grupper Dette gøres f.eks. ved at skrive nedenstående kode FILENAME HentURL URL "http://biostat.ku.dk/~lts/basal/data/cadmium.txt"; data cadmium; infile HentURL firstobs=2; input grp age vitcap; if grp=1 then group= 1:expo>10 ; if grp=2 then group= 2:expo<10 ; if grp=3 then group= 3:no-expo ; idet vi samtidig rekoder gruppevariablen fra til nogle mere brugervenlige betegnelser i den nye variabel group. Spørgsmål 2: Beskriv fordelingen af vital capacity og age i de 3 grupper ved hjælp af summary statistics. Lav også passende plots. For at udregne summary statistics, skriver vi proc means data=cadmium; class group; var age vitcap; hvorved output bliver: 1

2 The MEANS Procedure N group Obs Variable N Mean Std Dev Minimum Maximum :expo>10 12 age vitcap :expo<10 28 age vitcap :no-expo 44 age vitcap Bemærk, at personer i gruppen eksponeret mere end 10 år generelt er ældre (hvilket ikke er så sært), men at de ueksponerede har en noget større aldersvariation. Lungefunktionen ser (ikke overraskende) ud til at være dårligst blandt de langtidseksponerede. Derudover kan man fx. lave boxplots ved at skrive: proc sort data=cadmium; by group; proc boxplot data=cadmium; plot vitcap*group; proc boxplot data=cadmium; plot age*group; hvorved man får figurerne 2

3 Spørgsmål 3: Ignorer i første omgang age variablen. Er der forskel på vital capacity i de 3 grupper? Angiv både parametrisk og nonparametrisk test. Giv estimater for forskellene i vital capacity, og suppler med konfidensgrænser for disse forskelle. Først gør vi det parametrisk med proc glm: proc glm data=cadmium; class group; model vitcap=group / solution clparm; der producerer outputtet The GLM Procedure Class Level Information Class Levels Values group 3 1:expo>10 2:expo<10 3:no-expo Number of Observations Read 84 Number of Observations Used 84 The GLM Procedure Dependent Variable: vitcap 3

4 Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Total R-Square Coeff Var Root MSE vitcap Mean Source DF Type III SS Mean Square F Value Pr > F group Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 group 1:expo> B group 2:expo< B group 3:no-expo B... NOTE: The X X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter B are not uniquely estimable. Parameter 95% Confidence Limits Intercept group 1:expo> group 2:expo< group 3:no-expo.. Det fremgår at der ikke er signifikant forskel på grupperne (på 5% niveau) i denne analyse, idet F-testets P-værdi på ikke er under Repetition: Variation mellem grupper er linjen mærket Model (2 frihedsgrader), variation indenfor grupper er Error (81 frihedsgrader). Der er en større MS mellem grupper end indenfor grupper, men altså ikke nok til at det er signifikant. Til at beregne konfidensintervaller for parvise forskelle mellem grupperne, benytter vi en lsmeans-sætning, og beder om konfidensintervaller svarende til de Bonferroni-korrigerede T-tests. Samlet ser det således ud: proc glm data=cadmium; class group; model vitcap=group / solution; lsmeans group / adjust=bon cl pdiff; 4

5 The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Bonferroni vitcap LSMEAN group LSMEAN Number 1:expo> :expo< :no-expo Least Squares Means for effect group Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: vitcap i/j vitcap group LSMEAN 95% Confidence Limits 1:expo> :expo< :no-expo Least Squares Means for Effect group Difference Simultaneous 95% Between Confidence Limits for i j Means LSMean(i)-LSMean(j) Alle intervallerne indeholder 0, i overensstemmelse med at der ikke overordnet set er signifikant forskel på de tre grupper (men dette kan man ikke være sikker på). Den nonparametriske variant fås med ved at skrive: proc npar1way wilcoxon data=cadmium; class group; var vitcap; 5

6 hvorved man får outputtet: The NPAR1WAY Procedure Wilcoxon Scores (Rank Sums) for Variable vitcap Classified by Variable group Sum of Expected Std Dev Mean group N Scores Under H0 Under H0 Score :expo> :expo< :no-expo Kruskal-Wallis Test Chi-Square DF 2 Pr > Chi-Square Average scores were used for ties. Heller ikke her finder vi altså nogen signifikans. Hvis man ser på gennemsnit, henholdsvis mean rank, så kunne det godt se ud som om at gruppe 1 ligger lidt lavere, men det drukner i den store variation (som må formodes i høj grad at skyldes aldersvariationen, idet vitalkapaciteten må forventes at aftage kraftigt med alderen). Spørgsmål 4 Udregn korrelationen mellem alder og vital capacity for hver gruppe for sig, samt for alle 3 grupper under et. Hvad kan vi slutte af dette? Vi tager det lige i omvendt rækkefølge. Først for hele populationen: proc corr data=cadmium; var age vitcap; der (bl.a. giver følgende output): 6

7 The CORR Procedure 2 Variables: age vitcap Pearson Correlation Coefficients, N = 84 Prob > r under H0: Rho=0 age vitcap age <.0001 vitcap <.0001 Vi ser, at der er en negativ korrelation mellem alder og vitalkapacitet (-0.605), og at denne er stærkt signifikant forskellig fra 0 (P < ) Nu gør vi så det tilsvarende, bare opdelt på grupper proc sort data=cadmium; proc corr data=cadmium; var age vitcap; by group; by group; hvilket giver outputtet: group=1:expo>10 The CORR Procedure 2 Variables: age vitcap Pearson Correlation Coefficients, N = 12 Prob > r under H0: Rho=0 age vitcap age vitcap

8 group=2:expo<10 The CORR Procedure 2 Variables: age vitcap Pearson Correlation Coefficients, N = 28 Prob > r under H0: Rho=0 age vitcap age vitcap group=3:no-expo The CORR Procedure 2 Variables: age vitcap Pearson Correlation Coefficients, N = 44 Prob > r under H0: Rho=0 age vitcap age vitcap Det kan noteres at korrelationen er mindst i gruppe 3 og størst i gruppe 1. Imidlertid er det formentlig svar på et forkert spørgsmål, idet det er mere naturligt at ville vide om regressionslinjen er stejlere i nogen grupper end i andre, fordi hældningen angiver det konkrete fald i lungekapacitet for hvert år, man bliver ældre. Spørgsmål 5: Foretag for hver af grupperne en lineær regressionsanalyse af vital capacity mod alder. Hvor stærk er sammenhængen i de tre grupper? 8

9 Regressioner for hver gruppe: proc reg data=cadmium; by group; model vitcap=age / clb; giver outputtet group=1:expo>10 The REG Procedure Dependent Variable: vitcap Number of Observations Read 12 Number of Observations Used 12 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 age Variable DF 95% Confidence Limits Intercept age group=2:expo<10 The REG Procedure Dependent Variable: vitcap Number of Observations Read 28 Number of Observations Used 28 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model Error Corrected Total

10 Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 age Variable DF 95% Confidence Limits Intercept age group=3:no-expo The REG Procedure Dependent Variable: vitcap Number of Observations Read 44 Number of Observations Used 44 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 age Variable DF 95% Confidence Limits Intercept age Vi noterer os regressionskoefficienterne med tilhørende SE: Henholdsvis (0.024), (0.011), og (0.008). Det kunne godt tyde på at de ikke er helt ens, men at niveauet falder hurtigere i gruppe 1. Spørgsmål 6: Kan sammenhængen mellem alder og vital capacity påvises at være forskellig for de tre grupper? Tegn rådata og den fittede relation for hver gruppe i samme plot. Beskriv og kvantificer forskellene! Regression for alle tre grupper samlet foretages v.hj.a. en generel lineær mo- 10

11 del, med interaktionsled, idet det er dette led, der er af speciel interesse her: proc glm data=cadmium; classes group; model vitcap=group age group*age / solution clparm; Outputtet bliver: The GLM Procedure Dependent Variable: vitcap Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE vitcap Mean Source DF Type I SS Mean Square F Value Pr > F group age <.0001 age*group Source DF Type III SS Mean Square F Value Pr > F group age <.0001 age*group Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 group 1:expo> B group 2:expo< B group 3:no-expo B... age B age*group 1:expo> B age*group 2:expo< B age*group 3:no-expo B... Parameter 95% Confidence Limits Intercept group 1:expo> group 2:expo< group 3:no-expo.. age age*group 1:expo> age*group 2:expo< age*group 3:no-expo.. NOTE: The X X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter B are not uniquely estimable. 11

12 Bemærk at vekselvirkningen er signifikant med p = Det vil sige at regressionskoefficienterne ikke kan antages at være ens så linjerne er ikke parallelle. De estimerede parametre giver for age*group 1 forskellen på regressionskoefficienterne i gruppe 1 og gruppe 3, og ved age*group 2 den tilsvarende forskel fra gruppe 2 til 3. Det ses at den signifikante forskel først og fremmest skyldes at gruppe 1 aftager hurtigere end de andre to. Det kunne forstås derhen at cadmium eksponering i længere tid accelererer den aldersbetingede reduktion i vitalkapacitet, snarere end at sænke niveauet med en konstant værdi, faktisk en ret intuitiv forklaring. Vi kan også udvide programmeringen med estimate-sætninger: proc glm data=cadmium; classes group; model vitcap=group age group*age / solution clparm; estimate slope 1 vs. 2 group*age 1-1 0; estimate slope 1 vs. 3 group*age 1 0-1; estimate slope 2 vs. 3 group*age 0 1-1; der giver ekstra output: Standard Parameter Estimate Error t Value Pr > t slope 1 vs slope 1 vs slope 2 vs Parameter 95% Confidence Limits slope 1 vs slope 1 vs slope 2 vs Heraf ses, at det kun er ydergrupperne, der adskiller sig signifikant fra hinanden. P-værdien for denne sammenligning er tilstrækkelig lille til at overleve en Bonferroni-korrektion (gang med 3, da der er 3 sammenligninger). De tre regressionslinier ser således ud: 12

13 Men bemærk: I lyset af den markant ældre population blandt de langtidseksponerede kunne et sådant resultat også skyldes, at alderseffekten ikke er lineær, idet faldet i vitalkapacitet evt. accelererede med alderen. Hvis man inddrager et andengradsled i alder, er der dog ingensomhelst tegn på, at dette giver en forbedret model, så effekten ser virkelig ud til at kunne forklares udfra cadmium ekspositionen. Og så burde vi jo også lige se på noget modelkontrol, f,.eks. ved at skrive: proc glm data=cadmium; classes group; model vitcap=group age group*age / solution; output out=ny p=yhat r=residual; proc gplot data=ny; plot residual*yhat=group / haxis=axis1 vaxis=axis2 vref=0 lv=33 frame; axis1 value=(h=2) minor=none label=(h=2 Predicted value ); axis2 value=(h=2) minor=none label=(a=90 R=0 H=2 Residual ); 13

14 symbol1 v=circle i=none l=1 c=blue h=2 w=2; symbol2 v=triangle i=none l=33 c=red h=2 w=2; symbol3 v=square i=none l=2 c=green h=2 w=2; proc univariate normal data=ny; var residual; qqplot / height=3 normal(mu=est sigma=est l=33); der giver os følgende figurer: Der er muligvis en tendens til skævhed i fordelingen af residualer, så måske burde man logaritmetransformere... Dette vil dog ikke ændre resultaterne nævneværdigt. 14

15 Besvarelse af juul2 -opgaven Spørgsmål 1: Indlæs data Nedenfor indlæser vi, idet vi samtidig rekoder kønnet til mere sigende betegnelser og laver et par transformationer, som vi får brug for i de efterfølgende analyser: data juul2; infile C:\Basal\juul2.txt firstobs=2; input age height menarche sexnr sigf1 tanner testvol weight; if sexnr=2 then sex= female ; if sexnr=1 then sex= male ; ssigf1=sqrt(sigf1); bmi=weight/(height/100)**2; Spørgsmål 2: Lav regressionsanalyser for hvert køn af igf1 vs. alder for præpubertale (Tanner stadium 1). Her benytter vi proc reg, for hvert køn for sig, og vi husker at sortere efter by-variablen først: proc sort data=juul2; by sex; proc reg data=juul2; where tanner=1; by sex; model ssigf1=age / cl; Vi får herved outputtet sex=female The REG Procedure Dependent Variable: ssigf1 Number of Observations Read 224 Number of Observations Used 119 Number of Observations with Missing Values 105 1

16 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 age <.0001 Variable DF 95% Confidence Limits Intercept age sex=male The REG Procedure Dependent Variable: ssigf1 Number of Observations Read 291 Number of Observations Used 192 Number of Observations with Missing Values 99 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 age <.0001 Variable DF 95% Confidence Limits Intercept age Dvs. for pigerne har vi regressionslinjen igf1 = alder og for drengene igf1 = alder 2

17 Spørgsmål 3: Undersøg om regressionslinjerne er ens for de to køn, og om der samlet set er en effekt af alder. Vi laver en samlet analyse i form af en generel lineær model (proc glm), og her er det specielt interaktionsleddet, der er interessant: proc glm data=juul2; where tanner=1; class sex; model ssigf1=age sex sex*age / solution clparm; hvorved vi får outputtet The GLM Procedure Dependent Variable: ssigf1 Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE ssigf1 Mean Source DF Type I SS Mean Square F Value Pr > F age <.0001 sex age*sex Source DF Type III SS Mean Square F Value Pr > F age <.0001 sex age*sex Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 age B <.0001 sex female B sex male B... age*sex female B age*sex male B... Parameter 95% Confidence Limits Intercept age sex female sex male.. age*sex female age*sex male.. 3

18 Bemærk at interaktionsleddet ikke er signifikant (P=0.18). Det vil sige, vi kan antage at linjerne er parallelle (har samme hældning). Hvis vi ser på Type I kvadrat summerne kan vi se at sex er signifikant hvis vi fjerner vekselvirkningsleddet (P=0.01). Spørgsmål 4: Gentag spørgsmål 2 og 3 for postpubertale (alder > 25 år). Her behøver vi sådan set bare at ændre filteret (where-sætningen) og køre samme analyser. Vi springer de separate analyser over og går direkte til den generelle lineære model: proc glm data=juul2; where age>25; class sex; model ssigf1=age sex sex*age / solution clparm; som giver outputtet The GLM Procedure Class Level Information Class Levels Values sex 2 female male Number of Observations Read 126 Number of Observations Used 122 The GLM Procedure Dependent Variable: ssigf1 Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE ssigf1 Mean Source DF Type I SS Mean Square F Value Pr > F age <.0001 sex age*sex Source DF Type III SS Mean Square F Value Pr > F age <.0001 sex age*sex

19 Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 age B <.0001 sex female B sex male B... age*sex female B age*sex male B... Parameter 95% Confidence Limits Intercept age sex female sex male.. age*sex female age*sex male.. Vekselvirkningsleddet var insignifikant, så vi fjerner det og får The GLM Procedure Dependent Variable: ssigf1 Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE ssigf1 Mean Source DF Type I SS Mean Square F Value Pr > F age <.0001 sex Source DF Type III SS Mean Square F Value Pr > F age <.0001 sex Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 age <.0001 sex female B sex male B... Parameter 95% Confidence Limits Intercept age sex female sex male.. Vi ser at sex ikke er signifikant, medens age er klart signifikant uanset om sex først fjernes fra modellen (Type I SS) eller ej (Type III SS). 5

20 Spørgsmål 5: Forklar hvorfor en lineær regression af igf1 overfor alder ville være misvisende, hvis man analyserede hele materialet på en gang. Læg mærke til fortegnet! igf1 stiger med alderen for de små og falder med alderen for de voksne. Hvis man blander dem sammen får man en næsten vandret regressionslinje, som selvfølgelig slet ikke beskriver data. I har vel husket at tegne!? Spørgsmål 6: Udvid analysen i spørgsmål 4 til en multipel regressionsanalyse, idet højde, vægt og BMI = vægt/højde 2 inddrages. Under indlæsningen udregnede vi bmi = weight/(height/100)**2, og vi er derfor klar til at lave en multipel regressionsmodel: proc glm data=juul2; where age>25; class sex; model ssigf1=age sex height weight bmi / solution; 6

21 The GLM Procedure Class Level Information Class Levels Values sex 2 female male Number of Observations Read 126 Number of Observations Used 36 The GLM Procedure Dependent Variable: ssigf1 Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Total R-Square Coeff Var Root MSE ssigf1 Mean Source DF Type I SS Mean Square F Value Pr > F age sex height weight bmi Source DF Type III SS Mean Square F Value Pr > F age sex height weight bmi Standard Parameter Estimate Error t Value Pr > t Intercept B age sex female B sex male B... height weight bmi Det ses at der ikke er noget der bliver signifikant. Type I kvadratsummerne kan bruges til successiv modelreduktion. Men hov!: Alderen ser heller ikke ud til at være signifikant nu. Lige før var den klart signifikant! Hvordan gik det til? Sagen er at variansanalyseskemaet beregnes på de data der indgår i den fulde model, og der indgår kun 36 observationer i den mod 122 nå vi kun ser på alder og køn. Vægt og højde er kun registreret på et fåtal af personerne. Det er en effekt man skal være på vagt overfor, især når man har mange kovariater. 7

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

Regressionsanalyse i SAS

Regressionsanalyse i SAS Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Inge Henningsen Afdeling for Anvendt Matematik og Statistik December 2006 Regressionsanalyse uden gentagelser Regressionsanalyse

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Køn. Holdning Mænd Kvinder Ialt JA NEJ VED IKKE

Køn. Holdning Mænd Kvinder Ialt JA NEJ VED IKKE Økonomisk Kandidateksamen Teoretisk Statistik Eksamenstermin: Sommer 2004, dato: 3. juni 4 timers prøve med alle hjælpemidler, besvarelse på Dansk Opgave En simpel tilfældig stikprøve på 500 udtrukket

Læs mere

Filen indeholder variablenavne i første linie, og de ligger i rækkefølgen

Filen indeholder variablenavne i første linie, og de ligger i rækkefølgen Opgavebesvarelse, Resting metabolic rate I filen T:\Basalstatistik\rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991

Læs mere

Phd-kursus i Basal Statistik, Opgaver til 2. uge

Phd-kursus i Basal Statistik, Opgaver til 2. uge Phd-kursus i Basal Statistik, Opgaver til 2. uge Opgave 1: Sædkvalitet Filen oeko.txt på hjemmesiden indeholder datamateriale til belysning af forskellen i sædkvalitet mellem SAS-ansatte og mænd, der lever

Læs mere

Basal statistik. 21. oktober 2008

Basal statistik. 21. oktober 2008 Basal statistik 21. oktober 2008 Den generelle lineære model Repetition af variansanalyse og multipel regression Interaktion Parametriseringer Kovariansanalyse Esben Budtz-Jørgensen, Biostatistisk Afdeling

Læs mere

Vejledende besvarelse af hjemmeopgave

Vejledende besvarelse af hjemmeopgave Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2013 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) I forbindelse med en undersøgelse af vitamin

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Basal statistik 3. oktober Typiske problemstillinger: Hvordan afhænger behandlingens effekt af sygdomsstadium?

Basal statistik 3. oktober Typiske problemstillinger: Hvordan afhænger behandlingens effekt af sygdomsstadium? variansanalyse, oktober 2006 1 Basal statistik 3. oktober 2006 Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Lene Theil Skovgaard

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger Øvelser til basalkursus, 5. uge Opgavebesvarelse: Knogledensitet hos unge piger I alt 112 piger har fået målt knogledensitet (bone mineral density, bmd) i 11-års alderen (baseline værdi). Pigerne er herefter

Læs mere

Basal statistik. 2. oktober Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol

Basal statistik. 2. oktober Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Basal statistik 2. oktober 2007 Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Lene Theil Skovgaard, Biostatistisk Afdeling Institut

Læs mere

Basal statistik. 30. september 2008

Basal statistik. 30. september 2008 Basal statistik 30. september 2008 Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Peter Dalgaard, Biostatistisk Afdeling Institut for

Læs mere

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016 Faculty of Health Sciences Basal Statistik Begreber. Parrede sammenligninger. Lene Theil Skovgaard 6. september 2016 1 / 88 APPENDIX Programbidder svarende til diverse slides: Indlæsning af vitamin D datasæt,

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger.

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger. Opgavebesvarelse, Resting metabolic rate I filen rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991 og Owen et.al., Am.

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2016

Vejledende besvarelse af hjemmeopgave, forår 2016 Vejledende besvarelse af hjemmeopgave, forår 2016 Udleveret 1. marts, afleveres senest ved øvelserne i uge 13 (29. marts-1. april) Denne opgave fokuserer på at beskrive niveauet af hormonet AMH (højt niveau

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2007. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 8 sider.

Læs mere

CLASS temp medie; MODEL rate=temp medie/solution; RUN;

CLASS temp medie; MODEL rate=temp medie/solution; RUN; Ugeopgave 2.1 Bakterieprøver fra patienter transporteres ofte til laboratoriet ved stuetemperatur samt mere eller mindre udsat for luftens ilt. Dette er især uheldigt for prøver som indeholder anaerobe

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression 1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2015

Vejledende besvarelse af hjemmeopgave, forår 2015 Vejledende besvarelse af hjemmeopgave, forår 2015 En stikprøve bestående af 65 mænd og 65 kvinder er blevet undersøgt med henblik på at se på en evt. sammenhæng mellem kropstemperatur og puls. På hjemmesiden

Læs mere

Vejledende besvarelse af hjemmeopgave, efterår 2016

Vejledende besvarelse af hjemmeopgave, efterår 2016 Vejledende besvarelse af hjemmeopgave, efterår 2016 Udleveret 4. oktober, afleveres senest ved øvelserne i uge 44 (1.-4. november) Normal aktivitet af enzymet plasma kolinesterase er en forudsætning for

Læs mere

Faculty of Health Sciences. Basal statistik. Lille SAS Manual. Lene Theil Skovgaard. 31. januar 2017

Faculty of Health Sciences. Basal statistik. Lille SAS Manual. Lene Theil Skovgaard. 31. januar 2017 Faculty of Health Sciences Basal statistik Lille SAS Manual Lene Theil Skovgaard 31. januar 2017 1 / 42 Selve sproget Siderne 9-18 Indlæsning (9-12) Definition af nye variable (13) Missing values / Manglende

Læs mere

Basal statistik. Selve sproget. Grafik. Basale procedurer. Faculty of Health Sciences. Lille SAS Manual

Basal statistik. Selve sproget. Grafik. Basale procedurer. Faculty of Health Sciences. Lille SAS Manual Faculty of Health Sciences Selve sproget Basal statistik Lille SAS Manual Lene Theil Skovgaard 5. september 2017 Siderne 9-18 Indlæsning (9-12) Definition af nye variable (13) Missing values / Manglende

Læs mere

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences Faculty of Health Sciences Simpel lineær regression Basal Statistik Regressionsanalyse. Lene Theil Skovgaard 21. februar 2017 Regression og korrelation Simpel lineær regression Todimensionale normalfordelinger

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Restsaltmængdernes afhængighed af trafikken,

Restsaltmængdernes afhængighed af trafikken, Restsaltmængdernes afhængighed af trafikken, Thomas Glue, marts 2. Trafikintensitet...2 Indledende definitioner...2 Regressionsanalyser på trafikintensiteten...6 Justering af restsaltmængder i henhold

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 Parret sammenligning, målemetoder med logaritmer Tosidet variansanalyse

Læs mere

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015 Faculty of Health Sciences Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 1 / 84 Logaritmer og kovariansanalyse Parret sammenligning, målemetoder med logaritmer Tosidet

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer.

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer. Kvant Eksamen December 2010 3 timer med hjælpemidler 1 Hvad er en continuous variable? Giv 2 illustrationer. What is a continuous variable? Give two illustrations. 2 Hvorfor kan man bedre drage konklusioner

Læs mere

Statistiske Modeller 1: Kontingenstabeller i SAS

Statistiske Modeller 1: Kontingenstabeller i SAS Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Faculty of Health Sciences. Basal Statistik. Regressionsanalyse. Lene Theil Skovgaard. 26. september 2017

Faculty of Health Sciences. Basal Statistik. Regressionsanalyse. Lene Theil Skovgaard. 26. september 2017 Faculty of Health Sciences Basal Statistik Regressionsanalyse. Lene Theil Skovgaard 26. september 2017 1 / 85 Simpel lineær regression Regression og korrelation Simpel lineær regression Todimensionale

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Sammenligning af målemetoder. Scatter plot af de to metoder. Faculty of Health Sciences

Basal statistik. Logaritmer og kovariansanalyse. Sammenligning af målemetoder. Scatter plot af de to metoder. Faculty of Health Sciences Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer, Repetition, Kovariansanalyse, Interaktion Lene Theil Skovgaard 4. oktober 2016 Parret sammenligning, målemetoder med

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: 1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

Basal Statistik. Sammenligning af grupper. Vitamin D eksemplet. Praktisk håndtering af data. Faculty of Health Sciences

Basal Statistik. Sammenligning af grupper. Vitamin D eksemplet. Praktisk håndtering af data. Faculty of Health Sciences Faculty of Health Sciences Sammenligning af grupper Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 7. februar 2017 Sammenligning af to grupper: T-test Dimensionering af undersøgelser

Læs mere

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 7. februar 2017

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 7. februar 2017 Faculty of Health Sciences Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 7. februar 2017 1 / 96 Sammenligning af grupper Sammenligning af to grupper: T-test Dimensionering

Læs mere

Basal Statistik. Sammenligning af grupper. Praktisk håndtering af data. Vitamin D eksemplet. Faculty of Health Sciences

Basal Statistik. Sammenligning af grupper. Praktisk håndtering af data. Vitamin D eksemplet. Faculty of Health Sciences Faculty of Health Sciences Sammenligning af grupper Basal Statistik Sammenligning af grupper, Variansanalyse Sammenligning af to grupper: T-test Dimensionering af undersøgelser Sammenligning af flere end

Læs mere

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 12. september / 116

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 12. september / 116 Faculty of Health Sciences Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 12. september 2017 1 / 116 Sammenligning af grupper Sammenligning af to grupper: T-test Dimensionering

Læs mere

INTRODUKTION TIL dele af SAS

INTRODUKTION TIL dele af SAS INTRODUKTION TIL dele af SAS Der er flere forskellige angrebsvinkler ved statistiske analyser i SAS. Vi skal her kun beskæftige os med to af disse, nemlig Direkte programmering. Brug af SAS ANALYST Hvilken

Læs mere

En Introduktion til SAS. Kapitel 6.

En Introduktion til SAS. Kapitel 6. En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel

Læs mere

Faculty of Health Sciences. Basal statistik. Den generelle lineære model mv. Lene Theil Skovgaard. 14. marts 2017

Faculty of Health Sciences. Basal statistik. Den generelle lineære model mv. Lene Theil Skovgaard. 14. marts 2017 Faculty of Health Sciences Basal statistik Den generelle lineære model mv. Lene Theil Skovgaard 14. marts 2017 1 / 96 Den generelle lineære model mv. Ikke-lineære sammenhænge Opbygning af modeller Sammenligning

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

2. januar 2015 Proj.nr. 2001474 Version 1 LRK/EHBR/EVO/CCM/MT. Rapport

2. januar 2015 Proj.nr. 2001474 Version 1 LRK/EHBR/EVO/CCM/MT. Rapport Rapport Projekt: Fedtkvalitet i moderne svineproduktion Betdning af jodtal for udbtter af kogeskinker Lars Kristensen, Eva Honnens de Lichtenberg Broge, Eli Vibeke Olsen, Chris Claudi- Magnussen 2. januar

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

Kommentarer til øvelser i basalkursus, 2. uge

Kommentarer til øvelser i basalkursus, 2. uge Kommentarer til øvelser i basalkursus, 2. uge Opgave 2. Vi betragter målinger af hjertevægt (i g) og total kropsvægt (målt i kg) for 10 normale mænd og 11 mænd med hjertesvigt. Målingerne er taget ved

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Basal statistik. 16. september 2008

Basal statistik. 16. september 2008 Basal statistik 16. september 2008 En- og to-stikprøve problemer sammenligning af to situationer: parret t-test Wilcoxon signed rank test logaritmetransformation sammenligning af to grupper uparret t-test

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Multipel regression 22. Maj, 2012

Multipel regression 22. Maj, 2012 Data: Det færøske kviksølv-studie Simpel linær regression Confounding Multipel lineær regression Fortolkning af parametre Vekselvirkning Kollinearitet Modelkontrol Multipel regression 22. Maj, 2012 Esben

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 15. december 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer Program Simpel og multipel lineær regression Helle Sørensen E-mail: helle@math.ku.dk Simpel LR: repetition, konfidensintervaller, test, prædiktionsintervaller, mm. Multipel LR: estimation, valg af model,

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere