Opgavebesvarelse, brain weight

Størrelse: px
Starte visningen fra side:

Download "Opgavebesvarelse, brain weight"

Transkript

1 Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med Open. Variabelnavnene er litter, body og brain, som anført i første linie. data mus; infile T:\Basalstatistik\brain.txt firstobs=2; input litter body brain; run; litter body brain Vi har nu 20 observationer, hver med 3 variable, som ovenfor ses plottet mod hinanden. Denne tegning er ikke lavet i SAS, da det ville være noget besværligt. Spørgsmål 2 Vi ønsker at udtale os om hjernevægtens afhængighed af kuldstørrelsen. Først laver vi et scatterplot af hjernevægten mod kuldstørrelsen ved at benytte Graphs/Scatter Plot/Two-dimensional eller skrive 1

2 proc gplot data=mus; plot brain*litter; run; eller for at få en lidt pænere figur: proc gplot data=mus; plot brain*litter / haxis=axis1 vaxis=axis2 frame; axis1 offset=(3,3) label=(h=3) value=(h=2) minor=none; axis2 offset=(1,1) value=(h=2) minor=none label=(a=90 R=0 H=3); symbol1 v=circle c=blue i=none h=2 r=1; run; På tegningen spores en negativ afhængighed af kuldstørrelse, således at store kuld fører til mindre hjerner. 2

3 Spørgsmål 3 Ved hjælp af en simpel lineær regressionsanalyse af hjernevægt, med kuldstørrelse som forklarende variabel, estimerer vi denne relation: proc reg data=mus; model brain=litter / clb; run; og finder The REG Procedure Dependent Variable: brain Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 litter Variable DF 95% Confidence Limits Intercept litter

4 Vi ser (svarende til tegningen), at hældningskoefficienten er negativ ˆβ 1 = (0.0012) Dette betyder, at vi for hver ekstra mus i kuldet forventer en hjernevægt på gennemsnitligt 0.004g mindre for hver enkelt mus. Vi indlægger regressionslinien på tegningen ved at benytte Statistics/Regression/Linear og i Plots at afkrydse Plot observed vs independents eller ved i symbol-sætningen i kodningen at skrive i=rl i stedet for i=none Spørgsmål 4 Nu ser vi tilsvarende på hjernevægtens afhængighed af kropsvægten, hvor regressionsanalysen giver nedenstående resultater. 4

5 The REG Procedure Dependent Variable: brain Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t 5

6 Intercept <.0001 body Variable DF 95% Confidence Limits Intercept body Vi ser heraf, at store mus har store hjerner, idet en musehjerne i gennemsnit er 0.010g tungere, når musen vejer 1g mere. Spørgsmål 5 Vi undersøger nu, ved hjælp af korrelationstest, om der er signifikant korrelation mellem kuldstørrelse og kropsvægt. Vi benytter Statistics/Descriptive/Correlations og under Options afkrydses såvel Pearson som Spearman, eller vi koder direkte: proc corr pearson spearman data=mus; var litter body; run; hvorved vi får The CORR Procedure 2 Variables: litter body Pearson Correlation Coefficients, N = 20 Prob > r under H0: Rho=0 litter body litter <.0001 body <

7 Spearman Correlation Coefficients, N = 20 Prob > r under H0: Rho=0 litter body litter <.0001 body <.0001 Hvad enten vi benytter parametrisk eller nonparametrisk korrelation, er der helt klart en sammenhæng mellem kuldstørrelse og kropsvægt. Noget helt andet er så fortolkningen af korrelationskoefficienten. Vi kan i hvert fald ikke gå ud fra, at vores observationer passer med en todimensional normalfordeling, bl.a. fordi der er 2 af hver kuldstørrelse. Det ser ud som om denne litter er valgt på systematisk måde, og den faktiske størrelse af korrelationskoefficienten (hvad enten den er parametrisk eller ej) kan derfor ikke tillægges nogen fornuftig mening (idet korrelationskoefficientens størrelse som bekendt afhænger af samplingmetoden). Spørgsmål 6 Vi undersøger nu, igen ved hjælp af en simpel lineær regressionsanalyse, om der er sammenhæng mellem kropsvægt og kuldstørrelse. Vi finder The REG Procedure Dependent Variable: body Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F 7

8 Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 litter <.0001 Variable DF 95% Confidence Limits Intercept litter Også for kropsvægten ses en negativ sammenhæng til kuldstørrelsen, idet hældningskoefficienten bliver signifikant negativ (i parentes bemærket er P-værdien præcis den samme, som vi fandt ovenfor i forbindelse med test af den parametriske korrelationskoefficient): ˆβ = 0.441(0.032) Dette betyder, at vi for hver ekstra mus i kuldet forventer en kropsvægt på gennemsnitligt 0.441g (knap et halvt gram) mindre for hver enkelt mus. Spørgsmål 7 Vi har nu set, at der er signifikante sammenhænge mellem alle de tre målte størrelser: kropsvægten er negativt relateret til kuldstørrelsen hjernevægten er positivt relateret til kropsvægten 8

9 hjernevægten er negativt relateret til kuldstørrelsen Vi kan nu med rette spørge os selv, om den lavere hjernevægt blandt mus fra store kuld simpelthen er betinget af, at musene som sådan er mindre i store kuld og derfor også har mindre hjerner. For at undersøge denne påstand skulle man ideelt råde over data fra forskellige størrelser musekuld, hvor musene alle var lige tunge. Hvis hjernevægten her også kunne vises at falde med kuldstørrelsen, kunne vi konstatere at kuldstørrelse havde en direkte effekt på hjernevægten og ikke kun en effekt via kropsvægten. Sådanne data har vi naturligvis ikke i praksis, men en multipel regressionsanalyse er præcis designet til at svare på dette spørgsmål, idet de enkelte effekter her netop fortolkes som effekten af den relevante kovariat for fastholdt værdi af alle de øvrige. Vi foretager altså en multipel regressionsanalyse med hjernevægt som responsvariabel og såvel kuldstørrelse som kropsvægt som forklarende variable. Vi vælger igen Statistics/Regression/Linear, nu med brain som Dependent og såvel body som litter som Explanatory. I direkte kodning skrives blot proc reg data=mus; model brain=body litter / clb; run; hvorved vi får The REG Procedure Dependent Variable: brain Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model Error Corrected Total

10 Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept body litter Variable DF 95% Confidence Limits Intercept body litter Vi ser her, at begge kovariater er signifikante (kuldstørrelse er lige på kanten med P=4.8%, medens kropsvægten er tydelig med P=0.2%). Spørgsmål 8 10

11 Vi sammenfatter resultaterne i tabellen: Respons: koefficient residual % forklaret brain til spredning variation Kovariater litter body i model ˆβ1 (se(ˆβ 1 )) ˆβ2 (se(ˆβ 2 )) s R 2 kuldstørrelse (0.001) alene kropsvægt (0.002) alene kuldstørrelse (0.003) (0.007) og kropsvægt Bemærk her, at afhængigheden af kuldstørrelse skifter fortegn, idet den er negativ, når body ikke er med i modellen, men positiv, når body medtages. Fortolkningen af dette følger nedenfor. Vi kan af dette konkludere at hjernevægten er positivt relateret til kropsvægten Hvis mus A vejer 1g mere end mus B, forventer vi også at mus A s hjerne vejer i gennemsnit 0.010g mere end mus B s (Bemærk, at vi i denne situation typisk har, at mus A kommer fra en mindre kuldstørrelse end mus B) Hvis mus A og B kommer fra to kuld af samme størrelse, forventer vi dog en forskel i hjernevægt i gennemsnit på hele 0.024g at hjernevægten er relateret til kuldstørrelsen, på følgende måde Hvis mus C kommer fra en kuldstørrelse på en flere end mus D, da forventer vi, at mus C s hjerne vejer lidt mindre, i gennemsnit 0.004g mindre (Bemærk, at vi i denne situation typisk har, at mus C tillige har en mindre kropsvægt end mus D) Hvis mus C og D alligevel vejer det samme, da vil vi forvente, at mus C s hjerne vejer mest, nemlig i gennemsnit 0.007g mere end mus D s. 11

12 Den interessante konklusion er, at hjernevægten hos mus fra store kuld er relativt større set i forhold til kropsvægten end for mus fra små kuld. Den biologiske fortolkning af dette er, at den øgede konkurrence om næringen for store musekuld ikke går ud over hjernen i samme grad som den går ud over kropsvægten. 12

13 Opgavebesvarelse, biomasse Spørgsmål 1. Ser det ud til, at der en lineær sammenhæng mellem de to variable? Data indtastes direkte i Analyst og gemmes i sasuser. Variabelnavnene er her soltimer hhv. biomasse. Derefter tegnes et Scatter plot vha Graphs/Scatter Plot/Two-dimensional. Plottet (figur 1) ser jo rimeligt lineært ud. En nøjere granskning kan evt. foretages som modelkontrol efter fit af modellen. Bemærk, at en høj korrelation (specielt hvis det er en Spearman) ikke sikrer, at sammenhængen er lineær! Under antagelse af en lineær regressionsmodel med normalfordelte fejl, ønskes følgende spørgsmål besvaret: Spørgsmål 2. Giv et estimat for hældningen, med tilhørende 95% sikkerhedsinterval. Undersøg, om hældningen kan antages at være 1. Vi skal foretage en sædvanlig lineær regression med biomasse (Y) som respons og soltimer (X) som forklarende variabel: 13

14 Y i = α + βx i + ε i I SAS gør vi dette ved at benytte Statistics/Regression/Linear og i Plots kan vi afkrydse Plot observed vs independents, hvis vi ønsker en tegning med indlagt regressionslinie. proc gplot data=sol; plot biomasse*soltimer / haxis=axis1 vaxis=axis2 frame; axis1 offset=(3,3) label=(h=3) value=(h=2) minor=none; axis2 offset=(1,1) value=(h=2) minor=none label=(a=90 R=0 H=3); symbol1 v=circle c=blue i=none h=2 r=1; run; proc reg data=sol; model biomasse=soltimer / clb; run; Vi får outputtet: Dependent Variable: biomasse Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept soltimer <

15 Vi ser af ovenstående output, at effekten af solskin er stærkt signifikant, i- det et test af hældning = 0 giver T=23.06, svarende til en P-værdi, der er mindre end Samme P-værdi får man ved at anvende F-testet, idet F= = F(1,6). Bemærk, at der i outputtet ikke findes noget test for linearitet! Vi er imidlertid ikke blot interesserede i at påvise en effekt af solskin, vi vil kvantificere denne i form af et konfidensinterval for hældningen, som jo er tilvæksten i biomasse forårsaget af en enkelt solskinstime. Estimatet med tilhørende spredning (standard error) er ˆβ = (0.0550) og et 95% konfidensinterval fås som estimat ± ca. 2 gange spredningen. Nu er de ca. 2 jo egentlig en t-fraktil, som for store datamaterialer nærmer sig Her har vi kun 8 observationer, og dermed 6 frihedsgrader til estimation af variansen (se også ovenstående output), og t-fraktilen er derfor en del større end 2. Vi kan slå den op i bogen s. 521 og finder værdien 2.447, og vi kan nu udregne konfidensintervallet til: ± = (1.13, 1.40) Det samme fås ved i regressionsanalyseopsætningen at afkrydse Confidence limits for estimates: 15

16 Parameter Estimates Variable DF 95% Confidence Limits Intercept soltimer Vi kan altså sige, at intervallet (1.13,1.40) med 95% sandsynlighed indeholder den sande tilvækst i biomasse efter en enkelt solskinstime. Da værdien 1 ikke er indeholdt i dette interval, kan vi med det samme sige, at på et 5% signifikansniveau kan vi ikke acceptere hypotesen om at hældningen er 1 (vi forkaster hypotesen H 0 : β = 1 på et 5% niveau). Vi kan også direkte udregne et test for H 0 : β = 1 ved at omskrive hypotesen til H 0 : β 1 = 0 og udregne teststørrelsen: = som helt klart er for stor, svarende til at vi allerede ved, at hypotesen skal forkastes. P-værdien kan slås op i t-tabellen (med sølle 6 frihedsgrader), hvilket giver < P < Mere eksakt finder man P= Nu er der jo egentlig heller ikke rigtigt nogen grund til, at β skulle være 1, så vi burde slet ikke have opstillet sådan en hypotese, bare fordi ˆβ så ud til at være tæt på 1! Spørgsmål 3. Undersøg om interceptet kan antages at være 0. Hvad bliver hældningsestimatet under denne hypotese? Hvad sker der med spredningsestimatet for hældningen ved overgang fra modellen med intercept til modellen uden intercept (dvs. intercept=0)? Fra outputtet svarende til den ovenfor udførte lineære regressionsanalyse finder vi estimatet for afskæringen (interceptet) med tilhørende spredning (standard error) til ˆα = ( ) T-test størrelsen for test af hypotesen H 0 : α = 0 står også i output som -1.39, med en tilhørende P-værdi på 0.21, svarende til, at vi ikke kan forkaste denne hypotese (bemærk at vi ikke hermed har bevist, at α = 0, vi har blot 16

17 ikke her evidens for det modsatte). Hvis vi antager, at interceptet er 0, skal vi reestimere hældningen ved at foretage en lineær regressionsanalyse gennem (0,0). Modellen hedder nu Y i = βx i + ε i og kan fittes i Analyst ved i opsætningen at gå ind under Model og afkrydse feltet Do not include an intercept. I direkte programmering skriver vi: proc reg data=sol; model biomasse=soltimer / noint clb; run; Output bliver: Dependent Variable: biomasse NOTE: No intercept in model. R-Square is redefined. Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model <.0001 Error Uncorrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t soltimer <

18 Vore nye hældningsestimat, med tilhørende spredning (standard error) bliver: ˆβ = (0.0341) medens vi i modellen med intercept fik ˆβ = (0.0550) Vi bemærker, at vi ved at tvinge interceptet til at være 0 (større end det oprindelige estimat, som jo var negativt) har fået et mindre hældningsestimat. Dette sker p.g.a. den negative korrelation mellem disse estimater. Vi bemærker endvidere, at spredningen på estimatet er faldet betragteligt (vi vinder generelt præcision ved at smide insignifikante effekter væk, specielt hvis disse er korrelerede med de interessante effekter). Populært kan man sige at vi nu arbejder i en model med større viden, hvilket naturligvis øger vores sikkerhed. Spørgsmål 4. Bestem et 95% sikkerhedsinterval for den estimerede biomasse produktion når det kumulerede antal solskinstimer når op på 200, for modellen med hhv. uden intercept. Forklar forskellen. Modellen uden intercept er den letteste. Her er den estimerede biomasse ved 200 solskinstimer blot givet ved 200ˆβ = = og usikkerheden er tilsvarende givet ved s.e.(200 ˆβ) = 200 s.e.(ˆβ) = = 6.82 således at konfidensgrænserne bliver 200 ( ± ) = (225.29, ) Bemærk, at vi her anvender t-fraktilen svarende til 7 frihedsgrader (i stedet for som tidligere 6). Det er naturligvis fordi vi nu kun har en enkelt parameter i modellen. Konfidensgrænserne kommer til at se således ud: 18

19 For modellen med intercept er det vanskeligt at udregne grænserne med håndkraft; her er det lettest at bruge den ovenfor beskrevne metode med Predictions eller ved at flytte nulpunktet hen i 200 soltimer ved at fratrække 200 fra alle soltime-observationerne, hvorved vi ville få: Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 sol <.0001 Parameter Estimates Variable DF 95% Confidence Limits Intercept sol altså et estimat på med konfidensintervallet (195.37,257.19). Det tilhørende konfidensinterval fremgår af nedenstående figur: 19

20 Vi ser, at modellen uden intercept giver et noget højere predikteret udbytte ved 200 solskinstimer ( mod i modellen med intercept), svarende til, at vi stadig er i nærheden af 0, hvor linien jo er blevet løftet ved at smide interceptet ud. Konfidensgrænserne er tillige væsentligt smallere, igen på grund af den øgede præcision i en model med kun en parameter. 20

Filen indeholder variablenavne i første linie, og de ligger i rækkefølgen

Filen indeholder variablenavne i første linie, og de ligger i rækkefølgen Opgavebesvarelse, Resting metabolic rate I filen T:\Basalstatistik\rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991

Læs mere

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger.

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger. Opgavebesvarelse, Resting metabolic rate I filen rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991 og Owen et.al., Am.

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences Faculty of Health Sciences Simpel lineær regression Basal Statistik Regressionsanalyse. Lene Theil Skovgaard 21. februar 2017 Regression og korrelation Simpel lineær regression Todimensionale normalfordelinger

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Kommentarer til øvelser i basalkursus, 2. uge

Kommentarer til øvelser i basalkursus, 2. uge Kommentarer til øvelser i basalkursus, 2. uge Opgave 2. Vi betragter målinger af hjertevægt (i g) og total kropsvægt (målt i kg) for 10 normale mænd og 11 mænd med hjertesvigt. Målingerne er taget ved

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger.

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger. Opgavebesvarelse, Resting metabolic rate I filen rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991 og Owen et.al., Am.

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Phd-kursus i Basal Statistik, Opgaver til 2. uge

Phd-kursus i Basal Statistik, Opgaver til 2. uge Phd-kursus i Basal Statistik, Opgaver til 2. uge Opgave 1: Sædkvalitet Filen oeko.txt på hjemmesiden indeholder datamateriale til belysning af forskellen i sædkvalitet mellem SAS-ansatte og mænd, der lever

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Faculty of Health Sciences. Regressionsanalyse. Simpel lineær regression, Lene Theil Skovgaard. Biostatistisk Afdeling

Faculty of Health Sciences. Regressionsanalyse. Simpel lineær regression, Lene Theil Skovgaard. Biostatistisk Afdeling Faculty of Health Sciences Regressionsanalyse Simpel lineær regression, 28-2-2013 Lene Theil Skovgaard Biostatistisk Afdeling 1 / 67 Simpel lineær regression Regression og korrelation Simpel lineær regression

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016 Faculty of Health Sciences Basal Statistik Begreber. Parrede sammenligninger. Lene Theil Skovgaard 6. september 2016 1 / 88 APPENDIX Programbidder svarende til diverse slides: Indlæsning af vitamin D datasæt,

Læs mere

En Introduktion til SAS. Kapitel 6.

En Introduktion til SAS. Kapitel 6. En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 22 sider. Skriftlig prøve: 13. december 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2015

Vejledende besvarelse af hjemmeopgave, forår 2015 Vejledende besvarelse af hjemmeopgave, forår 2015 En stikprøve bestående af 65 mænd og 65 kvinder er blevet undersøgt med henblik på at se på en evt. sammenhæng mellem kropstemperatur og puls. På hjemmesiden

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Epidemiologi og Biostatistik Kliniske målinger (Kapitel. +.1 + 11.-11 + 1.1-) Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

INTRODUKTION TIL dele af SAS

INTRODUKTION TIL dele af SAS INTRODUKTION TIL dele af SAS Der er flere forskellige angrebsvinkler ved statistiske analyser i SAS. Vi skal her kun beskæftige os med to af disse, nemlig Direkte programmering. Brug af SAS ANALYST Hvilken

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Basal statistik. 21. oktober 2008

Basal statistik. 21. oktober 2008 Basal statistik 21. oktober 2008 Den generelle lineære model Repetition af variansanalyse og multipel regression Interaktion Parametriseringer Kovariansanalyse Esben Budtz-Jørgensen, Biostatistisk Afdeling

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Vejledende besvarelse af hjemmeopgave

Vejledende besvarelse af hjemmeopgave Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2013 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) I forbindelse med en undersøgelse af vitamin

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

ELISA. ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig.

ELISA. ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig. ELISA ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig. Teknikken er ganske snedig, og muliggør at man inddirekte

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i Da er r i = e i ˆσ ei t(n 3) (tæt på N(0,1) hvis n ikke alt for lille). Program 1. lineær regression: opgave 3 og 13 (sukker-temperatur). 2. studentiserede residualer, multipel regression. Tommelfinger-regel:

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Basal statistik. 30. september 2008

Basal statistik. 30. september 2008 Basal statistik 30. september 2008 Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Peter Dalgaard, Biostatistisk Afdeling Institut for

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2012 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2016

Vejledende besvarelse af hjemmeopgave, forår 2016 Vejledende besvarelse af hjemmeopgave, forår 2016 Udleveret 1. marts, afleveres senest ved øvelserne i uge 13 (29. marts-1. april) Denne opgave fokuserer på at beskrive niveauet af hormonet AMH (højt niveau

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2006. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 6 sider.

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Basal statistik 3. oktober Typiske problemstillinger: Hvordan afhænger behandlingens effekt af sygdomsstadium?

Basal statistik 3. oktober Typiske problemstillinger: Hvordan afhænger behandlingens effekt af sygdomsstadium? variansanalyse, oktober 2006 1 Basal statistik 3. oktober 2006 Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Lene Theil Skovgaard

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ

Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Per Bruun Brockhoff, DTU Compute, Claus Thorn Ekstrøm, KU Biostatistik, Ernst Hansen, KU Matematik January 17, 2017 Abstract

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Basal statistik. 23. september 2008

Basal statistik. 23. september 2008 Basal statistik 23. september 2008 Korrelation og regression Simpel lineær regression Todimensionale normalfordelinger Korrelation vs. regression Modelkontrol Diagnostics Thomas Scheike, Biostatistisk

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R

Læs mere

Faculty of Health Sciences. Basal statistik. Den generelle lineære model mv. Lene Theil Skovgaard. 14. marts 2017

Faculty of Health Sciences. Basal statistik. Den generelle lineære model mv. Lene Theil Skovgaard. 14. marts 2017 Faculty of Health Sciences Basal statistik Den generelle lineære model mv. Lene Theil Skovgaard 14. marts 2017 1 / 96 Den generelle lineære model mv. Ikke-lineære sammenhænge Opbygning af modeller Sammenligning

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Faculty of Health Sciences. Basal statistik. Lille SAS Manual. Lene Theil Skovgaard. 31. januar 2017

Faculty of Health Sciences. Basal statistik. Lille SAS Manual. Lene Theil Skovgaard. 31. januar 2017 Faculty of Health Sciences Basal statistik Lille SAS Manual Lene Theil Skovgaard 31. januar 2017 1 / 42 Selve sproget Siderne 9-18 Indlæsning (9-12) Definition af nye variable (13) Missing values / Manglende

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression 1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer Program Simpel og multipel lineær regression Helle Sørensen E-mail: helle@math.ku.dk Simpel LR: repetition, konfidensintervaller, test, prædiktionsintervaller, mm. Multipel LR: estimation, valg af model,

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere