Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge"

Transkript

1 Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges i forlængelse af hinanden (kun oplysninger fra 1 person på hver linie!). 1. Vi skal sammenligne før- og efter-målingerne i salt-gruppen. Vi vil derfor først filtrere, så vi kun arbejder med salt=1 -gruppen, og vi klikker derfor Data/Filter/Subset Data og vælger salt IN ( 1 ). Hvis vi skal foretage et parametrisk test, bliver der tale om et parret t-test. Forudsætningen for dette er rimelig normalitet for differenserne dif=post-pre. Disse defineres ved at gå i Edit-mode og klikke Data/Transform/Compute. Et fraktildiagram fås nu ved at klikke Graphs/Probability Plot: Vi ser her ingen særlige tegn på afvigelse fra normalfordelingen. En anden vigtig forudsætning er, at differenserne er lige store over hele skalaen, altså at der ikke er nogen sammenhæng mellem differenser og niveau, dvs. gennemsnit af observationerne. Vi må derfor først definere snit=(pre+post)/2 i Data/Transform/Compute. Et scatter plot konstrueres nu i Graphs/Scatter Plot/Two-Dimensional: 1

2 Da dette heller ikke viser udprægede tegn på sammenhæng (eller gør det?), vil vi fortsætte med et parret t-test. Dette fås f.eks. ved at klikke Statistics/Hypothesis Tests og herefter vælge enten /Two-Sample Paired t-test for Means (her bruges pre hhv. post) eller One-Sample t-test for a Mean (her bruges dif). Vi finder resultatet Where salt IN( 1 ) Two Sample Paired t-test for the Means of pre and post Sample Statistics Group N Mean Std. Dev. Std. Error pre post Hypothesis Test Null hypothesis: Mean of (pre - post) = 0 Alternative: Mean of (pre - post) ^= 0 t Statistic Df Prob > t

3 P-værdien for test af identiske middelværdier for puls før og efter flyvningen ses at være 0.017, hvilket er signifikant på et 5% niveau og altså viser, at der formentlig sker en pulsstigning. Hvis vi føler os usikre på normalfordelingsantagelsen, kunne vi i stedet udføre et non-parametrisk test (Wilcoxon signed-rank test) ved at klikke Statistics/Descriptive/Distributions (se output nedenfor). Herved finder vi en P-værdi på 0.024, som understøtter konklusionen fra t-testet. Vi kan også i ovennævnte opsætning i Fit afkrydse Normal Parameters, hvorved vi får et test for normalitet (P>0.15). Dette giver altså ikke anledning til at betvivle konklusionerne fra den parametriske analyse. The UNIVARIATE Procedure Tests for Location: Mu0=0 Test -Statistic p Value Student s t t Pr > t Sign M 4 Pr >= M Signed Rank S 43 Pr >= S The UNIVARIATE Procedure Fitted Distribution for dif Parameters for Normal Distribution Parameter Symbol Estimate Mean Mu Std Dev Sigma Goodness-of-Fit Tests for Normal Distribution Test ---Statistic p Value----- Kolmogorov-Smirnov D Pr > D >0.150 Cramer-von Mises W-Sq Pr > W-Sq >0.250 Anderson-Darling A-Sq Pr > A-Sq > Ved udregning af et konfidensinterval for middelværdien af pulsstigningen i salt-gruppen benytter vi nu (tildels for afvekslingens skyld) et 3

4 t-test direkte som et one-sample test på differenserne dif. Klik derfor Statistics/Hypothesis Tests/One-Sample t-test for a Mean og gå ind itests og hak af i Confidence interval (og evt. iplots/t distribution plot). Herved fås outputtet Where salt IN( 1 ) One Sample t-test for a Mean Sample Statistics for dif N Mean Std. Dev. Std. Error Hypothesis Test Null hypothesis: Mean of dif = 0 Alternative: Mean of dif ^= 0 t Statistic Df Prob > t % Confidence Interval for the Mean Lower Limit: 1.38 Upper Limit: Udfra ovenstående resultater kvantificeres stigningen i puls til 6.88 (med en standard error på 2.60), dvs. med 95% konfidensintervallet (1.38,12.38), altså ganske bredt! Testet gav signifikans på et 5% niveau, svarende til, at 0 ikke er inkluderet i konfidensintervallet. Vi er dog meget usikre på, hvor stor denne pulsstigning er! 3. Vi skal nu se på en sammenligning af differenserne i de to grupper og må altså ophæve filtreringen. Klik Data/Filter/None. I kontrolgruppen har vi kun 9 personer, hvilket er lige i underkanten til at vurdere rimeligheden af en normalfordelingsantagelse. Vi tillader os derfor at gå ud fra, at differenserne post-pre er ligeså normalfordelte i denne gruppe som i salt -gruppen. Et scatter plot af differenserne i de to grupper giver billedet 4

5 og dermed ingen særlig støtte til denne antagelse, men vi fortsætter alligevel med at basere en sammenligning af de to gruppers differenser på et uparret t-test. Dette fås ved at klikke Statistics/Hypothesis Tests/Two-Sample t- test for Means og sætte dif Dependent salt Group Gå desuden over i Tests ag afkryds Confidence interval (og evt. i Plots for at afkrydse Means Plot og 2 SE er). Så får vi Two Sample t-test for the Means of dif within salt Sample Statistics Group N Mean Std. Dev. Std. Error Hypothesis Test Null hypothesis: Mean 1 - Mean 2 = 0 Alternative: Mean 1 - Mean 2 ^= 0 5

6 If Variances Are t statistic Df Pr > t Equal Not Equal % Confidence Interval for the Difference between Two Means Lower Limit Upper Limit Vi ser, at P-værdien for sammenligning af middelværdierne for differenserne i de to grupper er , svarende til, at de er signifikant forskellige på et 5% niveau. Det betyder, at de astronauter, der ikke traf nogen foranstaltninger havde en mere udtalt pulsøgning end de, der gjorde noget. Denne øgede stigning var på med et 95% konfidensinterval på (1.62,19.50). Ikke særligt overbevisende, men alligevel Vi ved ikke hvilke par af observationer, der stammer fra samme astronauter, så helt konkret kan vi ikke stille noget op med vores viden. Men hvis vi havde kunnet identificere dem, ville det nok være klogest kun at benytte første flyvetur for disse. Hvis pulsøgningen er meget personspecifik skaber det nemlig problemer for antagelsen om uafhængighed mellem observationerne, at der er flere målinger for hver person. Herudover kunne man tænke sig at det er nogle selekterede personer, der tager afsted flere gange at personer, der allerede har været afsted en gang, er blevet varigt ændret, så de anden gang adskiller sig fra de øvrige Den konkrete betydning for analyseresultaterne er svær at sige ret meget om. Det afhænger f.eks. af om personerne er med i samme gruppe begge gange. 5. Frivilligheden i gruppeopdelingen kan tænkes at skabe problemer, som kan gå begge veje Måske er det de overforsigtige/velovervejede, der tager deres forholdsregler, og hvis disse samtidig er i fysisk bedst form, kan de tænkes i forvejen at ville opleve en mindre pulsstigning 6

7 eller måske er det dem med en kendt risiko for pulsstigning, der vælger at tage forholdsregler, og så er det sandsynligt, at forskellen på de to grupper bliver mindre udtalt. For at få en valid sammenligning, burde grupperne have været randomiseret. En lille indsigt i en evt. skævvridning kan fås ved at sammenligne preværdierne i de 2 grupper. Bemærk, at et t-test nu vil kræve normalitet af disse pre-målinger i hver gruppe og ikke som tidligere kun af differenserne. Vi finder Mann-Whitney (Kruskal-Wallis) test: P=0.94 T-test, med ens varianser: P=0.92 T-test, med forskellige varianser: P=0.92 Der er altså ikke her nogen indikation af selektion. Et totalt SAS-program kunne se ud som følger: data a1; infile space.tal firstobs=2; input salt pre post; dif=post-pre; snit=(pre+post)/2; run; /* histogram og fraktildiagram */ proc univariate; where salt IN ( 1 ); var dif; histogram / height=3 normal(mu=est sigma=est); probplot / height=3 normal(mu=est sigma=est l=33); run; /* sortering nødvendig for at bruge by salt nedenfor */ proc sort; by salt; run; 7

8 /* parret t-test for pre og post for hver gruppe for sig */ proc ttest; by salt; paired pre*post; run; /* uparrede t-test til sammenligning af grupperne */ proc ttest; class salt; var dif pre; run; /* uparrede non-parametriske test til sammenligning af grupperne */ proc npar1way wilcoxon; class salt; var pre dif; run; hvor filen space.tal ser således ud: salt pre post

9 Opgave 3 For 17 patienter er der målt peak expiratory flow rate på to forskellige måder, dels ved at anvende det traditionelle Wright peak flow meter, og dels med det nye såkaldte mini Wright flow meter (Bland and Altman, 1986). Med begge apparater er der foretaget dobbeltbestemmelser, således at der i alt foreligger 4 observationer for hver person. Målingerne fremgår af tabellen i appendix og kan hentes på nettet på ved at højreklikke på hjemmeopgave.tal og gemme den i en tekstfil et passende sted på maskinen, h- vorefter den direkte kan hentes ind i Analyst ved hjælp af File/Open. Vi får derved et datasæt bestående af 17 observationer og fire variable, nemlig wright1, wright2, mini1 og mini2. Til en start kan vi se på et plot af dobbeltbestemmelser mod hinanden, for hver af de to målemetoder: Det ses, at observationerne fordeler sig rimeligt omkring identitetslinien. De efterfølgende spørgsmål skal lede igennem forskellige betragtninger vedrørende vurdering af hver af målemetoderne samt sammenligning af de to målemetoder. Det endelige formål er at kvantificere overensstemmelsen mellem de to målemetoder (hhv. Wright og Mini Wright). 1. Vurder grafisk (Bland-Altman plot) om variationen af forskellen mellem gentagne måleresultater afhænger af niveauet, for hver af de to metoder. 9

10 Efter at have gemt datasættet i f.eks. wright under sasuser, kan vi gå over i Edit-mode og danne nogle nye variable, nemlig de to sæt differenser (difw=wright1-wright2 hhv. difm=mini1-mini2) samt de to sæt gennemsnit (wright=(wright1+wright2)/2 hhv. mini=(mini1+mini2)/2). Vi laver herefter (for hver af målemetoderne for sig) et plot af differenserne mod gennemsnittet, hvorved vi finder figurerne Disse figurer går under betegnelsen Bland-Altman plots, efter Bland&Altman(1986). Vi ser af disse plots, at differenserne generelt ligger i et bånd omkring 0 af nogenlunde lige stor bredde hele vejen, omend det lille antal observationer ikke tillader alt for kategoriske konklusioner. 2. Udregn og fortolk limits of agreement for hver af metoderne, uden at transformere. Gør rede for de nødvendige antagelser og vurder rimeligheden af disse. Limits of agreement er normalområder for differenserne, så vi skal finde gennemsnit og spredning for disse. I Statistics/Descriptive kan vi udregne Summary Statistics til The MEANS Procedure Variable N Mean Std Dev Minimum Maximum difw difm

11 Vi går ud fra, at de 17 personer ikke er familiemæssigt relateret og at de 17 differenser derfor er uafhængige. For at anvende ovenstående spredninger til at udregne normalområder, skal vi yderligere sikre os, at differenserne er rimeligt normalfordelte og nogenlunde af samme størrelsesorden uanset niveau. Det sidste var netop hvad vi vurderede i spørgsmålet ovenfor, så tilbage står antagelsen om normalitet. Nedenfor ses histogrammer og fraktildiagrammer (probability plots) for hhv. difw og difm og vi ser, at der er nogen afvigelse fra en normalfordeling. Usikkerheden i vurderingen er imidlertid stor med så få observationer, så vi supplerer med formelle test. Test for bl.a. normalitet, Wright: 11

12 The UNIVARIATE Procedure Variable: difw Tests for Location: Mu0=0 Test -Statistic p Value Student s t t Pr > t Sign M -2.5 Pr >= M Signed Rank S Pr >= S Tests for Normality Test --Statistic p Value Shapiro-Wilk W Pr < W Kolmogorov-Smirnov D Pr > D Cramer-von Mises W-Sq Pr > W-Sq Anderson-Darling A-Sq Pr > A-Sq og for Mini Wright: The UNIVARIATE Procedure Variable: difm Tests for Location: Mu0=0 Test -Statistic p Value Student s t t Pr > t Sign M -1 Pr >= M Signed Rank S -2.5 Pr >= S Tests for Normality Test --Statistic p Value Shapiro-Wilk W Pr < W Kolmogorov-Smirnov D Pr > D > Cramer-von Mises W-Sq Pr > W-Sq Anderson-Darling A-Sq Pr > A-Sq

13 Hvis vi benytter Kolmorogov-Smirnov testet for normalitet, finder vi en rimelig normalfordelingstilpasning (P=0.14 hhv.p>0.15), medens de øvrige test, samt figurerne, synes at tyde på nogen afvigelse, specielt for Mini Wright. Vi skal derfor nok tage de nedenfor udregnede grænser med et vist forbehold. Vi finder limits of agreement til Wright: 4.94 ± = ( 48.38, 38.50) Mini Wright: 2.88 ± = ( 54.86, 60.62) Vi kunne også have valgt at bruge en passende t-fraktil til at udregne disse normalområder, det ville i så fald være med 16 frihedsgrader, altså Man kunne ligeledes overveje, om man skulle kræve, at differenserne havde middelværdi 0 og dermed estimere spredningen ved 1 17 p=1 dif2 p i stedet for p=1 (dif p dif) 2 Herved ville vi få normalområderne (limits of agreement) til Wright: 0 ± = ( 43.30, 43.30) Mini Wright: 0 ± = ( 56.32, 56.32) Betydningen af limits of agreement er, at differenserne mellem dobbeltbestemmelser med 95% sandsynlighed vil ligge indenfor disse grænser, dvs. de udtrykker troværdigheden af en enkelt måling med hver af apparaterne Tegn et scatter plot af de to sæt differenser (differenser mellem dobbeltbestemmelser for hver af de to metoder), og vurder på baggrund af dette, om der er nogen personer, der ser ud til at være mere ustabile at måle på end andre. Den venstre af figurerne nedenfor viser de to sæt differenser (med fortegn) plottet mod hinanden, medens den højre figur plotter de tilsvarende numeriske (absolutte) differenser. Hvis fortegnet på differensen skønnes at være vigtigt (hvis der f.eks. ses en generel stigning fra første til anden måling) bør venstre figur benyttes, ellers er højre lettere at se på. 13

14 Vi skal vurdere om der er enkelte personer, der har store differenser mellem dobbeltbestemmelserne for begge målemetoder, og dette ses ikke umiddelbart at være tilfældet. Det nærmeste, vi kan komme det, må være de to med de største numeriske afvigelser for Mini Wright. Sådanne personer, der er svære at måle på ses i andre sammenhænge, såsom vurdering af leverstørrelse, hvor overvægtige personer er sværere at vurdere. 4. Sammenlign nu de to målemetoder udfra gennemsnit af dobbeltbestemmelserne, dvs. tegn igen Bland-Altman plot og udregn limits of agreement. Kommenter den kliniske anvendelighed af disse grænser. Vi arbejder nu videre med de to gennemsnit, ovenfor simpelthen kaldet wright hhv. mini. Igen skal vi se på et plot af differenser mod gennemsnit samt udregne normalområder for differenserne. 14

15 og vi finder størrelserne The MEANS Procedure Variable N Mean Std Dev Minimum Maximum dif Igen bør vi overbevise os selv om, at differenserne er rimeligt normalfordelte. De relevante tegninger er 15

16 og det supplerende test for normalitet fremgår af nedenstående The UNIVARIATE Procedure Variable: dif Tests for Location: Mu0=0 Test -Statistic p Value Student s t t Pr > t Sign M -2 Pr >= M Signed Rank S -9 Pr >= S Tests for Normality Test --Statistic p Value Shapiro-Wilk W Pr < W Kolmogorov-Smirnov D Pr > D Cramer-von Mises W-Sq Pr > W-Sq > Anderson-Darling A-Sq Pr > A-Sq Det ser jo ikke så galt ud og vi udregner derfor limits of agreement til Wright vs. Mini Wright: 6.03 ± = ( 72.43, 60.37) Når vi anvender disse grænser i praksis, skal vi huske på, at de er udregnet på baggrund af gennemsnit af to dobbeltbestemmelser. Hvis dette ikke er sædvanlig klinisk praksis, dvs. hvis man i praksis kun foretager en enkelt måling, så vil disse grænser være for snævre! 5. Er der systematisk forskel på de to målemetoder? Kvantificer! Vi interesserer os her for middelværdierne af de to målemetoder, nærmere betegnet om disse afviger signifikant fra hinanden. Igen er der tale om parrede observationer (W p hhv M p ), så vi ser enten på differenserne D p = W p M p og tester om disse har middelværdi 0 eller foretager et parret t-test. Forudsætningen for dette er rimelig normalitet for differenserne, som vi allerede checkede ovenfor. 16

17 Tests for Location: Mu0=0 Test -Statistic p Value Student s t t Pr > t Sign M -2 Pr >= M Signed Rank S -9 Pr >= S Vi ser altså, at T-testet giver T=-0.75, svarende til P=0.46, og altså ingen signifikant forskel på de to målemetoder. En tilsvarende konklusion opnås fra de nonparametriske tests. Hermed kan vi imidlertid ikke være sikre på, at der ingen forskel er, så vi kvantificerer den sandsynlige forskel ved at lave et konfidensinterval for forskellen mellem middelværdier. Hertil skal vi bruge standard error The MEANS Procedure Variable Mean Std Dev Std Error dif hvorfra vi udregner konfidensintervallet til 6.03 ± = ( 22.13, 10.07) eller mere præcist 6.03 ± = ( 23.10, 11.04) Vi kan altså ikke udelukke at forskellen på middelværdierne kan være op til ca. 10 den ene vej eller lidt over 20 den anden vej. 6. Hvis en forskel på 75 l/min skønnes at have klinisk betydning, kan vi så erstatte Wright med det nye mini Wright? 17

18 Her skal vi vurdere om der hyppigt forekommer forskelle på 75 l/min, når man måler to gange på samme person med de to forskellige apparater. Ud fra limits of agreement ser vi, at 75 l/min ligger udenfor det, der normalt forekommer, dvs. det, der forekommer i 95% af tilfældene. Det vil således være relativt sjældent, at vi blot ved et tilfælde ser klinisk betydelige afvigelser mellem de to målemetoder, igen forudsat at vi til daglig virkelig benytter gennemsnit af dobbeltbestemmelser! Sluttelig skal vi se en figur, der forsøger at medtage alle observationer på en gang: For hver person råder vi over 4 observationer, 2 med hver målemetode. Disse 4 er opsat som et kors, idet dobbeltbestemmelser foretaget med samme målemetode er forbundet med et liniestykke. Reference: Bland, J.M. and Altman, D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, i,

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Phd-kursus i Basal Statistik, Opgaver til 2. uge

Phd-kursus i Basal Statistik, Opgaver til 2. uge Phd-kursus i Basal Statistik, Opgaver til 2. uge Opgave 1: Sædkvalitet Filen oeko.txt på hjemmesiden indeholder datamateriale til belysning af forskellen i sædkvalitet mellem SAS-ansatte og mænd, der lever

Læs mere

Phd-kursus i Basal Statistik, Opgaver til 1. uge

Phd-kursus i Basal Statistik, Opgaver til 1. uge Phd-kursus i Basal Statistik, Opgaver til 1. uge Opgave 1: Wright For 17 patienter er der målt peak expiratory flow rate (maksimal udåndingshastighed, i l/min) på to forskellige måder, dels ved at anvende

Læs mere

Kommentarer til øvelser i basalkursus, 2. uge

Kommentarer til øvelser i basalkursus, 2. uge Kommentarer til øvelser i basalkursus, 2. uge Opgave 2. Vi betragter målinger af hjertevægt (i g) og total kropsvægt (målt i kg) for 10 normale mænd og 11 mænd med hjertesvigt. Målingerne er taget ved

Læs mere

Basal statistik. 16. september 2008

Basal statistik. 16. september 2008 Basal statistik 16. september 2008 En- og to-stikprøve problemer sammenligning af to situationer: parret t-test Wilcoxon signed rank test logaritmetransformation sammenligning af to grupper uparret t-test

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Basal statistik 19. september Eksempel: To metoder, som forventes at skulle give samme resultat:

Basal statistik 19. september Eksempel: To metoder, som forventes at skulle give samme resultat: En- og to-stikprøve problemer, september 2006 1 Basal statistik 19. september 2006 En- og to-stikprøve problemer sammenligning af to situationer: parret t-test Wilcoxon signed rank test logaritmetransformation

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Basal Statistik - SPSS

Basal Statistik - SPSS Faculty of Health Sciences Basal Statistik - SPSS Begreber. Parrede sammenligninger. Lene Theil Skovgaard 5. september 2017 1 / 16 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Deskriptiv Statitik. Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ jlj@statcon.dk

Deskriptiv Statitik. Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ jlj@statcon.dk Deskriptiv Statitik Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ jlj@statcon.dk Kursus formål Planlægning af studier selve indsamlingen af data, opstilling af statistiske hypoteser

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger Øvelser til basalkursus, 5. uge Opgavebesvarelse: Knogledensitet hos unge piger I alt 112 piger har fået målt knogledensitet (bone mineral density, bmd) i 11-års alderen (baseline værdi). Pigerne er herefter

Læs mere

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Basal statistik. 2. september 2008

Basal statistik. 2. september 2008 Basal statistik 2. september 2008 Deskriptiv statistik Grafik Summary statistics Normalfordelingen Typer af data Esben Budtz-Jørgensen, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016 Faculty of Health Sciences Basal Statistik Begreber. Parrede sammenligninger. Lene Theil Skovgaard 6. september 2016 1 / 88 APPENDIX Programbidder svarende til diverse slides: Indlæsning af vitamin D datasæt,

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

CLASS temp medie; MODEL rate=temp medie/solution; RUN;

CLASS temp medie; MODEL rate=temp medie/solution; RUN; Ugeopgave 2.1 Bakterieprøver fra patienter transporteres ofte til laboratoriet ved stuetemperatur samt mere eller mindre udsat for luftens ilt. Dette er især uheldigt for prøver som indeholder anaerobe

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

SPSS appendix SPSS APPENDIX. Box plots. Indlæsning. Faculty of Health Sciences. Basal Statistik: Sammenligning af grupper, Variansanalyse

SPSS appendix SPSS APPENDIX. Box plots. Indlæsning. Faculty of Health Sciences. Basal Statistik: Sammenligning af grupper, Variansanalyse Faculty of Health Sciences SPSS APPENDIX SPSS appendix Basal Statistik: Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 12. september 2017 med instruktioner til SPSS-analyse svarende til

Læs mere

Seniorkursus i Biostatistik og Stata, Dag 2

Seniorkursus i Biostatistik og Stata, Dag 2 SENIORKURSUS STATA OG BIOSTATISTIK Aarhus Universitet juni DAGENS TEMA: SAMMENLIGNINGER FORMIDDAG: KONTINUERTE DATA EFTERMIDDAG: KATEGORISKE DATA STATISTISK ANALYSE AF TO UAFHÆNGIGE STIKPRØVER FRA NORMALFORDELTE

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Epidemiologi og Biostatistik Kliniske målinger (Kapitel. +.1 + 11.-11 + 1.1-) Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Besvarelse af opgave om Vital Capacity

Besvarelse af opgave om Vital Capacity Besvarelse af opgave om Vital Capacity hentet fra P. Armitage & G. Berry: Statistical methods in medical research. 2nd ed. Blackwell, 1987. Spørgsmål 1: Indlæs data og konstruer en faktor (klassevariabel)

Læs mere

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation

Læs mere

Hjemmeopgave, efterår 2009

Hjemmeopgave, efterår 2009 Hjemmeopgave, efterår 2009 Basal statistik for sundhedsvidenskabelige forskere Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-29. oktober) I alt 112 piger har fået målt bone mineral

Læs mere

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer.

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer. Kvant Eksamen December 2010 3 timer med hjælpemidler 1 Hvad er en continuous variable? Giv 2 illustrationer. What is a continuous variable? Give two illustrations. 2 Hvorfor kan man bedre drage konklusioner

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Basal statistik. 29. januar 2008

Basal statistik. 29. januar 2008 Basal statistik 29. januar 2008 Deskriptiv statistik Grafik Summary statistics Normalfordelingen Typer af data Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2 Statistik og Sandsynlighedsregning IH kapitel Overheads til forelæsninger, onsdag 5. uge Resultater om normalfordeling X N(µ,σ ). N har tæthed ϕ µ,σ (x) = exp (x µ) πσ σ EX = µ, Var(X) = σ X µ N(0,) σ

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 Parret sammenligning, målemetoder med logaritmer Tosidet variansanalyse

Læs mere

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015 Faculty of Health Sciences Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 1 / 84 Logaritmer og kovariansanalyse Parret sammenligning, målemetoder med logaritmer Tosidet

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Korrelation Pearson korrelationen

Korrelation Pearson korrelationen -9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

3. SPSS Output. Descriptives. [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav

3. SPSS Output. Descriptives. [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav 3. SPSS Output DESCRIPTIVES VARIABLES=DEM DEM5 DEM10 DEM11 /STATISTICS=MEAN STDDEV MIN MAX. Descriptives [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav Descriptive Statistics

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2016

Vejledende besvarelse af hjemmeopgave, forår 2016 Vejledende besvarelse af hjemmeopgave, forår 2016 Udleveret 1. marts, afleveres senest ved øvelserne i uge 13 (29. marts-1. april) Denne opgave fokuserer på at beskrive niveauet af hormonet AMH (højt niveau

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25. Hjemmeopgave Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.-27 marts) Garvey et al. interesserer sig for sammenhængen mellem

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

Følgende tabel (fra Fisher) giver forøgelsen af sovetiden i timer fra et eksperiment med 10 patienter vedrørende 2 sovemidler A og B.

Følgende tabel (fra Fisher) giver forøgelsen af sovetiden i timer fra et eksperiment med 10 patienter vedrørende 2 sovemidler A og B. Modul 7: Exercises 7.1 Sovemidler......................... 1 7.2 Egetræer.......................... 2 7.3 Stofs trækstyrke..................... 3 7.4 Laboranters titreringsusikkerhed............ 5 7.5

Læs mere

Øvelser til basalkursus, 2. uge

Øvelser til basalkursus, 2. uge Øvelser til basalkursus, 2. uge Opgave 1 Vi betragter igen Sundby95-materialet, og skal nu forbedre nogle af de ting, vi gjorde sidste gang. 1. Gå ind i ANALYST vha. Solutions/Analysis/Analyst. 2. Filen

Læs mere

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske

Læs mere

Lean Six Sigma Minitab Introduktion

Lean Six Sigma Minitab Introduktion Lean Six Sigma Minitab Introduktion Agenda Minitab Introduktion Histogram Pareto Identificering af data s fordeling Statistisk Proces Kontrol & Kontrolkort Kapabilitetsanalyse Minitab Basal Introduktion

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: 1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2015

Vejledende besvarelse af hjemmeopgave, forår 2015 Vejledende besvarelse af hjemmeopgave, forår 2015 En stikprøve bestående af 65 mænd og 65 kvinder er blevet undersøgt med henblik på at se på en evt. sammenhæng mellem kropstemperatur og puls. På hjemmesiden

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2006. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 6 sider.

Læs mere

Basal Statistik - SPSS

Basal Statistik - SPSS Faculty of Health Sciences Basal Statistik - SPSS Multipel regression. Lene Theil Skovgaard 10. oktober 2017 1 / 12 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides Figurer: s.

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable Faculty of Health Sciences Logistisk regression: Interaktion Kvantitative responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Hvorfor SAS Kort intro til SAS

Hvorfor SAS Kort intro til SAS Hvorfor SAS Kort intro til SAS Efterår 2015 Janne Petersen Judith L Jacobsen Lene Theil Skovgaard Kan alt Alle ph.d. studerende har gratis adgang Fra universitetet eller hospitalerne Kode --- hjælp fra

Læs mere

Ensidet variansanalyse

Ensidet variansanalyse Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger

Læs mere