Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1"

Transkript

1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer. En hypotese om, at observationerne har middelværdi 2, er undersøgt ved et t-test. SAS-program og udskrift er angivet nedenfor.. a) Gøre rede for forudsætningerne for testet. b) Hvilke konklusioner kan man drage på grundlag af udskriften? c) Angiv på grundlag af udskriften et estimat for middelværdi og varians i observationernes fordeling. d) Angiv et skøn for middelværdiestimatets varians og angiv et 95% kondensinterval for middelværdien. Observationerne antages at ligge i SAS-datasættet opg1.data med en variabel x, der angiver målingsvariablen. PROGRAM: PROC TTEST ALPHA=.05 H0=2 DATA=opg1.data; VAR x; UDSKRIFT: The TTEST Procedure Statistics Lower CL Upper CL Lower CL Upper CL Variable N Mean Mean Mean Std Dev Std Dev Std Dev Std Err x T-Tests Variable DF t Value Pr > t x

2 Opgave 2 Et datasæt består af 20 observationer fra en gruppe og 30 observationer fra en anden gruppe. En hypotese om, at observationerne har samme middelværdi, er undersøgt ved et t-test. SAS-program og udskrift er angivet nedenfor. Gøre rede for forudsætningerne for testet. Hvilke konklusioner kan man drage på grundlag af udskriften? Angiv på grundlag af udskriften et estimat for middelværdi og varians i observationernes fordeling. Angiv et skøn for middelværdiestimatets varians og angiv et 95% kondensinterval for middelværdien. Observationerne antages at ligge i SAS-datasættet opg2.data med de to variable gruppe der angiver gruppen og x der angiver målingsvariablen. PROGRAM: PROC TTEST ALPHA=.05 DATA=opg2.data; VAR x; UDSKRIFT: The TTEST Procedure Statistics Lower CL Upper CL Lower CL Upper CL Variable gruppe N Mean Mean Mean Std Dev Std Dev Std Dev Std Err x x x Diff (1-2) T-Tests Variable Method Variances DF t Value Pr > t x Pooled Equal x Satterthwaite Unequal Equality of Variances Variable Method Num DF Den DF F Value Pr > F x Folded F

3 Opgave 3 Et datasæt består af observationer fra tre grupper med henholdsvis 20, 30 og 30 observationer. En hypotese om, at alle observationerne har samme middelværdi, er undersøgt ved en ensidet variansanalyse. SAS-program og (let redigeret) udskrift er angivet nedenfor. Gøre rede for forudsætningerne for analysen. Hvilke konklusioner kan man drage på grundlag af udskriften? Observationerne antages at ligge i SAS-datasættet opg4.data med de to variable gruppe der angiver gruppen og x der angiver målingsvariablen. PROGRAM: PROC GLM ALPHA=.05; MODEL x=gruppe/ss1 SOLUTION; MEANS gruppe/hovtest=bartlett; UDSKRIFT: The GLM Procedure Class Level Information Class Levels Values gruppe Number of observations 80 Dependent Variable: x Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE x Mean Standard Parameter Estimate Error t Value Pr > t Intercept B gruppe B gruppe B <.0001 gruppe B... 3

4 Bartlett's Test for Homogeneity of x Variance Source DF Chi-Square Pr > ChiSq gruppe Level of x gruppe N Mean Std Dev Opgave 4 Til sammenligning af to metoder til bestemmelse af en egenskab ved blod udførtes følgende forsøg. 20 blodprøver blev hver delt i to dele, og det blev ved lodtrækning bestemt, hvilken del der skulle have henholdvis behandling 1 og behandling 2. En hypotese om, at behandlingerne virkede ens, er undersøgt ved et t-test. SASprogram og udskrift er angivet nedenfor. Gøre rede for forudsætningerne for analysen. Angiv på grundlag af udskriften et estimat for middelværdi og varians i fordelingen af dierenserne. Angiv et skøn for middelværdiestimatets varians og angiv et 95% kondensinterval for middelværdien. Hvilke konklusioner kan man drage på grundlag af udskriften. Observationerne antages at ligge i SAS-datasættet opg3.data med de to variable x og y der angiver måling for henholdsvis behandling 1 og behandling 2. PROGRAM: UDSKRIFT: PROC TTEST ALPHA=.05 DATA=opg3.data; PAIRED x*y; The TTEST Procedure Statistics Lower CL Upper CL Lower CL Upper CL Difference N Mean Mean Mean Std Dev Std Dev Std Dev Std Err x - y T-Tests Difference DF t Value Pr > t X - y

5 Opgave 5 Et datasæt består af observationer fra tre grupper med henholdsvis 20, 30 og 30 observationer,hvor man ønsker at undersøge, om alle observationerne har samme middelværdi. Nedenstående udskriftsbid stammer fra MEANS i det angivne SASprogram. Hvad vil du foreslå at man prøver at gøre for eventuelt at kunne gennemføre en ensidet variansanalyse. Observationerne antages at ligge i SAS-datasættet opg5.data med de to variable gruppe der angiver gruppen og x der angiver målingsvariablen. PROGRAM: PROC GLM ALPHA=.05 DATA=opg5.data; MODEL x=gruppe/ss1 SOLUTION; MEANS gruppe/hovtest=bartlett; UDSKRIFT (delvis) The GLM Procedure Bartlett's Test for Homogeneity of x Variance Source DF Chi-Square Pr > ChiSq gruppe Level of x gruppe N Mean Std Dev Opgave 6 Et datasæt består af 20 observationer fra en gruppe og 30 observationer fra en anden gruppe. En hypotese om, at observationerne har samme middelværdi, er undersøgt ved et t-test. SAS-program og udskrift er angivet nedenfor. Diskuter analysen. Observationerne antages at ligge i SAS-datasættet opg6.data med de to variable gruppe der angiver gruppen og x der angiver målingsvariablen. 5

6 PROGRAM: PROC TTEST ALPHA=.05 DATA=opg6.data; VAR x; UDSKRIFT: The TTEST Procedure Statistics Lower CL Upper CL Lower CL Upper CL Variable gruppe N Mean Mean Mean Std Dev Std Dev Std Dev Std Err x x x Diff (1-2) T-Tests Variable Method Variances DF t Value Pr > t x Pooled Equal x Satterthwaite Unequal Equality of Variances Variable Method Num DF Den DF F Value Pr > F x Folded F <.0001 Opgave 7 Et datasæt består af observationer fra tre grupper med henholdsvis 20, 30 og 30 observationer. Observationerne kan ikke natages at være normalfordelte. En hypotese om, at alle observationerne har samme middelværdi, er undersøgt ved Kruskal-Wallis-test. SAS-program og udskrift er angivet nedenfor. Gøre rede for forudsætningerne for analysen. Hvilke konklusioner kan man drage på grundlag af udskriften? Observationerne antages at ligge i SAS-datasættet opg7.data med de to variable gruppe der angiver gruppen og x der angiver målingsvariablen. PROGRAM: PROC NPAR1WAY WILCOXON; VAR x; 6

7 UDSKRIFT: The NPAR1WAY Procedure Wilcoxon Scores (Rank Sums) for Variable x Classified by Variable gruppe Sum of Expected Std Dev Mean gruppe N Scores Under H0 Under H0 Score Kruskal-Wallis Test Chi-Square DF 2 Pr > Chi-Square <.0001 Opgave 8 Et datasæt består af 20 observationer fra en gruppe og 30 observationer fra en anden gruppe. En hypotese om, at observationerne har samme middelværdi, er undersøgt ved henholdsvis et t-test og et Wilcoxon test. SAS-program og udskrift er angivet nedenfor. Diskuter de to analyser i forhold til hinanden. Hvad bliver konklusionen på analysen. Observationerne antages at ligge i SAS-datasættet opg8.data med de to variable gruppe der angiver gruppen og x der angiver målingsvariablen. PROGRAM: PROC TTEST ALPHA=.05; VAR x; PROC NPAR1WAY WILCOXON; VAR x; UDSKRIFT: The TTEST Procedure Statistics Lower CL Upper CL Lower CL Upper CL Variable gruppe N Mean Mean Mean Std Dev Std Dev Std Dev Std Err x x x Diff (1-2)

8 T-Tests Variable Method Variances DF t Value Pr > t x Pooled Equal x Satterthwaite Unequal Equality of Variances Variable Method Num DF Den DF F Value Pr > F x Folded F <.0001 The NPAR1WAY Procedure Wilcoxon Scores (Rank Sums) for Variable x Classified by Variable gruppe Sum of Expected Std Dev Mean gruppe N Scores Under H0 Under H0 Score Wilcoxon Two-Sample Test Statistic Normal Approximation Z One-Sided Pr > Z Two-Sided Pr > Z t Approximation One-Sided Pr > Z Two-Sided Pr > Z Z includes a continuity correction of 0.5. Opgave 9 Et datasæt består af observationer fra tre grupper med henholdsvis 20, 30 og 30 observationer. En hypotese om, at alle observationerne har samme middelværdi, er undersøgt ved en ensidet variansanalyse. Parvise sammenligninger er foretaget med Tukeys og Schees test. SAS-program og (let redigeret) udskrift er angivet nedenfor. Gøre rede for forudsætningerne for analysen. Hvilke konklusioner kan man drage på grundlag af udskriften? 8

9 Observationerne antages at ligge i SAS-datasættet opg9.data med de to variable gruppe der angiver gruppen og x der angiver målingsvariablen. PROGRAM: PROC GLM ALPHA=.05; MODEL x=gruppe/ss1 SOLUTION; MEANS gruppe/tukey SCHEFFE CLDIFF; UDSKRIFT: The GLM Procedure Class Level Information Class Levels Values gruppe Number of observations 80 Dependent Variable: x Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Total R-Square Coeff Var Root MSE x Mean Standard Parameter Estimate Error t Value Pr > t Intercept B gruppe B gruppe B <.0001 gruppe B... Tukey's Studentized Range (HSD) Test for x NOTE: This test controls the Type I experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 77 Error Mean Square Critical Value of Studentized Range Comparisons significant at the 0.05 level are indicated by ***. Difference Simultaneous gruppe Between 95\% Confidence Comparison Means Limits *** *** ***

10 *** Scheffe's Test for x NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons. Alpha 0.05 Error Degrees of Freedom 77 Error Mean Square Critical Value of F Comparisons significant at the 0.05 level are indicated by ***. Difference Simultaneous gruppe Between 95\% Confidence Comparison Means Limits *** *** *** *** Opgave 10 Et datasæt består af 120 observationer fra 20 grupper stammende fra en tosidet inddeling med henholdsvis 5 og 4 kategorier og 6 gentagelser i hver gruppe. Hypoteser om forsvindende vekselvirkning, forsvindende rækkevirkning og forsvindende søjlevirkning er undersøgt ved tosidet variansanalyse. SAS-programmer og (let redigerede) udskrifter er angivet nedenfor. Gøre rede for forudsætningerne for den tosidede variansanalyse. Inddrag relevante testresultater. Hvilke konklusioner kan man drage på grundlag af udskriften? Observationerne antages at ligge i SAS-datasættet opg10.data med de tre variable r=1,2,3,4,5 og s=1,2,3,4, der angiver de to inddelingsvariable og x der angiver målingsvariablen. PROGRAM1: DATA bartlett; /*Her dannes ensidet inddeling til Bartletts test*/ SET opg10.data; gruppe=10*r+s; PROC GLM; /*Bartletts test*/ 10

11 MODEL x=gruppe; MEANS gruppe/hovtest=bartlett; PROGRAM2: PROC GLM; /*Test for vekselvirkning*/ CLASS r s; MODEL x=r s/ss1; PROGRAM3: PROC GLM; /*Estimation af parameter*/ CLASS r s; MODEL x=r s/ss1 SOLUTION; UDSKRIFT1 (delvis) The GLM Procedure Class Level Information Class Levels Values gruppe Number of observations 120 Dependent Variable: x Bartlett's Test for Homogeneity of x Variance Source DF Chi-Square Pr > ChiSq gruppe UDSKRIFT2 The GLM Procedure Class Level Information Class Levels Values r s Number of observations 120 Dependent Variable: x Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE x Mean Source DF Type I SS Mean Square F Value Pr > F r <.0001 s <.0001 r*s

12 UDSKRIFT3 (delvis) The GLM Procedure Dependent Variable: x Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE x Mean Source DF Type I SS Mean Square F Value Pr > F r <.0001 s <.0001 Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 r B <.0001 r B <.0001 r B <.0001 r B <.0001 r B... s B <.0001 s B <.0001 s B <.0001 s B... Opgave 11 Et datasæt består af 20 observationer stammende fra en tosidet inddeling med henholdsvis 5 og 4 kategorier. Hypoteser om forsvindende rækkevirkning og forsvindende søjlevirkning er undersøgt ved tosidet variansanalyse. SAS-programmer og (let redigerede) udskrifter er angivet nedenfor. Gøre rede for forudsætningerne for den tosidede variansanalyse. Hvilke konklusioner kan man drage på grundlag af udskriften? Hvilke modelkontroller kan man foretage? Observationerne antages at ligge i SAS-datasættet opg11.data med de tre variable r=1,2,3,4,5 og s=1,2,3,4, der angiver de to inddelingsvariable og x der angiver målingsvariablen. 12

13 PROGRAM1: PROC GLM DATA=opg11.data; CLASS r s; MODEL x=r s/ss1; PROGRAM2: PROC GLM DATA=opg11.data; CLASS r s; MODEL x=r s/ss1 SOLUTION; MEANS r/hovtest=bartlett; UDSKRIFT1: The GLM Procedure Class Level Information Class Levels Values r s Number of observations 20 Dependent Variable: x Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE x Mean Source DF Type I SS Mean Square F Value Pr > F r <.0001 s UDSKRIFT2: The GLM Procedure Dependent Variable: x Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE x Mean Source DF Type I SS Mean Square F Value Pr > F r <.0001 Standard Parameter Estimate Error t Value Pr > t Intercept B <

14 r B <.0001 r B <.0001 r B <.0001 r B <.0001 r B... Bartlett's Test for Homogeneity of x Variance Source DF Chi-Square Pr > ChiSq r Level of x r N Mean Std Dev Opgave 12 Betragt datasættet i nedenstående tabel. Observationerne antages at være uafhængige og normalfordelte med samme varians. Patient Dag x 11 x 12 x 13 x 14 2 x 21 x 22 x 23 x 24 3 x 31 x 32 x 33 x 34 4 x 41 x 42 x 43 x 44 a) Kan man test for vekselvirkning mellem dag og patient? Begrund svaret. b) Gør rede for hvilke modeller man kan opstille, hvis man ønsker at teste om dagene har nogen indydelse på målingen. Opgave 13 Betragt datasættet i nedenstående tabel. Observationerne antages at være uafhængige og normalfordelte. 14

15 Metode Dag x 111 x 121 x 131 x 141 x 151 x 161 x 171 x 181 x 112 x 122 x 132 x 142 x 152 x 162 x 172 x x 211 x 221 x 231 x 241 x 251 x 261 x 271 x 281 x 212 x 222 x 232 x 242 x 252 x 262 x 272 x x 311 x 321 x 331 x 341 x 351 x 361 x 371 x 381 x 312 x 322 x 332 x 342 x 352 x 362 x 372 x x 411 x 421 x 431 x 441 x 451 x 461 x 471 x 481 x 412 x 422 x 432 x 442 x 452 x 462 x 472 x 482 a) Giv et forslag til hvordan man kan undersøge om de 32 grupper har samme varians. b) Kan man i en variansanalysemodel teste for vekselvirkning mellem metode og dag? Begrund svaret. c) Hvis middelværdien af målingerne antages at afhænge lineært af antal dage har man observationer svarende til en model med 4 regressionslinier (1 for hver metode). Hvordan kan en hypotese om forsvindende vekselvirkning mellem metode og dag formuleres i denne model? Opgave 14 Betragt datasættet i nedenstående tabeller. Observationerne antages at være uafhængige og normalfordelte med samme varians, og det antages at der ikke er vekselvirkning mellem patient og dag. Tabel 1 Tabel 2 Metode Dag Metode Dag A B C D A B C D A x 13 x 14 A x 13 x 14 B x 23 x 24 B x 21 x 22 x 23 x 24 C x 31 x 32 C x 31 x 32 D x 41 x 42 C x 41 x 42 a) Betragt data i tabel 1. Kan man opstille en model i hvilken man kan teste om dagene har nogen indydelse på målingen. b) Samme spørgsmål for tabel 2. 15

16 Opgave 15 Betragt datasættet i nedenstående tabel. Observationerne antages at være uafhængige og normalfordelte med samme varians og middelværdien af målingerne antages at afhænge lineært af antal dage. Metode Dag x 141 x 151 x 161 x 171 x 181 x 142 x 152 x 162 x 172 x x 211 x 221 x 231 x 212 x 222 x 232 a) Kan man på grundlag af disse data undersøge, om de to regressionslinier har samme hældning. Kommenter testet. b) Sammenlign med opgave 14a. Hvad er forskellen på de to modeller? 16

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

CLASS temp medie; MODEL rate=temp medie/solution; RUN;

CLASS temp medie; MODEL rate=temp medie/solution; RUN; Ugeopgave 2.1 Bakterieprøver fra patienter transporteres ofte til laboratoriet ved stuetemperatur samt mere eller mindre udsat for luftens ilt. Dette er især uheldigt for prøver som indeholder anaerobe

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2007. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 8 sider.

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Vejledende besvarelse af hjemmeopgave

Vejledende besvarelse af hjemmeopgave Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2013 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) I forbindelse med en undersøgelse af vitamin

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2006. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 6 sider.

Læs mere

Regressionsanalyse i SAS

Regressionsanalyse i SAS Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Inge Henningsen Afdeling for Anvendt Matematik og Statistik December 2006 Regressionsanalyse uden gentagelser Regressionsanalyse

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Phd-kursus i Basal Statistik, Opgaver til 2. uge

Phd-kursus i Basal Statistik, Opgaver til 2. uge Phd-kursus i Basal Statistik, Opgaver til 2. uge Opgave 1: Sædkvalitet Filen oeko.txt på hjemmesiden indeholder datamateriale til belysning af forskellen i sædkvalitet mellem SAS-ansatte og mænd, der lever

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger Øvelser til basalkursus, 5. uge Opgavebesvarelse: Knogledensitet hos unge piger I alt 112 piger har fået målt knogledensitet (bone mineral density, bmd) i 11-års alderen (baseline værdi). Pigerne er herefter

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2015

Vejledende besvarelse af hjemmeopgave, forår 2015 Vejledende besvarelse af hjemmeopgave, forår 2015 En stikprøve bestående af 65 mænd og 65 kvinder er blevet undersøgt med henblik på at se på en evt. sammenhæng mellem kropstemperatur og puls. På hjemmesiden

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Basal statistik. 21. oktober 2008

Basal statistik. 21. oktober 2008 Basal statistik 21. oktober 2008 Den generelle lineære model Repetition af variansanalyse og multipel regression Interaktion Parametriseringer Kovariansanalyse Esben Budtz-Jørgensen, Biostatistisk Afdeling

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 23 sider. Skriftlig prøve, den: 17. december 2001 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 23 sider. Skriftlig prøve, den: 17. december 2001 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 23 sider Skriftlig prøve, den: 17. december 2001 Kursus nr : 02401 Kursus navn: Datanalyse og Indledende Statistik Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2016

Vejledende besvarelse af hjemmeopgave, forår 2016 Vejledende besvarelse af hjemmeopgave, forår 2016 Udleveret 1. marts, afleveres senest ved øvelserne i uge 13 (29. marts-1. april) Denne opgave fokuserer på at beskrive niveauet af hormonet AMH (højt niveau

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

En Introduktion til SAS. Kapitel 6.

En Introduktion til SAS. Kapitel 6. En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel

Læs mere

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod.

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. 1-stikprøve t-test (Eksamen 2005 opgave 1) Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. I nedenstående tabel betragtes blodprøver fra 9 patienter. Hver

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Besvarelse af opgave om Vital Capacity

Besvarelse af opgave om Vital Capacity Besvarelse af opgave om Vital Capacity hentet fra P. Armitage & G. Berry: Statistical methods in medical research. 2nd ed. Blackwell, 1987. Spørgsmål 1: Indlæs data og konstruer en faktor (klassevariabel)

Læs mere

2. januar 2015 Proj.nr. 2001474 Version 1 LRK/EHBR/EVO/CCM/MT. Rapport

2. januar 2015 Proj.nr. 2001474 Version 1 LRK/EHBR/EVO/CCM/MT. Rapport Rapport Projekt: Fedtkvalitet i moderne svineproduktion Betdning af jodtal for udbtter af kogeskinker Lars Kristensen, Eva Honnens de Lichtenberg Broge, Eli Vibeke Olsen, Chris Claudi- Magnussen 2. januar

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 Parret sammenligning, målemetoder med logaritmer Tosidet variansanalyse

Læs mere

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015 Faculty of Health Sciences Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 1 / 84 Logaritmer og kovariansanalyse Parret sammenligning, målemetoder med logaritmer Tosidet

Læs mere

Vejledende besvarelse af hjemmeopgave, efterår 2016

Vejledende besvarelse af hjemmeopgave, efterår 2016 Vejledende besvarelse af hjemmeopgave, efterår 2016 Udleveret 4. oktober, afleveres senest ved øvelserne i uge 44 (1.-4. november) Normal aktivitet af enzymet plasma kolinesterase er en forudsætning for

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Basal Statistik. Sammenligning af grupper. Vitamin D eksemplet. Praktisk håndtering af data. Faculty of Health Sciences

Basal Statistik. Sammenligning af grupper. Vitamin D eksemplet. Praktisk håndtering af data. Faculty of Health Sciences Faculty of Health Sciences Sammenligning af grupper Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 7. februar 2017 Sammenligning af to grupper: T-test Dimensionering af undersøgelser

Læs mere

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 7. februar 2017

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 7. februar 2017 Faculty of Health Sciences Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 7. februar 2017 1 / 96 Sammenligning af grupper Sammenligning af to grupper: T-test Dimensionering

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer.

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer. Kvant Eksamen December 2010 3 timer med hjælpemidler 1 Hvad er en continuous variable? Giv 2 illustrationer. What is a continuous variable? Give two illustrations. 2 Hvorfor kan man bedre drage konklusioner

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Restsaltmængdernes afhængighed af trafikken,

Restsaltmængdernes afhængighed af trafikken, Restsaltmængdernes afhængighed af trafikken, Thomas Glue, marts 2. Trafikintensitet...2 Indledende definitioner...2 Regressionsanalyser på trafikintensiteten...6 Justering af restsaltmængder i henhold

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Følgende tabel (fra Fisher) giver forøgelsen af sovetiden i timer fra et eksperiment med 10 patienter vedrørende 2 sovemidler A og B.

Følgende tabel (fra Fisher) giver forøgelsen af sovetiden i timer fra et eksperiment med 10 patienter vedrørende 2 sovemidler A og B. Modul 7: Exercises 7.1 Sovemidler......................... 1 7.2 Egetræer.......................... 2 7.3 Stofs trækstyrke..................... 3 7.4 Laboranters titreringsusikkerhed............ 5 7.5

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Basal Statistik. Sammenligning af grupper. Praktisk håndtering af data. Vitamin D eksemplet. Faculty of Health Sciences

Basal Statistik. Sammenligning af grupper. Praktisk håndtering af data. Vitamin D eksemplet. Faculty of Health Sciences Faculty of Health Sciences Sammenligning af grupper Basal Statistik Sammenligning af grupper, Variansanalyse Sammenligning af to grupper: T-test Dimensionering af undersøgelser Sammenligning af flere end

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 12. september / 116

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 12. september / 116 Faculty of Health Sciences Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 12. september 2017 1 / 116 Sammenligning af grupper Sammenligning af to grupper: T-test Dimensionering

Læs mere

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Køn. Holdning Mænd Kvinder Ialt JA NEJ VED IKKE

Køn. Holdning Mænd Kvinder Ialt JA NEJ VED IKKE Økonomisk Kandidateksamen Teoretisk Statistik Eksamenstermin: Sommer 2004, dato: 3. juni 4 timers prøve med alle hjælpemidler, besvarelse på Dansk Opgave En simpel tilfældig stikprøve på 500 udtrukket

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Ensidet variansanalyse

Ensidet variansanalyse Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 11. juni Opgavesættet består af 4 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Statistiske Modeller 1: Kontingenstabeller i SAS

Statistiske Modeller 1: Kontingenstabeller i SAS Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.

Læs mere

Basal statistik. 16. september 2008

Basal statistik. 16. september 2008 Basal statistik 16. september 2008 En- og to-stikprøve problemer sammenligning af to situationer: parret t-test Wilcoxon signed rank test logaritmetransformation sammenligning af to grupper uparret t-test

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen Introduktion til Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere