Paradokser og Opgaver
|
|
|
- Gerda Frank
- 9 år siden
- Visninger:
Transkript
1 Paradokser og Opgaver Mogens Esrom Larsen Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail eller per almindelig post (se adresse på bagsiden). Første indsendte, korrekte løsning til en af de stillede opgaver bringes i næste nummer af Gamma. Opgave Firkantet D E F A C B Lad C være et vilkårligt punkt på liniestykket AB mellem A og B, og tegn halvcirkler til samme side over diametrene AB, AC og CB. Lad D være det punkt på halvcirklen AB, der har CD vinkelret på AB, og lad EF være fællestangenten til de to små halvcirkler. 36 Vis, at ECF D er et rektangel.
2 Gamma 149 Paradokser og opgaver Opgave Trekantet A F E B D C Trekanten ABC er ligebenet med AB = AC, D er midtpunktet på BC, E på AC er det punkt, hvor ED er vinkelret på AC og F er midtpunktet af DE. Vis, at AF står vinkelret på BE. Opgave Kvadratisk n er et helt tal, så 2n+1 er et kvadrattal. Vis, n+1 er sum af to sukcessive kvadrattal. Svar Heltalligt Bestem alle hele tal, n > 1, for hvilke 2n +1 n er et helt tal. 2 Det er klart, at tallet n = 3 har egenskaben (1). Jeg påstår, at det er det eneste tal n > 1 med denne egenskab. Beviset består af følgende trin: (i) Hvis n har egenskaben (1), er n ulige. (ii) Hvis n har egenskaben (1), har n også egenskaben n 2 n + 1 (2) (iii) Hvis n har egenskaben (2), og p er den største primtalsdivisor i n, gælder n 2 n/p
3 Paradokser og opgaver Gamma 149 (iv) Hvis n har egenskaben (2), og p er den største primtalsdivisor i n, har tallet n/p egenskaben (2). (v) Hvis n har egenskaben (2), er n delelig med 3, og hvis n > 3, er n deleligt med 3 2. item(vi) Hvis n er delelig med 3 2, har n ikke egenskaben (1). Påstanden følger let af (i) (vi). Bevis for (i): Da 2 n + 1 er ulige, må n være ulige. Bevis for (ii): Klart. Bevis for (iii): Betragt den multiplikative gruppe G bestående af de restklasser modulo n, som er primiske med n. Hvis n har primfaktoropløsningen n = p e 1 1 p e 2 2 p e k k, hvor 2 < p 1 < p 2 < < p k, er G s orden og altså har vi φ(n) = (p 1 1)p e (p 2 1)p e (p k 1)p e k 1 k, 2 φ(n) = 1 i G. Ifølge (2) er 2 n = 1 i G, og altså 2 2n = 1 i G. Lad o betegne ordenen af 2 s restklasse i gruppen G. Så er o divisor i såvel φ(n) som 2n. Da p k kun forekommer i potensen e k 1, forekommer p k højst i potensen e k 1 i o s primfaktoropløsning, og da o er divisor i 2n, er o divisor i 2p e 1 1 p e 2 2 p e k 1 k. Da p k er ulige, følger heraf, at o er divisor i p e 1 1 p e 2 Da 2 pe 1 1 pe 2 2 pe k 1 k (p k 1) = 1 i G. n/p k = p e 1 1 p e 2 2 p e k 1 k = n p e 1 1 p e 2 2 p e k 1 k (p k 1) 2 p e k 1, og altså at k er 2 n/p k = 2 n 2 pe 1 1 pe 2 2 pe k 1 k (p k 1) = 1 i G, 38
4 Gamma 149 Paradokser og opgaver som påstået. Bevis for (iv): En umiddelbar følge af (iii). Bevis for (v): Ved brug af (iv) kan vi successivt fjerne primfaktorer i n, indtil vi ender med en divisor d af formen d = p(= p 1 ), og med egenskaben (2). Ved at bruge (iii) med n erstattet af p fås p 2 p/p + 1 = 3, og altså p = 3. Hvis n > 3, udfører vi den samme proces (at fjerne primfaktorer), men nu standser vi, når der er to primfaktorer i d, altså ved en divisor d i n af formen 3d, og med egenskaben (2). Nu bruger vi (iii) med n erstattet af d, og får og altså d = p 2 3p/p + 1 = 9, Bevis for (vi): Vi viser først, at der for ethvert positivt helt tal k gælder, at 2 3k + 1 kan skrives 2 3k + 1 = (3m + 1)3 k+1, hvor m er et helt tal. Beviset føres ved induktion. Påstanden er opfyldt for k = 1 med m = 0, så lad os antage, at den er opfyldt for k, og lad os se på som udregnes til 2 3k = ((3m + 1)3 k+1 1) 3 + 1, ((3m + 1)3 k+1 ) 3 3((3m + 1)3 k+1 ) 2 + 3(3m + 1)3 k+1, der har den ønskede form. Lad nu n være et ulige tal, som er deleligt med 3 2 (tilfældet n lige er uinteressant ifølge (i)), og lad os skrive n på formen n = 3 k u, hvor k 2 og u er et ulige tal, som ikke er deleligt med 3. 39
5 Paradokser og opgaver Gamma 149 Så er 2 n + 1 = ((3m + 1)3 k+1 1) u + 1 = u j=1 u ( 1) u j ((3m + 1)3 k+1 ) j. j Her er alle led undtagen leddet svarende til j = 1 delelige med 3 2k, men så er 2 n + 1 ikke deleligt med 3 2k, og derfor heller ikke med n 2. Svar Trekantet I en spidsvinklet trekant ABC skærer vinkelhalveringslinien fra A siden BC i punktet L og den omskrevne cirkel i punktet N. Fra punktet L nedfældes de vinkelrette på AB og AC, fodpunkterne kaldes hhv. K og M. Vis, at firkanten AKNM har samme areal som trekanten ABC. A M K L Q B C P N Længden af et linjestykke, fx BN, betegnes BN og arealet af en polygon, fx AKNM, betegnes AKN M. Da BAN = N AC, er BN = NC, og altså BN = CN. Fra punktet N nedfældes de vinkelrette på AB og AC; fodpunkterne kaldes hhv. P og Q. Af symmetrigrunde er KL = LM og P N = NQ. I de retvinklede trekanter P BN og QCN er P N = QN og BN = CN, og altså har vi også P B = QC. I de to trekanter LBP og LCQ er grundlinierne BP og CQ lige lange, og da højderne LK og LM også er lige lange, er LBP = LCQ. Da linjerne KL og P N er parallelle er KP L = KNL, og analogt er LQM = LNM (iøvrigt er trekanterne KP L og MQL kongruente, og det samme gælder KN L og M N L, men det får vi ikke brug for). 40
6 Gamma 149 Paradokser og opgaver Af antagelsen om, at ABC er spidsvinklet, følger let, at punkterne K og M ligger i det indre af siderne AB og AC. For bestemtheds skyld antages det, at B > C (tilfældet B = C er let). Da NBA = NBC + B = A 2 + B A + B + C > = π 2 2, ligger fodpunktet P på AB s forlængelse, og på den anden side ses Q at ligge på liniestykket AC mellem M og C. Vi har så Svar Retvinklet ABC = AKL + KBL + ALM + LCM = AKL + KP L BP L + ALM + LQM LCQ = AKL + KNL + ALM + LNM = AKNM QED. ABC er retvinklet med den rette vinkel i A. Lad D være fodpunktet for højden fra A. Linien gennem centrene for de indskrevne cirkler i trekanterne ABD og ACD skærer siderne AB og AC i hhv. K og L. Vis at arealet af AKL er højst halvt så meget som arealet af ABC. B E = K F D H Q A G = L Lad AF E være billedet af ABD ved spejlingen i halveringslinjen for BAD, og lad AHG Af symmetrigrunde er den indskrevne cirkel for ABD også indskrevet i AF E, og den indskrevne cirkel for ACD også indskrevet i AHG. C 41
7 Paradokser og opgaver Gamma 149 Da AE = AG, er AE og AG sider i et kvadrat AEQG, hvis fjerde vinkelspids Q er skæringspunktet mellem de to linjer, der indeholder linjestykkerne EF og GH. Da diagonalen EG halverer vinklerne AEF og AGH, ligger centrene for begge de betragtede indskrevne cirkler på EG, og altså er E = K og G = L. Da kvadratet AEQG er indeholdt i polygonen AEF HG, er ABC = AEF + AGH AEQG = 2 AEG, som påstået. Det ses, lighedstegnet gælder, hvis og kun hvis AB = AC. Svar Begge dele Lad D være et punkt inden i en spidsvinklet trekant, ABC, sådan at ADB = ACB + 90 og AC BD = AD BC (a) Beregn værdien af forholdet AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden. Lad K være et vilkårligt punkt på linien CD udenfor C. Vinklerne ved D opfylder, at ADK = CAD+ ACD og BDK = CBD+ BCD. Lægger vi dem sammen, får vi ADB = CAD + CBD + ACB. Sammen med første betingelse i opgaven giver det Denne ligning er nøglen til opgavens løsning. CAD + CBD = 90. (1) 42
8 Gamma 149 Paradokser og opgaver C E D B A K (a) Der tegnes en retvinklet trekant, BCE, med E udenfor ABC, så BCE CAD. Så er og CAD = CBE, ACD = BCE (2) AD AC = BE BC, CA CB = CD CE Den anden ligning i (2) medfører, at ACB = DCE; dette, kombineret med den anden ligning i (3) viser, at trekanten ABC er ensvinklet med DEC, og derfor, at AB AC = DE DC, (4) Den første ligning i (2) sammen med formel (1) giver (3) DBE = CBD + CBE = CBD + CAD = 90. Endelig følger af første ligning i (3) og den anden betingelse i opgaven (AC BD = AD BC), at BD = BE. Derfor er DBE en ligebenet retvinklet trekant, og altså er DE = 2 BD. Indsættes dette i formel (4), får vi resultatet i (a): AB CD AC BD = 2. 43
9 Paradokser og opgaver Gamma 149 C X E Y A D K (b) Betragt de omskrevne cirkler om trekanterne ACD og BCD. Lad CX være tangenten til den første cirkel i C og lad CY være tangenten til den anden cirkel i C (X og Y er punkter på tangenterne). Så er DCX = CAD og DCY = CBD. Derfor er ifølge (1) DCX + DCY = 90. Og da CD ligger inden for vinklen dannet af CX og CY, slutter vi, at de to tangenter står vinkelret på hinanden. Svar Elementært Lad n være et positivt helt tal og lad A 1, A 2,..., A 2n+1 være delmængder af en mængde, B. Antag, at (a) hver mængde A i har netop 2n elementer, (b) hver fællesmængde A i A j, i j, har præcis ét element, (c) hvert element i B ligger i mindst to af mængderne A i. For hvilke værdier af n kan man give hvert element i B en værdi, 0 eller 1, sådan at hver mængde A i har nøjagtig n elementer af værdi 0? Vi viser først, at betingelsen (c) kan skærpes til følgende: (d) hvert element i B ligger i netop to af mængderne A i. Antag, at et element, x 0 ligger i de tre mængder, A k, A l og A m. Fjern m fra mængden {1, 2,, 2n+1}; tilbage er en mængde M af 2n elementer. Til hveret j M tilegnes det element i A m, der tillige ligger i A j ; der er kun et sådant element ifølge (b). Lad os kalde det g(j); så er specielt g(k) = x 0 og g(l) = x 0. Det følger nu af (c) at funktionen g afbilder M på A m, der jo også har netop 2n elementer, (a). Derfor er g bijektiv, en modstrid. 44 B
10 Gamma 149 Paradokser og opgaver Vi kan tælle det samlede antal elementer af værdi 0 ved successivt at gennemløbe de 2n + 1 mængder, A i, og i hver af dem registrere de elementer af værdi 0, som vi støder på. Det giver ialt (2n + 1)n elementer af værdi 0, men da hvert af dem ligger i 2 af mængderne A i, bliver hvert af dem talt med 2 gange, og altså må antallet (2n + 1)n være lige, dvs n må være lige. Jeg vil omvendt vise, at hvis n er lige, så er det muligt at give elementerne i B værdierne 0 og 1 sådan, at hver mængde A i indeholder n elementer af værdi 0. Dertil definerer vi en afstand d på mængden {1, 2,, 2n + 1} ved d(i, j) = min{ i j, 2n + 1 i j } (det er let at se, men i realiteten uvigtigt, at d faktisk er en metrik). Lad nu b B være givet, og lad i og j i være bestemt således, at b A i A j. Så tilskriver vi b værdien 0, hvis og kun hvis d(i, j) n/2. Denne fordeling opfylder, at hver mængde, A i har netop n elementer af værdi 0. Det er lettest at overskue, hvis problemstillingen anskueliggøres ved hjælp af en regulær (2n + 1) kant M med vinkelspidser P i, i = 1, 2,, 2n + 1, og B identificeres med mængden af sider og diagonaler i M, medens A i betegner mængden af sider og diagonaler med P i som det ene endepunkt. Den foreslåede tilskrivning af værdierne 0 og 1 svarer til, at elementer i A i, der får værdien 0, er de n korteste linjer, der udgår fra P i. 45
11 Paradokser og opgaver Gamma
12 .
Paradokser og Opgaver
Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail ([email protected]) eller per almindelig post (se adresse på
Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:
Geometrinoter, januar 009, Kirsten Rosenkilde 1 Geometrinoter Disse noter omhandler sætninger om trekanter, trekantens ydre røringscirkler, to cirklers radikalakse samt Simson- og Eulerlinjen i en trekant.
1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.
Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt
Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.
Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler
1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.
Geometrinoter, maj 007, Kirsten Rosenkilde 1 Geometrinoter Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, indskrivelige
dvs. vinkelsummen i enhver trekant er 180E. Figur 11
Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.
Trekants- beregning for hf
Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel
Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri
Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når
Om ensvinklede og ligedannede trekanter
Om ensvinklede og ligedannede trekanter Vi vil her give et bevis for sætningen, der siger at for trekanter er begreberne ensvinklet og ligedannet det samme. Sætningen er langt fra trivial trekanter er
Sorø 2004. Opgaver, geometri
Opgaver, geometri 1. [Balkan olympiade 1999]. For en given trekant ABC skærer den omskrevne cirkel BC s midtnormal i punkterne D og E, og F og G er spejlbillederne af D og E i BC. Vis at midtpunkterne
Finde midtpunkt. Flisegulv. Lygtepæle
Finde midtpunkt Flisegulv Lygtepæle Antal diagonaler Vinkelsum Vinkelstørrelse Et lille geometrikursus Forudsætninger (aksiomer): Parallelle linjer skærer ikke hinanden uanset hvor meget man forlænger
1 Oversigt I. 1.1 Poincaré modellen
1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,
geometri trin 2 brikkerne til regning & matematik preben bernitt
brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er
TALTEORI Wilsons sætning og Euler-Fermats sætning.
Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan
Tip til 1. runde af Georg Mohr-Konkurrencen. Geometri. Georg Mohr-Konkurrencen
Tip til. runde af Georg Mohr-Konkurrencen Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en teoretisk indføring, men der i stedet fokus på
Affine transformationer/afbildninger
Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning
Paradokser og opgaver Gamma 146 Opgave { Kombinatorik Lad p n (k) vre antallet af permutationer af n elementer med netop k xpunkter. Vis formlen Opgav
Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne lserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail ([email protected]) eller per almindelig post (se adresse pa
1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.
Geometrinoter 1, januar 009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt
Rettevejledning til Georg Mohr-Konkurrencen runde
Rettevejledning til Georg Mohr-Konkurrencen 2006 2. runde Det som skal vurderes i bedømmelsen af en opgave, er om deltageren har formået at analysere problemstillingen, kombinere de givne oplysninger til
Geometri Følgende forkortelser anvendes:
Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien
GeomeTricks Windows version
GeomeTricks Windows version Elevarbejdsark MI 130 En INFA-publikation - 1998 GeomeTricks - Elevarbejdsark Viggo Sadolin 16 september 1997 Oversigt over elevarbejdsarkene Klassetrin Type ark 3 4 5 6 7 8
Projekt 2.4 Euklids konstruktion af femkanten
Projekter: Kapitel Projekt.4 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære femkant. 0. Forudsætninger, definitioner og
Elevark Niveau 2 - Side 1
Elevark Niveau 2 - Side 1 Opgave 2-1 Brug (Polygon-værktøjet) og tegn trekanter, der ligner disse: Brug (Tekstværktøjet) til at skrive et stort R under de retvinklede trekanter Se Tip 1 og 2 Elevark Niveau
brikkerne til regning & matematik geometri F+E+D preben bernitt
brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun
Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde
Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne
Tip til 1. runde af Georg Mohr-Konkurrencen Geometri
Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,
Talteoriopgaver Træningsophold ved Sorø Akademi 2007
Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2
Bjørn Grøn. Euklids konstruktion af femkanten
Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen
*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser
*HRPHWUL PHG *HRPH7ULFNV q2nodvvh - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser INFA 1998 1 Forord I den nye læseplan for matematik og i den tilhørende undervisningsvejledning
Geometriske eksperimenter
I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor
Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)
1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6
Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.
Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske
Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.
6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle
Projekt 3.3 Linjer og cirkler ved trekanten
Projekt 3.3 Linjer og cirkler ved trekanten Midtnormalerne i en trekant Konstruer et linjestykke (punkt-menuen) og navngiv endepunkterne A og B (højreklik og vælg: Etiket), dvs. linjestykket betegnes AB.
hvor 2 < p 1 < p 2 < < p k, er G s orden φ(n) = (p 1 1)p e 1 1
1 FTERMTH LØSNINGER Opgaverne er fra International Mathematical Olympiads, 1990,3, 1987,2, 1986,1, 1986,5, 1986,6, 1988,5, 1993,2, 1988,2. Nogle af opgaverne er løst af Ebbe Thue Poulsen. Heltalligt estem
Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)
Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder
Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:
Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.
Matematik. Meteriske system
Matematik Geometriske figurer 1 Meteriske system Enheder: Når vi arbejder i længder, arealer og rummål er udgangspunktet metersystemet: 2 www.ucholstebro.dk. Døesvej 70 76. 7500 Holstebro. Telefon 99 122
Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.
Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske
1 Geometri & trigonometri
1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant
Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.
Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med
1 Trekantens linjer. Indhold
Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter
TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)
Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale
************************************************************************
Projektet er todelt: Første del har fokus på Euklids system og består af introduktionen, samt I og II. Anden del har fokus på Hilberts system fra omkring år 1900 og består af III sammen med bilagene. Man
Undersøgelser af trekanter
En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,
Løsningsforslag til Geometri 4.-10. klasse
Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem
Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:
Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med
Forslag til løsning af Opgaver til analytisk geometri (side 338)
Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,
Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Allan C. Malmberg
Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Seneste
GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)
Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på
Tegning. Arbejdstegning og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn fra tre synsvinkler
Tegning Arbejds og isometrisk Ligedannede figurer Målestoksforhold Konstruktion Perspektiv Kassens højde Bundens bredde dybde Hullets diameter Afstand mellem hul og bund Højde over jorden Musvit 30 10
På opdagelse i GeoGebra
På opdagelse i GeoGebra Trekanter: 1. Start med at åbne programmet på din computer. Du skal sørge for at gitteret i koordinatsystem er sat til. Dette gør vi ved at trykke på Vis oppe i venstre hjørne og
Eksempel på den aksiomatisk deduktive metode
Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13
Geometriske konstruktioner: Ovaler og det gyldne snit
Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer
Besvarelse af stx_081_matb 1. Opgave 2. Opgave 1 2. Ib Michelsen, 2z Side B_081. Reducer + + = + + = Værdien af
Ib Michelsen, z Side 1 7-05-01 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 Besvarelse af stx_081_matb 1 Opgave 1 Reducer ( x + h) h( h + x) ( x h) h( h x) + + = x h xh h h x x + + = Værdien
TALTEORI Ligninger og det der ligner.
Ligninger og det der ligner, december 006, Kirsten Rosenkilde 1 TALTEORI Ligninger og det der ligner. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne Terps og Peter
Geometri med Geometer I
f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller
Geometrisk tegning - Facitliste
Geometrisk tegning - Facitliste Om kapitlet I dette kapitel om geometrisk tegning skal eleverne arbejde med forskellige tegneteknikker og hjælpemidler. De skal gengive og undersøge muligheder og begrænsninger
Værktøjskasse til analytisk Geometri
Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold
Tidsskrift for fysik Forår 2008 Nr. 149
Afsender: Gamma Niels Bohr Institutet Blegdamsvej 17 2100 København Ø Returneres ved varig adresseændring MAGASINPOST B Gamma Γ Tidsskrift for fysik Forår 2008 Nr. 149 Fortale..................................
Værktøjskasse til analytisk Geometri
Værktøjskasse til analytisk Geometri Frank Nasser 0. april 0 c 008-0. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.
Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår
Pythagoras Ensvinklede trekanter Trigonometri. Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen
MATEMATIKBANKENS P.E.T. KOMPENDIUM Pythagoras Ensvinklede trekanter Trigonometri Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen FORENKLEDE FÆLLES MÅL FOR PYTHAGORAS, ENSVINKLEDE TREKANTER
Svar på opgave 322 (September 2015)
Svar på opgave 3 (September 05) Opgave: En sekskant har sidelængder 7 7. Bestem radius i den omskrevne cirkel hvis sekskanten er indskrivelig. Besvarelse: ny version 6/0-05. metode. Antag at sekskanten
bruge en formel-samling
Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber
1.1.1 Første trin. Læg mærke til at linjestykket CP ikke er en cirkelbue; det skyldes at det ligger på en diameter, idet = 210
1.1 Konstruktionen Denne side går lidt tættere på den hyperbolske geometri. Vi bruger programmet HypGeo, og forklarer nogle geometriske konstruktioner, som i virkeligheden er de samme, som man kan udføre
Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -
2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...
2. Gruppen af primiske restklasser.
Primiske restklasser 2.1 2. Gruppen af primiske restklasser. (2.1) Setup. I det følgende betegner n et naturligt tal større end 1. Den additive gruppe af restklasser modulo n betegnes Z/n, og den multiplikative
Trigonometri. for 9. klasse. Geert Cederkvist
Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,
STUDENTEREKSAMEN MAJ-JUNI 2009 2009-8-2 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER
STUDENTEREKSAMEN MAJ-JUNI 009 009-8- MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Mandag den 11. maj 009 kl. 9.00-10.00 BESVARELSEN AFLEVERES KL. 10.00 Der tildeles
Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65
Euklid Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65 Indledning "Matematikeren Euklid levede og virkede omtrent 300 aar
Forslag til løsning af Opgaver om areal (side296)
Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler
Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.
Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske
Korncirkler og matematik
Korncirkler og matematik I den følgende opgave vil jeg undersøge om korncirkler indeholder matematiske figurer nærmere bestemt det gyldne snit, det gyldne rektangel og den gyldne spiral. Før jeg starter
GEOMETRI og TRIGONOMETRI del 2
GEOMETRI og TRIGONOMETRI del x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse COS, SIN, TAN og RETVINKLEDE TREKANTER... 3 Vinkler målt i radianer:... 6 Grundrelationen:... 8 Overgangsformler:...
Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende
Forslag til løsninger til opgaver i Matematik En grundbog for lærerstuderende Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave Vi skal tegne alle de linjestykker, der forbinder
Blandede opgaver x-klasserne Gammel Hellerup Gymnasium
Blandede opgaver -klasserne Gammel Hellerup Gymnasium Marts 09 ; Michael Szymanski ; [email protected] Indholdsfortegnelse Blandede opgaver... Årsprøve. 08... 7 Årsprøve. 07... 9 Årsprøve. 06... Årsprøve. 04...
Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c
Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole
Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8
Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt
GEOMETRI og TRIGONOMETRI del 1
GEOMETRI og TRIGONOMETRI del 1 x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse EUKLIDS ELEMENTER... 3 Euklids sætninger fra 1. bog... 11 TREKANTER: Egenskaber og notation... 15 LIGEDANNEDE FIGURER...
GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y
GEOMETRI Generelt om inkler Nottion for inkler: u, A, BAC Topinkler er lige store, x y Komplementinkler er inkler, der tilsmmen er 90 u + 90 Supplementinkler er inkler, der tilsmmen er 180 (I stedet for
Blandede opgaver x-klasserne Gammel Hellerup Gymnasium
Blandede opgaver -klasserne Gammel Hellerup Gymnasium Maj 09 ; Michael Szymanski ; [email protected] Indholdsfortegnelse Blandede opgaver... Årsprøve. 09... 9 Årsprøve. 08... Årsprøve. 07... Årsprøve. 06... 5
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....
Opgaver hørende til undervisningsmateriale om Herons formel
Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og
Facitliste til elevbog
Facitliste til elevbog Algebra a 8x 4 b 6x c 7x 8 d 0 5x e x 54 f 8x 6 x a x 7x + 4 b 48a 4 + 8a c 56x + x d 6a 4 5a e 4x 80x f 6a 4 4a a 8(x + ) b 5x(4x 7) c 4( a) d 9a ( a) e 4( + 7a ) f 6(x + y) 4 a
Vektorer og lineær regression
Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden
Matematisk induktion
Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag
Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri
Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11
