Matematiklærerdag 11. marts 2005
|
|
|
- Pia Juhl
- 9 år siden
- Visninger:
Transkript
1 Global Position System - Galileo Matematiklærerdag 11. marts 2005 Johan P. Hansen [email protected] Institut for Matematiske Fag Aarhus Universitet matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.1/18
2 GPS og Galileo matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.2/18
3 Baggrund Som en del af den kolde krigs våbenkapløb besluttede US Department of Defense at udvikle et positionssystem, der gjorde det muligt for en ubåd hurtigt og præcist at bestemme sin position og affyre sine våben. Raketter var allerede så præsice, at de kunne ramme, hvad som helst blot de kendte affyringspositionen. Det kostede 12 milliarder US dollars og er nu tilgængeligt for alle. USSR har et tilsvarende militært system. Galileo er et nyt europæisk system under udvikling, der forventes at være i fuld drift i Systemet vil kunne arbejde sammen med og supplere GPS. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.3/18
4 Galileo: Europe shows the way The deployment phase for GALILEO, the European programme of civil radio-navigation by satellite is imminent. It will begin in GALILEO is compatible and interoperable with the American GPS, but will furnish a more precise, continuous and guaranteed signal. It will allow a multitude of applications for the general public and professionals on a worldwide scale as from it becoming operational in The recently operational EGNOS system is the precursor of GALILEO. The economic benefits expected from GALILEO are staggering and explain the commercial attraction of the programme and the commitment of the private sector. Precision, reliability, the multiple applications of GALILEO and its global coverage explain why many third countries wish to participate in the programme. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.4/18
5 Galileo Galileo vil, når det i 2008 er i endelig drift, bestå af 30 satellitter i 3 planer - i nøjagtigt bestemte baner km oppe. Satelitterne er udstyret med præcise atomure, som angiver tiden med stor nøjagtighed - afvigelse højst 10 8 sekund pr. døgn, hvilket giver en meters unøjagtighed i positionsbestemmelsen. et antal jordstationer, der nøje korrigerer for unøjagtigheder i baner og synkroniserer tiden i satelliturene. Personlige modtagere, der kan købes til en pris af 1000 kr. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.5/18
6 Virkemåde - rumlig triangulering Den personlige modtager bestemmer afstanden til 3 af satelitterne, ved at bestemme tiden det tager for et signal at komme frem. Det giver 3 ligninger til at bestemme de 3 koordinater til positionen (x, y, z). Geometrisk udtrykker ligningerne, at positionen er på fællesmængden af 3 kugleflader - altså forventeligt 2 løsninger, hvoraf den ene kan forkastes udfra en rimelighedsbetragtning. Princippet er enkelt, men forudsætter at den personlige modtager har et MEGET nøjagtigt ur, der går synkront med urene i satellitterne. En fejl på 10 3 sekund resulterer i en positionsfejl på 300 km. at der er en effektiv og nøjagtig metode til afstandsbestemmelse under forudsætning af synkrone ure. Hvordan disse 2 forudsætgninger sikres ved hjælp af matematik er foredragets temaer. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.6/18
7 Virkemåde - synkronisering af det lokale ur Det meget præsice ur haves selvsagt ikke på den lokale modtager til en pris af 1000 kr.; men kan laves på en elegant matematisk måde. Betragt fejlen på uret i din lokale modtager som en variabel. Mål ikke til 3 men til 4 satelitter for at opstille 4 ligninger til bestemmelse af de 4 variable x, y, z,. En lokal modtager bestemmer altså ikke blot positionen; men er også et meget nøjagtigt ur, fordi det ved hjælp af matematik synkroniserer til satellit-urene. Nu skal vi se hvordan. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.7/18
8 Matematisk synkronisering Lad (x, y, z) være koordinaterne til den ukendte position og (x k, y k, z k ), i = 1,2, 3,4 de kendte koordinater til 4 satelitter. Fejlen i uret på den lokale modtager, betegner vi, så vi måler med en fejl på d = c, hvor c er lysets hastighed. Den målte afstand er derfor d k = q (x x k ) 2 + (y y k ) 2 + (z z k ) 2 + d som medfører, at (x 2 k + y2 k + z2 k d2 k ) 2(x kx + y k y + z k z d k d) + (x 2 + y 2 + z 2 d 2 ) = 0 Disse 4 sammenhørende ligninger kan med fordel løses ved skift matrix notation. Bemærk, at vi vil bestemme de med rødt angivne variable. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.8/18
9 Matematisk synkronisering Definer et skalarprodukt på R 4 ved a,b := a t Mb, M = C A og lad r = 0 1 x y, r zc k = A d 0 x k y k z k d k 1 C A I denne notation kan ligningerne skrives 1 2 r k,r k r k,r r,r = 0 matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.9/18
10 Matematisk synkronisering Med notationen 0 1 x 1 y 1 z 1 d 1 x 2 y 2 z 2 d 2 B :=, α = x 3 y 3 z 3 d 3 C A x 4 y 4 z 4 d r 1,r 1 r 2,r 2, e = r 3,r 3 C A r 4,r , Λ := 1 1C 2 r,r A 1 kan ligningerne skrives og løsningen bliver α BMr + Λe = 0 r = MB 1 (Λe + α). Sætter vi ovenstående udtryk for r ind i Λ := 1 r,r får vi, idet vi udnytter at 2 M(a), M(b) = a,b, en andengradsligning til bestemmelse af Λ B 1 e, B 1 e Λ B 1 e, B 1 α Λ + B 1 α, B 1 α = 0 matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.10/18
11 Afstandsbestemmelse Måler den tid et radiosignal er undervejs fra satelit til modtager. Dertil bruges en generator af tilfældige tal. Satellitten udsender følgende: et tal for hvert klokkeslag. GPS-modtageren har samme generator. GPS-modtageren sammenligner egen følge med den modtagne. En forskydning her er udtryk for en tidsforsinkelse. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.11/18
12 Lineære skifte registre Generatoren af tilfældige tal, der bruges i GPS-systemet er et Lineært skifte register af bloklængde 10. Faktisk bruges der 2 registre og militæret bruger et af længde 12. Det virker sådan her: Registret har en starttilstand Første tal udlæses, de øvrige flyttes en plads til venstre. Sidste plads gives en vædi svarende til en bestemt lineær sum af de 10 foregående tal, hele tiden beregnet modulo 2. Det kunne for eksempel være summen af 3. og 10. tal. Det ville give sekvensen hvilket faktisk er den ene af de to, der bruges i GPS. Efter 1023 klokkeslag, står vi med det register vi startede med. Vi siger, at perioden er 1023 matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.12/18
13 Registre og maksimal periode De værdier, som registret af bloklængde r udlæser udgør en følge af binære tal a 0, a 1, a 2,... og der er en rekursionsligning: a n = c 1 a n 1 + c 2 a n c r a n r mod 2, hvor c i er konstanter lig med 0 eller 1. Startværdierne benævnes a r,..., a 1. For et register af længde r er der 2 r mulige tilstande, idet der på hver af de r pladser kan stå enten 0 eller 1. Specialtilfældet, hvor alle pladserne er 0, har periode 1. For andre er det maksimale antal tilstande 2 r 1, som dermed er den maksimale periode for et register. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.13/18
14 Generende funktion Den genererende funktion er Vi har G(x) := X n=0 a n x n. G(x) = X rx c i a n i x n = n=0 i=1 rx X c i x i a n i x n i = i=1 n=0 rx c i x i (a i x i + +a 1 x 1 +G(x)) i=1 Vi får, at Polynomiet G(x) = P r i=1 c ix i (a i x i + + a 1 x 1 ) f(x) = 1 1 P r i=1 c ix i rx c i x i i=1 i nævneren kaldes det karakteristiske polynomium for registret. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.14/18
15 De karakteristiske polynomier i GPS De to registre, der bruges i GPS-systemets civile del, har de karakteristiske polynomier : 1 + x 3 + x 10, 1 + x 2 + x 3 + x 8 + x 9 + x 10 Ved en kombination af de to registre sender satellitten et periodisk signal med en periode på ca. 1,5 sek., svarende til ca km. (Militærets signal har en periode på ca. en uge). matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.15/18
16 Perioden Sætning. Antag a 1 = a 2 = = a r+1 = 0, a r = 1. Perioden er lig med det mindste hele tal p, så det karakteristiske polynomium f(x) er en divisor i 1 x p. Bevis: Med de givne startværdier og periode p har vi, at G(x) = 1 f(x) = a 0 + a 1 x +... a p 1 x p 1 + x p (a 0 + a 1 x +... a p 1 x p 1 ) + x 2p (a 0 + a 1 x +... a p 1 x p 1 ) +... = (a 0 + a 1 x +... a p 1 x p 1 ) 1 1 x p Så f(x)(a 0 + a 1 x +... a p 1 x p 1 ) = 1 x p og f(x) er en divisor i 1 x p. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.16/18
17 Perioden Antag omvendt, at f(x) er en divisor i 1 x q. Altså, at f(x)(b 0 + a 1 x +... b p 1 x p 1 ) = 1 x q. Så er G(x) = 1 f(x) = b 0 + a 1 x +... b p 1 x p 1 1 x q = (b 0 +a 1 x+... b p 1 x p 1 )(1+x q +x 2q +x 3q +... ) Da G(x) = a 0 + a 1 x + a 2 x har vi, at q = p, at a i = b i for alle i og at perioden er lig med p. matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.17/18
18 Perioden Hvis registret har maksimal periode, så er det karakteristiske polynomium irreducibelt. Vises ved brug af ovenstående sætning. Det omvendte gælder ikke: 1 + x + x 2 + x 3 + x 4 er irreducibelt; men registret har kun periode 5. Hvis det karakteristiske polynomium er irreducibelt, så er perioden en divisor i 2 r 1. Hvis 2 r 1 er et primtal, så giver ethvert irreducibelt polynomium anledning til et register af maksimal længde 2 r 1. Primtal på formen 2 r 1 kaldes Mersenne primtal. Det største man kender er matematikdag.tex Global Position System - Galileo Johan P. Hansen 14/3/ :18 p.18/18
Matematikken bag satellitnavigation GPS - GLONASS - GALILEO
GPS - GLONASS - GALILEO Johan P. Hansen 1 1 Institut for Matematik, Aarhus Universitet Disposition 1 Retningsbestemt navigation 2 Hyperbel navigation - DECCA og LORAN 3 Militær og kommerciel baggrund GALILEO
Matematikken navigation Kronometer - Mercator - Hyperbel GPS/Galileo
Matematikken navigation Kronometer - Mercator - Hyperbel GPS/Galileo Johan P. Hansen 1 1 Institut for Matematik, Aarhus Universitet Disposition 1 Kuglen - koordinater 2 3 Hyperbel navigation - DECCA og
Foredrag i Eulers Venner 30. nov. 2004
BSD-prosper.tex Birch og Swinnerton-Dyer formodningen Johan P. Hansen 26/11/2004 13:34 p. 1/20 Birch og Swinnerton-Dyer formodningen Foredrag i Eulers Venner 30. nov. 2004 Johan P. Hansen [email protected]
Mikkel Gundersen Esben Milling
Mikkel Gundersen Esben Milling Grundregel nr. 1 En GPS kan og må ikke erstatte navigation med kort og kompas! Kurset Basal brug af GPS Hvad er en GPS og hvordan virker systemet Navigation og positionsformater,
Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning
Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis
Fejlkorligerende køder Fejlkorrigerende koder
Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget
Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier
Noter om polynomier, Kirsten Rosenkilde, Marts 2006 1 Polynomier Disse noter giver en kort introduktion til polynomier, og de fleste sætninger nævnes uden bevis. Undervejs er der forholdsvis nemme opgaver,
Fejlkorligerende køder Fejlkorrigerende koder
Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget
Turneringsplanlægning
Rasmus Vinther Rasmussen Afdelingen for Operations Analyse Aarhus Universitet Matematiklærerdag 006 Er der nogen, der har prøvet at planlægge en turnering? Er der nogen, som har hørt om en turnering, der
Vektorer og lineær regression
Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden
Vektorer og lineær regression. Peter Harremoës Niels Brock
Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene
MATEMATIK A-NIVEAU 2g
NETADGANGSFORSØGET I MATEMATIK NOVEMBER 008 MATEMATIK A-NIVEAU g Prøve november 008 1. delprøve: 1 time med formelsamling samt. delprøve: timer med alle hjælpemidler Alle delspørgsmål indenfor hver af
Egenværdier og egenvektorer
1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.
Jeg foretager her en kort indføring af polynomier over såvel de reelle som
Polynomier, rødder og division Sebastian Ørsted 20. november 2016 Jeg foretager her en kort indføring af polynomier over såvel de reelle som de komplekse tal, hvor fokus er på at opbygge værktøjer til
GPS og geometri - 1 Baggrund. lineære og ikke-lineære ligninger. Køreplan 01005 Matematik 1 - FORÅR 2007
GPS og geometri - lineære og ikke-lineære ligninger Køreplan 01005 Matematik 1 - FORÅR 2007 1 Baggrund GPS (Global Positioining System) er et system, der ved hjælp af 24 satellitter i kredsløb om jorden,
En studerende der har gennemført Geodæsi elementet af kurset vil kunne følgende:
Geodæsi Lars Stenseng [email protected] Læringsål En studerende der har genneført Geodæsi eleentet af kurset vil kunne følgende: Beskrive den grundlæggende virkeåde for GNSS systeer Beskrive de tre
Vi indleder med at minde om at ( a) = a gælder i enhver gruppe.
0.1: Ringe 1. Definition: Ring En algebraisk struktur (R, +,, 0,, 1) kaldes en ring hvis (R, +,, 0) er en kommutativ gruppe og (R,, 1) er en monoide og hvis er såvel venstre som højredistributiv mht +.
Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6
Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne
GeoCaching hvordan man finder det... ved hjælp af satelitter
GeoCaching hvordan man finder det... ved hjælp af satelitter Andreas Ulovec, Universität Wien 1 Introduktion Masser af mennesker bruger GPS til at bestemme deres egen geografiske placering, eller til at
Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)
SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige
Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.
2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X
Lidt alment om vektorrum et papir som grundlag for diskussion
Definition : vektorrum, vektorer Et vektorrum er en mængde af elementer med operationerne sum (+) og numerisk multiplikation (), så følgende regler gælder for alle a, b, c og for alle reelle tal s, t R.
Andengradspolynomier - Gymnasienoter
- Gymnasienoter http://findinge.com/ Tag forbehold for eventuelle fejl/typos. Indhold Forord 3 Toppunktsformlen - Bevismetode 1 4 Toppunktsformlen - Bevismetode 6 Andengradspolynomiets symmetri 7 Rodfaktorisering
Opgave 1 Regning med rest
Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan
Ringe og Primfaktorisering
Ringe og Primfaktorisering Michael Knudsen 16. marts 2005 1 Ringe Lad Z betegne mængden af de hele tal, Z = {..., 2, 1,0,1,2,...}. På Z har to regneoperationer, + (plus) og (gange), der til to hele tal
i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0
BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den
Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015
Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,
Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan
Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles
DiMS 2010 Uge 7,
DiMS 2010 Uge 7, 18.10.10 24.10.10 Læsevejledning Emnerne i denne uge er polynomier og komplekse tal. De kan ikke siges at henhøre under diskret matematik som sådan og er ikke dækket af KBR, så vi skal
Oprids over grundforløbet i matematik
Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere
Matematik B. Studentereksamen
Matematik B Studentereksamen 2stx131-MAT/B-29052013 Onsdag den 29. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Matematik B. Studentereksamen
Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
gl. Matematik B Studentereksamen
gl. Matematik B Studentereksamen gl-2stx131-mat/b-29052013 Onsdag den 29. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl
Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske
2 Erik Vestergaard www.matematikfysik.dk
Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber
Anvendt Lineær Algebra
Anvendt Lineær Algebra Kursusgang 3 Anita Abildgaard Sillasen Institut for Matematiske Fag AAS (I17) Anvendt Lineær Algebra 1 / 38 Vi betragter et lineært ligningssystem (af m ligninger med n ubekendte)
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2
Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket
Københavns Universitet, Det naturvidenskabelige Fakultet. DATALOGI V - Introduktion til Scientific Computing. Projektopgaven 2007
Københavns Universitet, Det naturvidenskabelige Fakultet 1 DATALOGI V - Introduktion til Scientific Computing Projektopgaven 2007 Om selve opgaven Formålet med denne opgave er at give kursusdeltagerne
t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36
Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er
Lineær Algebra - Beviser
Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner
Matematisk modellering og numeriske metoder. Lektion 5
Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at
Noter om primtal. Erik Olsen
Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et
Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009
Lysets hastighed Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.1.009 Indholdsfortegnelse 1. Opgaveanalyse... 3. Beregnelse af lysets hastighed... 4 3.
Komplekse tal og algebraens fundamentalsætning.
Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes
Matematik B. Studentereksamen
Matematik B Studentereksamen stx103-mat/b-10122010 Fredag den 10. december 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
TALTEORI Wilsons sætning og Euler-Fermats sætning.
Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan
Oversigt [LA] 10, 11; [S] 9.3
Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus
Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.
Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter
UNDERVISNINGS MINISTERIET KVALITETS- OG TI LSYNSSTYRELSEN. Maten1atik A. Studenterel<sam.en. Fredag den 22. maj 2015 kl. 9.00-14.
- UNDERVISNINGS MINISTERIET KVALITETS- OG TI LSYNSSTYRELSEN Maten1atik A Studenterel
Matematik A. Studentereksamen
Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Matematik B. Studentereksamen
Matematik B Studentereksamen 2stx111-MAT/B-24052011 Tirsdag den 24. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Matematik 2AL, vinteren
EO 1 Matematik 2AL, vinteren 2002 03 Det er tilladt at skrive med blyant og benytte viskelæder, så længe skriften er læselig, og udviskninger foretages grundigt. Overstregning trækker ikke ned og anbefales
Noter til Perspektiver i Matematikken
Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden
Lineære 1. ordens differentialligningssystemer
enote 7 enote 7 Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses Der bruges egenværdier og egenvektorer i løsningsproceduren,
Matematik B. Studentereksamen
Matematik B Studentereksamen stx13-mat/b-1408013 Onsdag den 14. august 013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Mat H /05 Note 2 10/11-04 Gerd Grubb
Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med
Matematikkens metoder illustreret med eksempler fra ligningernes historie. Jessica Carter Institut for Matematik og Datalogi, SDU 12.
illustreret med eksempler fra ligningernes historie Institut for Matematik og Datalogi, SDU 12. april 2019 Matematiklærerdag, Aarhus Universitet I læreplanen for Studieretningsprojektet står: I studieretningsprojektet
Introduktion til GPS. Søren P. Petersen / dvl-lyngby.dk
Introduktion til GPS Søren P. Petersen / dvl-lyngby.dk Hvad bruges en håndholdt GPS til? Måle tilbagelagt distance og fart Optage spor og markere punkter Navigere til et punkt efter et spor efter en rute
Køreplan Matematik 1 - FORÅR 2005
Lineær algebra modulo n og kryptologi Køreplan 01005 Matematik 1 - FORÅR 2005 1 Introduktion Kryptologi er en ældgammel disciplin, som går flere tusinde år tilbage i tiden. Idag omfatter disciplinen mange
Primtal - hvor mange, hvordan og hvorfor?
Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret
Lineære 1. ordens differentialligningssystemer
enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære
Algebra - Teori og problemløsning
Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.
Tidligere Eksamensopgaver MM505 Lineær Algebra
Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................
[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0
MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...
Kursus i Landmåling, Cad og GIS (LCG) Vej og Trafik, 5. semester og Byggeri og Anlæg, 1. semester
Kursus i Landmåling, Cad og GIS (LCG) Vej og Trafik, 5. semester og Byggeri og Anlæg, 1. semester LCG-2 Introduktion til GPS 1. Observationsteknikker og GPS-koncepter 2. Absolut positionering baseret på
Differentialregning. Ib Michelsen
Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af
Computerundervisning
Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende
Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014
Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx141-MATn/A-22052014 Torsdag den 22. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler
TALTEORI Følger og den kinesiske restklassesætning.
Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man
Pointen med Differentiation
Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd
Talteoriopgaver Træningsophold ved Sorø Akademi 2007
Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2
Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014
Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.
Lad os som eksempel se på samtidigt kast med en terning og en mønt:
SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve
Besvarelser til Lineær Algebra Reeksamen August 2016
Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w
Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation
Lineære 1. ordens differentialligningssystemer
enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære
Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet
Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs101-matn/a-605010 Onsdag den 6 maj 010 kl 0900-1400 Opgavesættet er delt i to dele Delprøve 1: timer med autoriseret
Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1
1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy
Matematikken bag kryptering og signering RSA
Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal
Noget om en symmetrisk random walks tilbagevenden til udgangspunktet
Random Walk-kursus 2014 Jørgen Larsen 14. oktober 2014 Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Dette notat giver et bevis for at en symmetrisk random walk på Z eller Z 2 og
Modulpakke 3: Lineære Ligningssystemer
Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system
