Besvarelse til eksamen i Matematik F2, 2012
|
|
|
- Mia Søndergaard
- 9 år siden
- Visninger:
Transkript
1 Besvarelse til eksamen i Matematik F2, 202 Partiel besvarelse - har ikke inkluderet alle detaljer! Med forbehold for tastefejl. Opgave Find og bestem typen af alle singulariteter for følgende funktioner: a) fz) = z z 2 z) 5 b) fz) = sin z z Angiv ordenen på eventueller poler eller om singulariteterne er essentielle. a) pol af orden 2 for z = 0 og af orden 5 for z =. b) Ingen singulariteter i den endelige komplekse plan. Hævelig singularitet for z = 0. Opgave 2 Find Laurantrækkerne omkring punkterne z 0 for funktionerne a) fz) = z 2) sin ) z+, hvor z0 = b) fz) = z z 2)z+), hvor z 0 = 2 a) fz) = = ) ) 5 + z + ) z +!z + ) + 5!z + )... 5 ) 5 + z + ) 2n + )!z + ) 2n+ b) fz) = 2 z z 2 ) n= 5 n Side af 5
2 Opgave Beregn integralet z z 2) dz langs en cirkel i den komplekse plan med radius r = 4 og centrum i z = 0. Man ser at integralet har en pol af orden i z = 0 og en simpel pol i z = 2. De tilsvarende residuer findes og er Res z=2 = /8 og for z = 0 findes residuet lettest ved en ekspansion z z 2) = 2 z hvoraf man kan aflæse Res z=0 = /8. Dvs. Opgave 4 z 2 ) dz = 2πi/8 /8) = 0 z z 2) Udregn følgende integrale ved kontourintegration i den komplekse plan 2π cos θ + 2 sin θ dθ, Man omskriver sin θ = z /z) og cos θ = z + /z) samt benytter at dθ = dz/iz) 2i 2 og får derved følgende integrale over enhedscirklen i i)z 2 + z + + i dz Polynomiet i nævneren har rødderne z = + i) og z 2 = + i)/2. Kun den ene rod z 2 er inden for enhedscirklen og det tilsvarende residue er i. Dvs. integralet antager værdien: 2π dθ = 2πi i) = 2π cos θ + 2 sin θ Side 2 af 5
3 Opgave 5 Benyt et passende valg af kurveintegraler i den komplekse plan til at finde den principale del principal value) af integralet sinax) dx x Bemærk at integralet egentlig ikke har nogen singularitet for x = 0 og den principale del af integralet er derfor lig det sædvanlige uegentlige integrale. Men vi benytter alligevel omskrivningen sinax) = Imexpiax)) og bemærker, at expiaz)/z nu har en simpel pol for z = 0. Vi finder for a > 0 ved en kontourintegration ud i den komplekse plan og uden om polen i z = 0, at expiaz) P dz = iπ z Bemærk at vi her benytter Jordans lemma. D.v.s. Tilsvarende regnes integralet for a < 0. Opgave 6 Find rækkeudviklingen af funktionen sinax) dx = Imiπ) = π x for følgende tre tilfælde fz) = z2 z + 2 z ) a) z < b) < z < c) z > Besvarelsen følger besvarelsen af den tilsvarende opgave i eksamenssættet for 20. Vi får a) fz) = z 2 z n 2 z Side af 5
4 b) c) fz) = z fz) = z z n 2 z n + 2 z z z Opgave 7 Skriv funktionen fx) = x + x 2 defineret på intervallet x som en række af Legendrepolynomier, d.v.s. find koefficienterne a l i fx) = a l P l x) l=0 Ved inspektion ses at x 2 = 2 P 2x) + P 0x) og x = 2 5 P x) + 5 P x), dvs. fx) = 2 P 2x) + P 0x) P x) + 5 P x) Opgave 8 Benyt Laplacetransformationen til at løse følgende ligning dut) dt + βut) cosωt) = 0, når u0) = u 0 og hvor β, ω og u 0 er konstanter. Du kan bruge direkte, at Laplacetransformationen af cos ωt er s/s 2 + ω 2 ). Efter Laplacetransformationen fås: ūs) = u 0 s + β + s s + β)s 2 + ω 2 ) Man tager du den inverse Laplacetransformation på begge led og får for første led, at L u 0 s + β = u 0 exp βt) For det næste led findes poler for s = ±iω og s = β og derved kommer man frem til udtrykket: Side 4 af 5
5 L s s + β)s 2 + ω 2 ) = β β cos ωt + ω sin ωt exp βt) + β 2 + ω2 β 2 + ω 2 Dvs. den samlede løsning er Opgave 9 ut) = u 0 exp βt) + β β cos ωt + ω sin ωt exp βt) + β 2 + ω2 β 2 + ω 2 Find en konform afbildning z = φw) som afbilder mængden M af punkter r expiθ), hvor r > 0 og 0 < θ < π/, over på den øvre halvplan Im z > 0). Benyt denne afbildning til at finde et potentiale u på M, som er nul langs kanten af M, dvs. langs den positive reelle akse og langs linien r expiπ/) for r > 0. Bemærk at et potentiale som sædvanlig opfylder Laplaceligningen og at det i den øvre halvplan kan skrives på formen ux, y) = ky, hvor k er en konstant. Den korrekte afbildning som afbilder det nævnte domæne over på den øvre halvplan er φω) = ω. Dette ses ved, at φ afbilder linien givet ved ω = r expiπ/) for r > 0 over på φr expiπ/)) = r og linien ω = r expiπ/) over på φr) = r. Det bemærkes, at alle punkter mellem de to linier også afbilder til den øvre halvplan tjek om det passer). Det tilsvarende potentiale u på M er så givet ved u = kreiz) = kreiφω)) = kreiω ) I polære koordinater antager potentialet formen: u = kreiω ) = kr sin θ Dette potentiale er nul for θ = 0 og θ = π/, hvilket svarer til de to sider på domænet M. Side 5 af 5
Svar til eksamen i Matematik F2 d. 23. juni 2016
Svar til eksamen i Matematik F d. 3. juni 06 FORBEHOLD FOR FEJL! Bemærk, i modsætning til herunder, så skal det i besvarelsen fremgå tydeligt, hvordan polerne ndes og hvordan de enkelte residuer udregnes.
Eksamen i Matematik F2 d. 19. juni Opgave 2. Svar. Korte svar (ikke fuldstændige)
Eksamen i Matematik F2 d. 9. juni 28 Korte svar (ikke fuldstændige Opgave Find realdelen, Re z, og imaginærdelen, Im z, for følgende værdier af z, a z = 2 i b z = i i c z = ln( + i Find realdelen, Re z,
Kortfattet svar til eksamen i Matematik F2 d. 21. juni 2017
Kortfattet svar til eksamen i Matematik F2 d. 2. juni 27 Opgave Bestem for følgende tilfælde om en funktion f(z) af z = x + iy er analytisk i dele af den komplekse plan, hvis den har real del u(x, y) og
Løsningsforslag til opgavesæt 5
Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden
(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.
MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)
Formelsamling - MatF2. Therkel Zøllner og Amalie Christensen 27. juni 2009
Formelsamling - MatF2 Therkel Zøllner og Amalie Christensen 27. juni 2009 1 Indhold 1 Kompleks variabel teori 3 1.1 Komplekse funktioner 825-830........................... 3 1.2 Powerserier af komplekse
Kompleks Funktionsteori
Kompleks Funktionsteori Formelræs Holomorfe funktioner Sætning. (Caucy-Riemans ligninger). Funktionen f : G C, f = u+iv er holomorf i z 0 = x 0 + iy 0 hvis og kun hvis i punktet (x 0, y 0 ). du dx = dv
Matematik F2 Opgavesæt 6
Opgave 4: Udtryk funktionen f(θ) = sin θ ved hjælp af Legendre-polynomierne på formen P l (cos θ). Dvs. find koefficienterne a l i ekspansionen f(θ) = a l P l (cos θ) l= Svar: Bemærk, at funktionen er
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016
Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har
z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z
Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,
Note om Laplace-transformationen
Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at
Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017
Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Besvarelser til Calculus Ordinær Eksamen Januar 2019
Besvarelser til Calculus Ordinær Eksamen - 14. Januar 19 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Reeksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 17.
Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 17. februar 2017 Dette eksamenssæt består af 11 nummererede sider med
Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3.
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. januar 7 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.
Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018
Besvarelser til Calculus Ordinær Eksamen - 5. Januar 18 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Notesæt - Eksempler på polær integration
Notesæt - Eksempler på polær integration Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument forsøger blot at forklare,
Matematik F2 Opgavesæt 2
Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.
SUPPLERENDE OPGAVER TIL KOMPLEKS FUNKTIONSTEORI F2005
SUPPLERENDE OPGAVER TIL KOMPLEKS FUNKTIONSTEORI F2005 0. maj, 2005 version nr. 8 JØRGEN VESTERSTRØM Indledende bemærkninger De foreliggende opgaver udgør et supplement til lærebogens opgaver. Afsnitsnummereringerne
Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.
Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 19 Opgave 1 (6 point) En funktion
MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel
Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen
Eksamen i Calculus Mandag den 4. juni 2012
Eksamen i Calculus Mandag den 4. juni 212 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt
Noter til MatF2 på KU (Matematik for Fysikere 2)
Noter til MatF2 på KU (Matematik for Fysikere 2) af Nikolai Plambech Nielsen, LPK33, Version.0 8. juni 206 Resumé Dette notesæt er udarbejdet til kurset Matematik for Fysikere 2 (Forkortet MatF2). Bogen,
Besvarelser til Calculus Ordinær Eksamen Juni 2019
Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.
Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære
Eksamen i Calculus Fredag den 8. januar 2016
Eksamen i Calculus Fredag den 8. januar 2016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med
(Prøve)Eksamen i Calculus
(Prøve)Eksamen i Calculus Sæt 1, april 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende (prøve)eksamenssæt består af 7 nummererede sider
Reeksamen i Calculus
Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 08 Dette eksamenssæt består af 8 nummererede sider med afkrydsningsopgaver.
DesignMat Den komplekse eksponentialfunktion og polynomier
DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil
Eksamen i Mat F, april 2006
Eksamen i Mat F, april 26 Opgave Lad F være et vektorfelt, givet i retvinklede koordinater som: Udregn F og F: F x F = F x i + F y j + F z k = F y = z 2 F z xz y 2 F = F x + F y + F z = + + x. F = F z
Besvarelser til Calculus Ordinær Eksamen Juni 2017
Besvarelser til Calculus Ordinær Eksamen - 12. Juni 217 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Reeksamen i Calculus
Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 0. februar 019 Dette eksamenssæt
Besvarelser til Calculus Ordinær Eksamen Juni 2018
Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
MM501 forelæsningsslides
MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen
To find the English version of the exam, please read from the other end! Eksamen i Calculus
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår
To find the English version of the exam, please read from the other end! Eksamen i Calculus
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår
Vektoranalyse INDLEDNING. Indhold. 1 Integraltricks. Jens Kusk Block Jacobsen 21. januar 2008
Vektoranalyse Jens Kusk Block Jacobsen 21. januar 2008 INLENING ette er en opsamling af ting, jeg synes er gode at have ifbm vektoranalyse som præsenteret i kurset VEKANAE07 ved IMF på AU. Noten er dels
Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan
Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med
Besvarelser til Calculus Ordinær Eksamen Juni 2017
Besvarelser til Calculus Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Prøveeksamen i Calculus
Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.
Fourier transformationen
MODUL 6 Fourier transformationen Forfattere: Øistein WIND-WILLASSEN & Michael ELMEGÅRD 4. juni 4 Indhold Fourier transformationen 5. Definition og oprindelse.............................. 5.. Funktioner
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
Opgaver til f(z) = 1 z 4 1, g(z) = 1
1.17 Opgaver til 1. 1 1.1. Vis, at f(z) = er vilkårligt ofte differentiabel i C \ {, 1}, og z(1 z) find et udtryk for f (n) (z) for alle n. (Vink. Skriv f(z) = 1 z + 1 1 z ). 1.2. Beskriv billedkurverne
Elementær Matematik. Trigonometriske Funktioner
Elementær Matematik Trigonometriske Funktioner Ole Witt-Hansen Indhold. Gradtal og radiantal.... sin x, cos x og tan x... 3. Trigonometriske ligninger...3 4. Trigonometriske uligheder...5 5. Harmoniske
Om første og anden fundamentalform
Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt
C R. Figur 1 Figur 2. er eksempler på kredsløbsfunktioner. Derimod er f.eks. indgangsimpedansen
Kredsløbsfunktioner Lad os i det følgende betragte kredsløb, der er i hvile til t = 0. Det vil sige, at alle selvinduktionsstrømme og alle kondensatorspændinger er nul til t = 0. I de Laplace-transformerede
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
Matematik F Et bud på hvordan eksamenssæt løses
Matematik F Et bud på hvordan eksamenssæt løses Jeppe Trøst Nielsen 11. april 21 Denne samling af ligninger og løsninger er udarbejdet efter det princip, at eksamenssættene ikke ændrer sig specielt meget
Matematik F2 Opgavesæt 1
Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale
Opgaveløsninger til eksamensopgaver. Opgavesæt 46
EIT3+ITC3/2018 H. Ebert BEREGNINGSTEKNIK INDENFOR ELEKTRONIKOMRÅDET Opgaveløsninger til eksamensopgaver Opgavesæt 46 Beregningsteknik i elektronik for EIT3+ITC3/18 Opgavesæt 46 181229HEb Skriftlig prøve
Skriftlig prøve i matematik 4
Matematik 4 for E4+D4/08 Opgavesæt 03 080527HEb Skriftlig prøve i matematik 4 Prøve d. 4. juni 2008 kl. 09.00-13.00. Ved bedømmelsen vægtes de 6 opgaver således: Opgave 1: 17% (Kompleks funktionsteori
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,
Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013
Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme
DesignMat Lineære differentialligninger I
DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En
8 Regulære flader i R 3
8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således
1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant.
Matematik F2 - sæt 2 af 7 blok 4 f(z)dz = 0 1 I denne uge vil vi studere Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en
Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1
Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte
Opgaveløsninger til eksamensopgaver. Opgavesæt 07
MAT4 for E4+D4/08 H. Ebert MATEMATIK 4 Opgaveløsninger til eksamensopgaver Opgavesæt 07 Matematik 4 for E4+D4/09 Opgavesæt 07 090519HEb Skriftlig prøve i matematik 4 Prøve d. 3. juni 2009 kl. 09.00-13.00.
MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel
MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne
En sumformel eller to - om interferens
En sumformel eller to - om interferens - fra borgeleo.dk Vi ønsker - af en eller anden grund - at beregne summen og A x = cos(0) + cos(φ) + cos(φ) + + cos ((n 1)φ) A y = sin (0) + sin(φ) + sin(φ) + + sin
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.
Komplekse tal og algebraens fundamentalsætning.
Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes
ELEKTRISKE KREDSLØB OG DYNAMISKE SYSTEMER
EE Basis, foråret 2009 ELEKTRISKE KREDSLØB OG DYNAMISKE SYSTEMER Jan H. Mikkelsen EKDS6, F09 1 Emner for idag Komplekse tal sådan helt fra bunden DefiniHoner og regneregler Lidt flere definihoner og lidt
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra
Svar på opgave 336 (Januar 2017)
Svar på opgave 6 (Januar 07) Opgave: De komplekse tal a, b og c opfylder ligningssystemet Vis, at a, b og c er reelle. (a + b)(a + c) = b (b + c)(b + a) = c (c + a)(c + b) = a. Besvarelse:. metode Lad
Reeksamen i Calculus
Reeksamen i Calculus Torsdag den 11. august 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 8 nummererede sider
