Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006
|
|
|
- Anne Marie Lindholm
- 9 år siden
- Visninger:
Transkript
1 Dagens program: Øonometr 1 Heterosedastctet 30. otober 006 Effcent estmaton under heterosedastctet (Wooldrdge 8.4): Sdste gang: Kendte vægte - Weghted Least Squares (WLS) Generalzed Least Squares (GLS) Uendt form for heterosedastctet: Feasble Generalzed Least Squares (FGLS) Lneær sandsynlghedsmodel (Wooldrdge 8.5). Øonometr 1: F13 1 Øonometr 1: F13 1
2 Hvordan fnder man en mere effcent estmator end OLS? Hvs man nu onstruerer et nyt fejlled som u h vl den betngede varans vl være onstant: 1 1 1,, = ( 1,, ) = σ = σ ( ) h h h u V x x x V u x x x h Forudsætter at h-funtonen er endt! Uendt form af heterosedastctet (som sal estmeres) I mange tlfælde er den esate form for heteros. uendt (dvs. h er uendt) men h an modelleres og efterfølgende estmeres Ved at benytte hˆ stedet for h an man gen transformere den oprndelge model. I den transformerede model benyttes så OLS. Denne procedure aldes Feasble ( ladsggørlg ) GLS (FGLS) Øonometr 1: F13 3 Øonometr 1: F13 4
3 Uendt form af heterosedastctet (som sal estmeres) Der fndes mange måder at modellere heterosedastctet. Her er gennemgået en verson. Antag at varansen er gvet ved Vu ( x) = σ exp( δ0 + δ1x1+ + δx) (*) Bemær: Varansen er altd postv Varansen er proportonal med exp( δ0 + δ1x δx) For at unne orrgere er det nødvendgt at ende værden af parametrene. δ Uendt form af heterosedastctet (som sal estmeres) Hvs varansen er gvet ved (*) gælder der følgende: u = σ exp( δ0 + δ1x1+ δx + δx) v Ev ( x) = 1 Gvet uafhængghed mellem x og v an parametrene estmeres ved OLS følgende regressonsmodel: log( ) α0 δ1 1 δ δ u = + x + x + x + e hvor modellen opfylder MLR.1 MLR.4, så OLS vl gve mddelrette estmatorer. Men: Fejlleddet observeres e. Øonometr 1: F13 5 Øonometr 1: F13 6 3
4 Uendt form af heterosedastctet (som sal estmeres) Når parametrene sal estmeres erstattes fejlledene med OLS resdualerne hjælpelgnngen uˆ = α + δ x + δ x + δ x + e log( ) (**) Ud fra parameterestmaterne udregnes h hˆ = exp( gˆ ) = exp( ˆ α + ˆ δ x + ˆ δ x + ˆ δ x ) WLS an så udføres med hˆ stedet for h Alternatvt an hjælperegressonen (**) erstattes med log( uˆ ) = α + δ yˆ + δ yˆ + fejl 0 1 Hypotesetest med FGLS estmater FGLS er onsstent og asymptots mere effcent end OLS F- og t-test er asymptots hhv. F- og t-fordelte. Når man laver F-test med WLS er det vgtgt at den restrterede og den urestrterede model er estmeret med de samme vægte Proceduren for F-test med FGLS Estmer den urestrterede model med OLS Udregn vægtene Estmer den urestrterede model med dsse vægte: WLS Estmer den restrterede model med samme vægte Udfør F-testet Øonometr 1: F13 7 Øonometr 1: F13 8 4
5 FGLS WLS (FGLS) og OLS Procedure for FGLS 1. Estmer den oprndelge model med OLS: y = β + β x + + β x + u. Udregn OLS resdualerne og onstruer log( ) 3. Estmer hjælperegressonen: log( )= uˆ uˆ α δ x + + δ x + e 4. Udregn de predterede værder gˆ fra regressonen 3 5. Udregn derefter hˆ: hˆ= exp( gˆ ) 6. Estmer modellen y = β + β x + + β x + u med WLS hvor vægten er 1/ hˆ Sammenlgnng af WLS og OLS OLS og WLS estmater an være (meget) forsellge Hvs OLS og WLS er statsts sgnfant forsellge, bør man være varsom med at fortole resultaterne. Dette an være tegn på msspecfaton (specelt at antagelse MLR.4 e er opfyldt). Øonometr 1: F13 9 Øonometr 1: F
6 Lneær sandsynlghedsmodel NB er I den lneære sandsynlghedsmodel er der heterosedastctet: V ( y x) = p( x)*(1 p( x)) p( x) = β0 + β1x1+ + βx Det følger så hvordan h sal onstrueres nemlg som h ˆ ˆ = y(1 y) Problem: Det an foreomme at Ad hoc orreton: yˆ yˆ Eller brug OLS og heteros. robuste standardfejl. yˆ = 0.99 hvs yˆ > 1 = 0.01 hvs yˆ < 0 > 1 eller yˆ < 0 En effcent estmator tllægger hver observaton/resdual en vægt, der er omvendt proportonal med varansen på fejlleddet. Parametrene er de samme som den oprndelge model og sal fortoles ud fra den. Øonometr 1: F13 11 Øonometr 1: F13 1 6
7 Næste gang: Mandag den 6. november Specfaton og dataproblemer: Kaptel Funtonel form msspecfaton Proxyvarabler Øonometr 1: F
Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?
Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan
Kvantitative metoder 2
y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,
Kvantitative metoder 2
Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test
Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test
Opsamlng Smpel/Multpel Lneær Regresson Logstsk Regresson Ikke-parametrske Metoder Ch--anden Test Opbygnng af statstsk model Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen
Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005
Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle
Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller
Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed
Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse
Økonometr Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Kommenteret vejledende besvarelse Resultaterne denne besvarelse er fremkommet ved brug af eksamensnummer 7. Dne
Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1
Økonometr 1 Avancerede Paneldata Metoder I 24.november 2006 F18: Avancerede Paneldata Metoder I 1 Paneldatametoder Sdste gang: Paneldata begreber og to-perode tlfældet (kap 13.3-4) Uobserveret effekt modellen:
Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006
Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag
Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet
! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)
Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!
Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model)
Statstk 9. gag REGRESSIONSANALYSE Korrelato kotrol af model Regresso tlpasg af model Statstk 9. gag KORRELATIONS ANALYSE. Grad af fælles varato mellem X og Y. Område og fordelg af sample data 3. Optræde
Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder
Regressonsanalyse Epdemolog og Bostatstk Mogens Erlandsen, Insttut for Bostatstk Uge, torsdag (forelæsnng) 1.Smpel lneær regresson (Kaptel 11) systolsk blodtryk og alder. Multpel lneær regresson (Kaptel
Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2
Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition
Statistisk mekanik 13 Side 1 af 9 Faseomdannelse. Faseligevægt
Statsts mean 3 Sde af 9 Faselgevægt Hvs hver fase et PVT-system behandles særslt, vl hver fase alene raft af mulgheden for faseomdannelser udgøre et åbent system. Ved generalserng af udtry (3.48) fås dermed
Morten Frydenberg Biostatistik version dato:
Morten Frydenberg Bostatstk verson dato: -4- Bostatstk uge mandag Morten Frydenberg, Afdelng for Bostatstk Resume: Hvad har v været gennem ndtl nu Lneær (normal) regresson en kontnuert forklarende varabel
Lineær regressionsanalyse8
Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret
Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel
Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Opbygnng af statstsk model Eksploratv data-analyse Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske
Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS
y = cy ( c 0 ) Pla for IV geemgag Økoometr Istrumetvarabelestmato 6. ovember 004 F9: Hvad er IV estmato: Bvarat model, et strumet: Kap.5. + afst -4 ote. F0: IV estmato det multple tlfælde (eksakt detfceret):
Ugeseddel 8. Gruppearbejde:
Ugeseddel 8 Gruppearbejde: 1. Ved at nkludere en dummyvarabel for et bestemt landeområde, svarer tl at konstatere, at dsse lande har nogle unkke karakterstka, som har betydnng for væksten, som kke gør
Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1
Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere
Kvantitative metoder 2
Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen
Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1
Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære
Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel
Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet =( 1,, k
Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet
Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x
! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet
Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst
Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation
Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.
Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I
Oversigt Økonometri 1 Mere om dataproblemer Gentagne tværsnit og panel data I Info om prøveeksamen Mere om proxyvariabler og målefejl fra sidste gang. Selektion og dataproblemer Intro til nyt emne: Observationer
Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion
Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,
Beregning af strukturel arbejdsstyrke
VERION: d. 2.1.215 ofe Andersen og Jesper Lnaa Beregnng af strukturel arbedsstyrke Der er betydelg forskel Fnansmnsterets (FM) og Det Økonomske Råds (DØR) vurderng af det aktuelle output gap. Den væsentlgste
Simpel Lineær Regression: Model
Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]
2. Sandsynlighedsregning
2. Sandsynlghedsregnng 2.1. Krav tl sandsynlgheder (Sandsynlghedens aksomer) Hvs A og B er hændelser, er en sandsynlghed, hvs: 1. 0 ( A) 1 n 2. ( A ) 1 1 3. ( A B) ( A) + ( B), hvs A og B ngen udfald har
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program
Dagens program Økonometri 1 FunktioneI form i den lineære regressionsmodel 19. oktober 004 Mere om funktionel form (kap 6.) Log transformation Kvadratisk form Interaktionseffekter Goodness of fit (kap.
Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol
Udvklng af en metode tl effektvurderng af Mljøstyrelsens Kemkalenspektons tlsyn og kontrol Orenterng fra Mljøstyrelsen Nr. 10 2010 Indhold 1 FORORD 5 2 EXECUTIVE SUMMARY 7 3 INDLEDNING 11 3.1 AFGRÆNSNING
Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00
Fagblok 4b: Regnskab og fnanserng 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 tl 31.01 2004 kl. 14.00 Dette opgavesæt ndeholder følgende: Opgave 1 (vægt 50%) p. 2-4 Opgave 2 (vægt 25%) samt opgave 3 (vægt
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data.
Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. 1 / 32 Motivation Eksempel: Savings = β 0 + β 1 Income + u Vi ved allerede, hvordan vi estimerer regresseionlinjen:
Økonometri: Lektion 2 Multipel Lineær Regression 1/33
Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat.
Håndbog grundvandsmodellerng, Sonnenborg & Henrksen (eds 5/8 GEUS Kaptel 14 IVERS MODELLERIG Torben Obel Sonnenborg Geologsk Insttut, Københavns Unverstet Anker Laer Høberg Hydrologsk Afdelng, GEUS øglebegreber:
Statistik Lektion 4. Variansanalyse Modelkontrol
Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede
Økonometri: Lektion 2 Multipel Lineær Regression 1/27
Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere
