Øvelsesvejledninger til laboratoriekursus

Størrelse: px
Starte visningen fra side:

Download "Øvelsesvejledninger til laboratoriekursus"

Transkript

1 VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik C-B 2016/17

2 Indhold Journaler og rapporter... 3 Journal... 3 Rapport Rilleafstande Stående bølger på en streng Spektrum for ukendt grundstof Specifik varmekapacitet (varmefylde) af faste stoffer Bevægelse med konstant og varierende kraft Bevægelse med konstant kraft Bevægelse med variende kraft Konklusion Tryk i væske og opdrift på lod Tryk i væske Opdrift på lod Konklusion Joules lov Absorption af radioaktiv stråling

3 Journaler og rapporter Journal Ved eksperimenter i laboratoriet skal alle kursister føre en laboratoriejournal, der indeholder præcise notater om eksperimenternes forløb. Her skrives alle relevante oplysninger og observationer ned under eksperimentets udførelse. Det er bedre at tegne og notere for meget end for lidt. Måleresultater kan med fordel nedskrives i tabelform. Laboratoriejournalen er udgangspunktet for udfærdigelsen af en egentlig rapport over eksperimentet. Rapport Den naturvidenskabelige rapport skal udformes, således at den kan læses og forstås, som en selvstændig enhed. Rapporten bør indeholde følgende Oplysninger og AFSNIT: Oplysninger På forsiden skal oplyses: TITEL på rapporten / eksperimentet samt fag og niveau. DATO for udførelse samt aflevering. DIT NAVN, samt hvem du har lavet eksperimentet sammen med. LAV et sidehoved med dit navn på. Husk også: Sidetal på alle sider. INDLEDNING: Her et par linjer om eksperimentets formål hvilke sammenhænge man vil afprøve eller demonstrere med eksperimentet. Det er også fint at starte rapporten med nogle linjer af mere perspektiverende art, fundet på Internet / leksikon / dagblad Rapporten får herved en mere læseværdig start og øger "din egen bevidsthed" HYPOTESE: Ofte kan det være godt at formulere en evt. hypotese som et selvstændigt afsnit. Hypotesen er den forventning du har til forsøgets resultat. TEORI: En redegørelse med dine egne ord for teorien bag eksperimentet. Husk at præsentere centrale begreber inden for emnet. Desuden skal afsnittet indeholde vigtige formler, reaktionsskemaer og reaktionstyper. MATERIALER: En liste over ALLE de materialer, der bruges til eksperimentet. Dvs. alt apparatur, alle glasvarer, alle kemikalier (evt. anføres giftighed og eventuelle særlige forholdsregler), alle dyr/planter osv. Det er meningen, at man skal kunne bruge materialelisten til senere at finde tingene frem, hvis man vil gentage eksperimentet. 3

4 FREMGANGSMÅDE: En gennemgang af fremgangsmåden / eksperimentets udførelse - illustreret med tegning af opstillingen og meget gerne inddelt i passende underpunkter. I kemi og biologi kan de væsentligste kemiske reaktioner med fordel vises med f.eks. farvelagte "kolbereaktioner" med de relevante planter eller (farvede) molekyler / ioner. Det er meningen, at en udenforstående på samme faglige niveau skal kunne gentage eksperimentet, kun med rapporten i hånden. MÅLERESULTATER: Her fremlægges - meget gerne på skemaform - resultaterne af eksperimentet. RESULTATBEHANDLING: Dels de resultater som direkte er aflæst eller iagttaget, dels de efterbehandlede resultater, dvs. omregnede eller grafisk afbildede. Der gives eksempler på alle beregninger. Laves eksperimentet flere gange behøver, man kun at vise et eksempel på hver beregning. I dette afsnit skal man IKKE kommentere eller vurdere resultaterne, kun anføre de nøgne kendsgerninger. DISKUSSION, FEJLKILDER OG USIKKERHEDER: Her kommenteres, forklares og vurderes resultaterne. Stemmer de overens med de forventede (evt. tabel-data)? Hvorfor? Hvorfor ikke? Er de pålidelige? Kan hypotesen bekræftes? Hvilke fejlkilder og usikkerheder kan være årsag til afvigelserne? Hvis der i vejledningen er angivet diskussionsspørgsmål, besvares disse i dette afsnit. KONKLUSION: Her gives et resumé af de vigtigste resultater og påviste sammenhænge. Konklusionen skal knytte sig til indledningens formål således, at de "spørgsmål /hypotese", der rejstes der, skal "besvares" her. Mens diskussionen er fyldig og bredt formuleret, skal konklusionen være kortfattet og formuleret så præcist som muligt. LITTERATUR: Her anføres den litteratur, der er anvendt ved udarbejdelse af såvel forsøget som rapporten. Kravene til resultatbehandling kan variere fra forsøg til forsøg. Rapporterne skal indeholde alle relevante elementer for at kurset bliver godkendt. Hvis rapporterne ikke er fyldestgørende, vil de blive sendt tilbage igen uden rettelser, og du vil blive bedt om at prøve igen. Databehandling og grafer må gerne laves i fællesskab og I må også gerne diskutere indholdet af det, I vil skrive i grupper, men selve skriveprocessen skal være individuel. Aflevering af enslydende rapporter vil blive betragtet som snyd og hører ind under skolens snydepolitik, som den er beskrevet på VUC Aarhus hjemmeside. 4

5 1 Rilleafstande Formål Denne øvelse er to-delt først bruges et kendt gitter til at bestemme bølgelængden af en laser, og derefter bruges laseren til at finde gitterkonstanten for en CD, hvor vi skal bruge CD en som både refleksions- og transmissionsgitter. Teori Sendes lys vinkelret gennem et transmissionsgitter eller vinkelret ind på et refleksionsgitter afbøjes det i visse faste retninger. Man kan vise, at der gælder gitterligningen: d sin(θ n ) = n λ (1) d er gitterkonstanten, dvs. afstanden mellem åbningerne i gitteret. θ n er afbøjningsvinklen for orden n, og n er afbøjningsordenen (n = 0,1,2, ). λ er lysets bølgelængde. Dit teoriafsnit skal indeholde: Beskrivelser af alle formler og størrelser i forsøget med dine egne ord. Forklaringer på hvordan teorien og forsøget hænger sammen, hvilke størrelser der måles og hvilke der beregnes. Opstilling Apparatur He-Ne-laser, CD, gitter, spejl, målebånd evt. papirstrimmel og tape. 5

6 Fremgangsmåde Afdeling 1 Bestemmelse af laserens bølgelængde: 1. Laseren opstilles ca. 1,5 m fra væggen, så lysstrålen rammer vinkelret ind på væggen. Det gøres ved at reflektere lyset i et spejl, der holdes op ad væggen. (Pas på ikke at ramme nogen i øjnene med refleksionen). 2. Indsæt gitteret lige foran laseren, så det står vinkelret på lysstrålen. 3. Mål afstanden a mellem gitter og væg. 4. Sæt evt. en papirstrimmel op med tape, så prikkerne ses på papirstrimlen. 5. Marker prikkerne med tusch eller blyant. 6. Mål afstanden mellem to pletter af samme orden for hver orden n. Denne kaldes x. Når vinklerne skal beregnes, er det den halve afstand, der skal bruges. Altså afstanden fra 0 te til n te, der skal bruges. Denne kalder vi b og det findes selvfølgelig ved at dividere afstanden mellem to ens ordner med to. Afdeling 2 CD en som transmissionsgitter: 1. Fjern gitteret fra opstillingen og erstat det med CD en (Igen pas på refleksioner). Da de afbøjede pletter er meget svage skal laseren rykkes en del tættere på væggen hvis man skal gøre sig håb om at kunne se 2. ordens pletterne, og der skal helst være delvist mørkt i lokalet. Prøv jer frem med laseren mellem 0,5-1,0 m fra væggen. 2. Mål afstanden a fra CD en til væggen. 3. Sæt evt. en ny papirstrimmel op så pletterne er på strimlen 4. Markér pletterne med blyant 5. Mål afstanden mellem to pletter af samme orden, x, og beregn b (afstanden fra 0 te til n te orden), ved at dividere x med to. 6

7 Afdeling 3 CD en som refleksionsgitter: 1. Laseren skal nu vendes så den lyser væk fra væggen (tænd den ikke endnu). 2. CD en placeres i en holder, og laserlyset skal ramme vinkelret ind på CD en på et sted, hvor CD ens riller er lodrette. 3. Tænd laseren - 0 te orden skal ramme tilbage i laseren, de øvrige ordner ses på væggen bag laseren. 4. Sæt evt. en papirstrimmel op, så pletterne er på strimlen 6. Mål afstanden mellem to pletter af samme orden, x, og beregn b. Måledata Afdeling 1: a = Antal linjer pr. mm på gitteret: Orden n x (m) b = x/2 (m) Afdeling 2: a = Orden n x (m) b = x/2 (m) 1 2 7

8 Afdeling 3: a = Orden n x (m) b = x/2 (m) 1 2 Resultatbehandling 1. For alle tre dataserier udregnes θ n = tan 1 ( b ) for hvert n. Overvej, hvorfor man netop a bruger tangens her og hvilke krav det stiller til forsøgsopstillingen, at man bruger denne formel, der jo kun virker for retvinklede trekanter. 2. For måleserien fra afdeling 1 laves en graf med n på x-aksen og sin(θ n ) på y-aksen. 3. Indsæt en lineær tendenslinje og find regneforskriften. Hvad bør hældningen være lig med? 4. Find gitterkonstanten for gitteret, og bestem laserens bølgelængde ud fra hældningen af tendenslinjen. 5. Sammenlign med tabelværdien på 632,8 nm 6. Brug dataene fra afdeling 2 til at finde gitterkonstanten for CD en 7. Brug dataene fra afdeling 3 til at finde gitterkonstanten for CD en 8. Er der nogen forskel på gitterkonstanten alt efter om CD en er refleksions- eller transmissionsgitter? 9. Sammenlign resultaterne med tabelværdien d = 1,5 μm. 10. Forklar hvorfor du maksimalt vil kunne se 2 ordner i afdeling 2 og 3. 8

9 2 Stående bølger på en streng Formål Formålet med øvelsen er at undersøge den svingende streng og dens partialtoner. I skal undersøge sammenhængen mellem bølgers fart og spændingen i strengen. I skal desuden bestemme snorens masse per længde ( ) på to måder. Teori En snorbølges hastighed kan bestemmes på to måder og v = f λ (1) v = F μ (2) Her er μ = m s hvor L s er snorens længde og m s er snorens masse, mens F er kraften, der trækker i L s snoren. Hvis trækket reguleres med et hængende lod er F lig med tyngdekraften på loddet. Dit teoriafsnit skal indeholde: Beskrivelser af alle formler og størrelser i forsøget med dine egne ord. Forklaringer på hvordan teorien og forsøget hænger sammen, hvilke størrelser der måles og hvilke der beregnes. Opstilling 9

10 I må ikke binde snoren fast til højtaleren I skal binde den fast til et af de store stativer og så sørge for at strengen rører ved højtaleren. Apparatur Snor, vibrator, tonegenerator, impotæller, lod med aftagelige vægte, stativ, trisse med fod, målebånd. Fremgangsmåde 1. Mål den samlede længde af jeres snor, L snor, og vej den, m snor. 2. Lav opstillingen vist på skitsen. Husk at snoren ikke fastgøres til højtaleren, men til et stativ. 3. Start ved 1 Hz. Skru op for frekvensen på tonegeneratoren indtil I finder første partialtone. 4. Mål afstanden fra knude til knude (hvor mange bølgelængder er der nu mellem to knuder?) 5. Skru op for frekvensen indtil I finder 2. partialtone og mål igen fra knude til knude (eller bedre: mål fra første til den sidste knude og del med 2). 6. Find 3. partialtone og mål igen fra knude til knude (eller bedre: mål afstanden fra første til sidste knude og del med 3). 7. Vej loddet og gentag forsøget for 4 snorspændinger mere snorspændingen varieres ved at variere massen af loddet husk at sprede jeres målinger godt ud. Undgå målinger under 50 g og gå gerne over 250 g med en enkelt måling. 10

11 Måledata L s = m s = 1. partialtone 2. partialtone 3. partialtone m lod (kg) knude til knude (m) f (Hz) knude til knude (m) f (Hz) knude til knude (m) f (Hz) Resultatbehandling 1. Udfyld ved hjælp af regneark skemaet nedenfor: a. Beregn trækket i snoren for hver af jeres 5 måleserier (trækket er tyngdekraften på loddet). b. Beregn hastigheden af bølgen på snoren for hvert af de 15 målepunkter (formel 1). c. Beregn gennemsnitshastigheden af bølgen for hver af de 5 måleserier. F (N) F ( N) v 1 (m/s) v 2 (m/s) v 3 (m/s) v gns (m/s) 11

12 2. Formel 2 fra teoriafsnittet kan skrives som: v = F μ = 1 μ F Som det ses, så er v proportional med F og proportionalitetskonstanten er 1 μ. 3. Lav en graf med F på x-aksen og v på y-aksen. 4. Punkterne skulle gerne ligge på en ret linje. Indsæt en lineær tendenslinje og brug regneforskiften for denne til at finde μ. Argumentér for, hvordan μ bestemmes. 5. Find nu μ ud fra målingerne af snorens masse og længde. 6. Sammenlign de to resultater for μ og diskutér usikkerheder ved de to metoder. 7. Hvilke konklusioner kan man drage ud fra forsøget udover størrelsen af μ fx hvad sker der med frekvensen af partialtonerne, hvis snoretrækket øges? 12

13 3 Spektrum for ukendt grundstof Formål Formålet med øvelsen er at identificere et grundstof ved at undersøge det lys, det udsender. Teori Lyset der kommer fra en spektrallampe indeholder nogle ganske bestemte bølgelængder. For at adskille farverne fra hinanden, sendes lyset fra spektrallampen igennem et optisk gitter. Der gælder: Dit teoriafsnit skal indeholde: d sin(θ n ) = n λ (1) Beskrivelser af alle formler og størrelser i forsøget med dine egne ord. Forklaringer på hvordan teorien og forsøget hænger sammen, hvilke størrelser der måles og hvilke der beregnes. En kort beskrivelse af, hvordan et emissionsspektrum opstår og hvorfor det kan bruges til at identificere et grundstof. Opstilling Apparatur Spektrallampe, fod, drosselspole gitterspektrometer med tilhørende optisk gitter 13

14 Fremgangsmåde 1. Gitteret sættes i gitterspektrometeret. 2. Spektrallampen anbringes foran spektrometeret som vist på billedet. Lampen må ikke røre spektrometeret. Det er vigtigt at lampen er lige foran den lille slids, der er i kollimatoren på spektrometeret. 3. Lampen tændes og kikkerten på spektrometeret drejes, indtil 0 te orden er fundet (0 te har samme lyserøde farve som lyset fra lampen). Stil kikkerten, så 0 te orden er lige midt i krydset. Lampe, kollimator og kikkert danner her en ret linje. 4. Tjek at 0 te orden er lige midt i krydset i kikkerten og drej vinkelskiven (uden at kikkerten eller resten af spektrometeret følger med) så 0 på skiven står ud for 0 på spektrometeret. 5. Nu kan målingerne begynde. Start med at køre ud til den ene side. Når du ser en lysstribe noteres farven og vinklen aflæses (når striben er lige midt i krydset). 6. Det er kun nødvendigt at undersøge 1. orden, så stop med at øge vinklen, når farverne begynder at dukke op igen. Aflæs vinklerne så præcist som I kan. 7. Gentag det hele til modsatte side. 8. Prøv at gå ud til større vinkler. Nu skulle farverne gerne gå igen. Overvej hvorfor. Måledata. Brug første orden til begge sidder til at bestemme bølgelængden for alle linjerne i spektret. Farve θ venstre θ højre θ gennemsnit λ (nm) λ tabel (nm) Afvigelse(%) 14

15 Resultatbehandling 1. Beregn den gennemsnitlige afbøjningsvinkel for hver farve. 2. Aflæs på gitteret, hvor mange linjer det har pr. mm. Brug denne information til at beregne gitterkonstanten d. 3. Udregn bølgelængden af lyset ved hjælp af gitterligningen. 4. Identificer grundstoffet, der er i spektrallampen se vejledning nedenfor. 5. Hvorfor gentager spektret sig, når vi kommer ud til større vinkler? Vejledning til identifikation Der findes nogle tabeller i databogen over emissionsspektrene for nogle udvalgte grundstoffer. Brug tabellen til at identificere, hvad der er i røret. I tabellerne er alle linjer i taget med. Også meget lyssvage linjer, du sikkert ikke kan se. Udover bølgelængderne, står også den relative intensitet opgivet. Det er kun de linjer med den største relative intensitet du kan se. Husk også at der i tabellerne også er bølgelængder, der ligger udenfor det synlige spektrum, som du af gode grunde ikke kan se. 15

16 4 Specifik varmekapacitet (varmefylde) af faste stoffer Formål At bestemme den specifikke varmekapacitet for messing ved brug af et messingkalorimeter, samt at bestemme varmekapaciteten af et ukendt lod, og bruge den til at identificere metallet loddet er lavet af. Teori Kalorimeterligningen: ΔE lod = ΔE vand + ΔE skål (1) hvor ΔE lod er energiændringen af loddet, ΔE vand er energiændringen i vandet i messingkalorimetret, og ΔE skål er energiændringen af den indre skål i kalorimetret. Opvarmningsformlen/afkølingsformlen: Dit teoriafsnit skal indeholde: ΔE = m c T (2) Beskrivelser af alle formler og størrelser i forsøget med dine egne ord. Forklaringer på hvordan teorien og forsøget hænger sammen, hvilke størrelser der måles og hvilke der beregnes. Opstilling 16

17 Apparatur Elkedel, messingkalorimeter, Labquest med temperaturmåler, vægt, messing lod, samt et udvalg af ukendte lodder. Fremgangsmåde Afdeling 1: 1. Varm vand op i elkedlen. Mens man venter på at vandet kommer i kog udfører man de næste tre punkter. 2. Messingloddet vejes (m messinglod ) 3. Massen af indre skål (m skål ) af messingkalorimetret findes. 4. I den indre skål hældes en passende mængde vand, så loddet kan dækkes af vandet. Vej skålen med vand (m skål+vand ), og den beregn massen af vandet (m vand ). 5. Når vandet i elkedlen koger sænkes loddet ned i elkedlen. Sørg for at loddet ikke rører elkedlens varmelegeme. Loddet varmes i ca. 1 minut i elkelden. 6. Kalorimetervandets begyndelsestemperatur aflæses (T 1 ), og umiddelbart herefter bringes messingloddet over i kalorimeteret, efter at vandet først (hurtigt) er slået af loddet. 7. Under stadig omrøring følges kalorimeterets temperatur og når denne er højest aflæses sluttemperaturen (T 2 ). 8. Forsøget gentages, så i har 2 målinger af hver størrelse 17

18 Afdeling 2: Forsøget er principielt som før, blot erstattes messingloddet af et lod af ukendte metal. Forsøget udføres igen to gange med det samme lod. Måledata Afdeling 1 - messinglod: Forsøg 1 Forsøg 2 m messinglod (kg) m skål (kg) m skål+vand (kg) m vand (kg) T lod_start ( ) T 1 ( ) T 2 ( ) Afdeling 2 lod af ukendt metal: Forsøg 1 Forsøg 2 m ukendt-lod (kg) m skål (kg) m skål+vand (kg) m vand (kg) T lod_start ( ) T 1 ( ) T 2 ( ) 18

19 Resultatbehandling 1. Hvis formel 2 indsættes i formel 1 fås: m lod c lod ΔT lod = m vand c vand ΔT vand + m skål c skål ΔT skål Hvilke størrelser har vi målt i forsøget? 2. Isoler den specifikke varmekapacitet for messing (husk at skålen også er lavet af messing) og udregn den specifikke varmekapacitet (varmefylden) for messing. Alternativt kan man indsætte de målte tal i formlen ovenfor og løse den med solve på lommeregneren. Brug tabelværdien for vands varmefylde c vand = 4180 J. kg 3. Sammenlign den fundne værdi med tabelværdien. Husk at man ved sammenligning altid beregner den procentvise afvigelse. 4. Find nu den specifikke varmekapacitet for det ukendte lod brug tabelværdien for messings specifikke varmekapacitet. 5. Hvilket metal er det ukendte lod, og hvor godt passer dit resultat? 6. Hvorfor skal man slå loddet i bordet inden for kommer ned i det kolde vand? og hvorfor hurtigt? 19

20 5 Bevægelse med konstant og varierende kraft Formål At undersøge bevægelse med konstant kraft (tyngdekraften) og bevægelse med varierende kraft (tyngdekraft og luftmodstand). Teori For bevægelse med konstant kraft gælder Galileis faldlov: s = 1 g t2 2 hvor s er faldvejen, g er tyngdeaccelerationen og t er faldtiden. Ved fald med varierende kraft skal benyttes den resulterende kraft, F res, som er summen af alle kræfter der påvirker den faldende genstand. I dette forsøg bliver F res = F t F luft, hvor F t er tyngdekraften og F luft luftmodstanden på en genstand i bevægelse. Dit teoriafsnit skal indeholde: Beskrivelser af alle formler og størrelser i forsøget med dine egne ord. Forklaringer på hvordan teorien og forsøget hænger sammen, hvilke størrelser der måles og hvilke der beregnes. Bevægelse med konstant kraft Opstilling 20

21 Apparatur Impotæller, 4 lange ledninger, stativ, målebånd, faldapparat med udløserenhed og faldplade, metalkugle. Fremgangsmåde 1. En stålkugle ophænges under magneten. Impotælleren nulstilles. 2. Faldvejen s måles. Hvor mon I skal måle fra og til? 3. Tryk på knappen der frigør kuglen og afbryder strømmen, hvorved uret starter. 4. Når kuglen rammer stopkontakten, standser uret og faldtiden t kan herefter direkte aflæses på urets display. 5. Vælg 6 forskellige faldveje, jævnt fordelt i intervallet fra 0,25 m til 2 m. Bestem faldtiden tre gange for hver afstand og bestem et gennemsnit t gns. Måledata s (m) t 1 (s) t 2 (s) t 3 (s) t gns (s) 21

22 Resultatbehandling 1. For hver faldvej s bestemmes middelværdien t af de tre målte faldtider t 1, t 2 og t Tegn ud fra de fundne data en (t, s) graf og en (t 2, s) graf. Beskriv graferne. 3. Hvilken af de to grafer kan lettest bruges til at eftervise Galileis faldlov? begrund dit svar. 4. Brug denne graf til at bestemme en værdi for tyngdeaccelerationen og sammenlign med tabelværdien. 5. I rapporten skal du beskrive, hvad der skal gælde, for at der er tale om en konstant accelereret bevægelse og hvad vi må antage for at vi kan sige, at vi arbejder med en konstant accelereret bevægelse. Bevægelse med variende kraft Opstilling 22

23 Apparatur Motion detector, Labquest, stativ, kageforme. Fremgangsmåde 1. Motion detector tilsluttes Labquest og monteres i stativet, således at den kan måle på faldende kageformene. Labquesten tilsluttes evt. en computer med Logger Pro, således at målingerne kommer direkte ind på computeren. 2. Mål (s, v, a) for faldet af en enkelt kageform, 3 kageforme inde i hinanden, og 5 kageforme inden i hinanden, med en faldhøjde på mellem halvanden til to meter. 3. Sørg for, at Motion detector er fri af bordkanten, så den kun måler på kageformene. Det kan godt være, at man skal prøve nogle gange, før man får brugbare grafer. 4. Hvis Labquesten ikke er tilsluttet en computer aflæses v max direkte på Labquesten (som middelværdien over et tidsinterval). Man kan evt. i stedet gemme dataene som tekst-filer, og eksportere dem over på en computer. Måledata Antal kageforme v max (m/s) Resultatbehandling 1. Brug hastighedsgrafen (den nederste) til at bestemme den maksimale faldhastighed. 2. Hvad er sammenhængen mellem den maksimale faldhastighed og antallet af kageforme (massen af kageformene)? 3. Hvilke to kræfter påvirker kageformene under faldet, og hvilke af disse ændrer sig i løbet af en måling? Hvad er disse kræfters størrelse i forhold til hinanden, når den maksimale faldhastighed er nået? 23

24 4. Luftmodstanden afhænger af materiale, form og faldhastighed. Uanset antallet af kageforme, så ændrer materiale og form sig ikke. Hvad kan man konkludere omkring sammenhængen mellem luftmodstand og faldhastighed? Du skal bruge det du fandt ud af i punkt 3. Konklusion Skriv en kort konklusion, der sammenfatter de to forsøg. 24

25 6 Tryk i væske og opdrift på lod Formål Formålet med øvelsen er at finde en væskes densitet på to måder ved hjælp af trykket i væsken og Archimedes lov, og dernæst bruge den til at finde densiteten af et lod. Teori Trykket som funktion af dybden i en væskesøjle er givet ved: p = ρ g h + p 0 (1) hvor ρ er væskens densitet, g = 9,82 m/s 2 er tyngdeaccelerationen, h højden af væskesøjlen og p 0 er luftens tryk. Opdriften på en genstand (delvis) nedsænket i en væske er givet ved Archimedes lov: F op = ρ V V g (2) hvor ρ v er væskens densitet, V er det fortrængte volumen og g = 9,82 m/s 2 er tyngdeaccelerationen. Dit teoriafsnit skal indeholde: Beskrivelser af alle formler og størrelser i forsøget med dine egne ord. Forklaringer på hvordan teorien og forsøget hænger sammen, hvilke størrelser der måles og hvilke der beregnes. Opstillinger 25

26 Tryk i væske Apparatur Lineal, højt måleglas, trykmåler. Fremgangsmåde 1. Fyld måleglasset op med vand 2. Tilslut trykmåleren. Tjek om der sidder en snude for enden af slangen; hvis der gør så skal den pilles af. 3. Mål luftens tryk. 4. Lav 7 målinger af trykket i væskesøjlen ved forskellige dybder. Måledata p 0 = h (m) p (Pa) 26

27 Resultatbehandling 1. Lav en graf med dybden h på x-aksen og trykket p på y-aksen. 2. Indsæt en lineær tendenslinje og find regneforskriften. Hvad bør hældningen være lig med? 3. Bestem densiteten af vandet ud fra hældningen af tendenslinjen. 4. Sammenlign densiteten med tabelværdien. Opdrift på lod Apparatur Lineal, Newtonmeter, snor, lod, højt måleglas, skydelære, sprittuds, stativ Fremgangsmåde 1. Fyld måleglasset med vand 2. Mål diameteren af loddet 3. Tegn tydelige streger på loddet med 1,0 cm s mellemrum fra bunden og op. 4. Hæng loddet fast på newtonmetret med snoren og hæng det hele op i stativet 5. Mål kraften loddet trækker i snoren med før det nedsænkes i væsken 6. Sænk nu loddet ned i væsken 1,0 cm af gangen og aflæs kraften på newtonmetret. 7. Lav til sidst en måling, hvor loddet er sænket et godt stykke ned under vandet og aflæs Newtonmetret. 27

28 Måledata Loddets diameter: Loddets tværsnitsareal: Nedsænket del af loddet F (N) Nedsænket volumen V (cm 3 ) F op (N) 0 cm 1 cm 2 cm 3 cm 4 cm 5 cm Hele loddet: cm Resultatbehandling 1. Beregn det nedsænkede volumen af loddet for hver måling. 2. Brug dine Newtonmeter målinger til at finde opdriften på loddet for alle målingerne. 3. Lav en graf med det nedsænkede volumen V på x-aksen og opdriften F op på y-aksen. 4. Indsæt en lineær tendenslinje og find regneforskriften. Hvad bør hældningen være lig med? 5. Bestem densiteten af vandet ud fra hældningen af tendenslinjen. 6. Nu skal vi finde densiteten af loddet til det skal vi bruge første og sidste måling. a. Find loddets volumen ud fra opdriften på hele loddet (sidste måling) b. Find loddets masse ud fra første måling c. Find loddets densitet d. Sammenlign med tabelværdien 28

29 Konklusion Skriv en kort konklusion, der sammenfatter de to forsøg. Kommenter på de to forskellige måder at bestemme en væskes densitet er den ene måde bedre end den anden? 29

30 7 Joules lov Formål Formålet med øvelsen er at eftervise Joules lov Teori Joules lov: ΔE = R t I ² (1) hvor ΔE er energien afsat i en metaltråd, t er tiden strømmen løber i, I er strømstyrken og R er metaltrådens resistans. Opvarmningsformlen/afkølingsformlen: Formlen for resistivitet: ΔE = m c T (2) Dit teoriafsnit skal indeholde: R = ρ L A (3) Beskrivelser af alle formler og størrelser i forsøget med dine egne ord. Forklaringer på hvordan teorien og forsøget hænger sammen, hvilke størrelser der måles og hvilke der beregnes. Opstilling Apparatur 30

31 Kalorimeter, Labquest med termoføler, strømforsyning, konstantantråd (Ø 0.25mm), holder til metaltråd, stopur (1 sec nøjagtighed), vægt, glasbæger med vand, magnetomrører. Fremgangsmåde 1. Brug formlen 3 til at beregne, hvor lang en konstantantråd (Ø 0,25 mm) I skal afmåle, for at trådens resistans bliver 4,5 Ω. Resistiviteten, ρ, for konstantan er 0, Ω m. 2. Dyppekogeren konstrueres. Et stykke konstantan-tråd med den udregnede længde (skulle gerne bliver omkring 45 cm) afmåles og klippes af. Herefter snos den til en spiral omkring en blyant eller lignende og sættes fast i trådholderen. 3. Vej den tomme kaloriemeterskål. 4. Fyld skålen ca. ⅔ op med vand. Sørg for at vandtemperaturen er under stuetemperatur. Vej skål med vand. 5. Sænk dyppekogeren ned i glasbægeret med vand og kobl den til strømforsyningen. Indstil strømstyrken til ca. 1,00 A. Skriv den præcise strømstyrke ned og sluk for strømmen. 6. Mål temperaturen T 1 af vandeti kalorimeterskålen. 7. Flyt dyppekogeren fra glasbægeret til kalorimeterskålen og start strømforsyningen og tidtagning samtidigt og lad systemet køre i 120 s hvorefter dyppekogeren slukkes igen. 8. Efter de 120 s røres godt rundt i kalorimeterskålen og slut-temperaturen T 2 måles. 9. Man kan få en tabelværdi for trådens resistans ved at måle på den med et Ohm-meter. Prøv det og beregn procentafvigelsen. 10. Vandet smides ud og forsøget gentages (dvs. punkterne 3-7 ovenfor) med den ændring, at strømstyrken øges til 1,50 A. Brug cirka samme mængde vand hver gang. 11. Gentag forsøget med 2,00 A, 2,50 A, 3,00 A, 3,50 A, 4,00 A og endelig 4,50 A 31

32 Måledata m skål = R tabel = I (A) T 1 ( C) T 2 ( C) m skål+vand (kg) m vand (kg) ΔE vand (J) ΔE skål (J) ΔE i alt (J) Resultatbehandling 1. Tegn ud fra de fundne data en (I, ΔE i alt ) graf og en (I 2, ΔE i alt ) graf. ΔE i alt beregnes vha. formlen ΔE = m c T, hvor de specifikke varmekapaciteter for vand og messing er: c messing = Er graferne som forventet? J Kg C, c vand = 4180 J kg C 3. Tilføj en lineær tendenslinje til (I 2, ΔE) grafen og brug dennes forskrift til at bestemme trådens resistans. Du skal også overveje, hvorfor det er nemmere at bruge denne graf fremfor (I, ΔE) grafen til at bestemme resistansen. 32

33 8 Absorption af radioaktiv stråling Formål At undersøge α-, β-, γ-strålings evne til at trænge gennem stof, samt at finde halveringstykkelsen for γ-stråling fra en bestemt kilde i bly. Teori Intensiteten I af radioaktiv stråling der måles, efter at strålingen har passeret gennem et stof med tykkelsen x, kan beskrives med formlen: I = I 0 e μ x (1) hvor I 0 er intensiteten ved tykkelsen x = 0 og µ er absorptionskoefficienten. Som i alle andre forsøg med radioaktiv stråling, skal du korrigere for baggrundsstråling Dit teoriafsnit skal indeholde: I kor = I gns I bg (2) En forklaring af alle størrelserne i (1) og (2), samt hvordan størrelserne måles. En forklaring på, hvad der forstås ved baggrundsstråling, og hvordan du bruger formel (1) til at bestemme halveringstykkelsen x ½. Opstilling Apparatur GM-rør forbundet til impulstæller, mikrometerskrue, alfa-, beta- og gammakilder, aluminium-plade, bly-plader samt diverse stativer, et stykke papir. 33

34 Fremgangsmåde 1. Intensiteten af baggrundsstrålingen måles ved at lave 5 målinger á 60 s og tage gennemsnittet af disse. Dette er I bg. Husk at kilderne skal være langt væk, når I laver baggrundsmålingerne. Skriv resultaterne i tabellen på næste side. 2. Anbring en α-kilde helt tæt på GM-røret (uden at røre det). I skal nu undersøge, hvordan et stykke papir påvirker tælletallet. Lav tre målinger af 10 sekunder. I første måling er der ingen forhindring mellem kilde og GM-rør. I anden måling et enkelt stykke papir og i tredje måling to stykke papir. Skriv resultaterne i tabellen på næste side. 3. Anbring en β-kilde tæt på GM-røret og lad tælleren køre. Undersøg hvordan et stykke papir mellem kilde og GM-røret påvirker tælletallet. Lav fire målinger af 10 sekunder. I første måling er der ingen forhindring mellem kilde og GM-rør. I anden måling et enkelt stykke papir. I tredje måling er der en tynd aluminiumsplade (ca. 1 mm) og i fjerde måling en tykkere aluminiumsplade (ca. 2 mm). Skriv resultaterne i tabellen på næste side. 4. Nu skal halveringstykkelsen af γ-stråling fra en bestemt kilde i bly findes. Anbring en γ- kilde nogle få centimeter fra GM-røret i et stativ (der skal være plads til 2-3 cm blyplader, uden at der skal rykkes på noget). Sæt en ca. 2 mm tyk aluminiumsplade på stativet imellem kilden og GM-røret og lav to 60 s målinger. Skriv resultaterne i tabellen på næste side. 5. Mål tykkelsen af en ca. 2 mm tyk blyplade, anbring den på stativet op ad aluminiumspladen og lav to 60 s målinger og skriv resultatet i tabellen. 6. Herefter sættes flere og flere ca. 2 mm tykke blyplader på stativet. Hver gang måles tykkelsen af de plader der tilføjes (som lægges sammen med tykkelsen af alle de blyplader, der allerede er på stativet) og hver gang laves der to 60 s målinger på intensiteten fra kilden. 34

35 Måledata I bg,1 I bg,2 I bg,3 I bg,4 I bg,5 I bg α-kilde Uden forhindring 1 stykke papir 2 stykker papir β-kilde Uden forhindring 1 stykke papir 1 tynd aluplade 1 tyk aluplade Måling nr. x (mm) I 1 I 2 I gns I kor

36 Resultatbehandling 1. Forklar hvad I så i pkt 2 og 3 af fremgangsmåden. I kan eventuelt korrigere for baggrundstrålingen (husk at I kun skal korrigere for 10s baggrundsstråling). Se formel 2 i teoriafsnittet. 2. Nu skal I arbejde med resultaterne fra forsøget med gammastrålingen. Udregn de korrigerede tælletal I kor i Excel. 3. Lav en graf med blypladetykkelsen x på x-aksen og I k på y-aksen. 4. Få regnearket til at lave regression med en eksponentialfunktion og brug forskriften for denne til at bestemme absorptionskoefficienten μ. Overvej, hvad enheden på μ bliver. 5. Beregn herefter halveringstykkelsen x ½ ud fra den netop beregnede værdi for µ. I Databog Fysik Kemi findes en graf, der viser halveringstykkelsen for gammastråling som funktion af fotonenergien. Bestem, ud fra det fundne halveringstykkelse, på grafen den energi, som de udsendte γ fotoner må have. Sammenlign med tabelværdien (som også findes i databogen). 6. Kilden I bruger er faktisk betaminusaktiv. Hvad kilden er lavet af, står på siden af den. Opskriv betaminushenfaldet. 7. Datterkernen fra dette henfald er derimod gammaaktiv. Opskriv også dennes henfald. 8. Hvorfor tror du, vi satte en aluminiumsplade på stativet, inden vi begyndte at måle på gammastrålingens halveringstykkelse i bly? 36

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik C-B 2017/18 Indhold Rapporter og journaler... 3 1 Rilleafstande... 5 2 Stående bølger på en streng... 9 3 Spektrum for ukendt grundstof... 13

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik C-B 2014 Indhold Rapporter og journaler... 3 1 Rilleafstande... 5 2 Stående bølger på en streng... 9 3 Spektrum for ukendt grundstof... 12 4 Bestemmelse

Læs mere

Aflevering og udformning af rapporter fra laboratoriekurser pa VUC A rhus

Aflevering og udformning af rapporter fra laboratoriekurser pa VUC A rhus Aflevering og udformning af rapporter fra laboratoriekurser pa VUC A rhus Aflevering af rapporter Antallet af rapporter, der skal afleveres varierer fra fag til fag, så dette vil I blive informeret om

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik 0-C 2015 Indhold Rapporter og journaler... 3 1 Lydens hastighed i luft... 5 2 Bølgelængde af laserlys... 8 3 Brydning i akryl... 11 4 Hydrogenspektret...

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik 0-C 2016/17 Indhold Journaler og rapporter... 3 Journal... 3 Rapport... 3 1 Lydens hastighed i luft... 5 2 Bølgelængde af laserlys... 8 3 Brydning

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik 0-C 2017/18 Indhold Rapporter og journaler... 3 1 Lydens hastighed i luft... 5 2 Bølgelængde af laserlys... 8 3 Brydning af lys i akryl... 11

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus AARHUS HF OG VUC Øvelsesvejledninger til laboratoriekursus Fysik 0-C 2018/19 Indhold Rapporter og journaler... 3 1 Lydens hastighed i luft... 5 2 Bølgelængde af laserlys... 8 3 Brydning af lys i akryl...

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik 0-C 2015 Indhold Rapporter og journaler... 3 1 Lydens hastighed i luft... 5 2 Bølgelængde af laserlys... 8 3 Brydning i akryl... 11 4 Hydrogenspektret...

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik C 2013 Indhold 1. Mekanisk energi og Atwoods faldmaskine... 3 2. Den svingende streng... 6 3. Bølgelængde af laserlys... 9 4. Brydningsindeks

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik B 2013 Indhold 1. Galileis faldlov... 3 2. Pendulbevægelse... 5 3. Batteri som spændingskilde... 10 4. Wheatstones bro og temperaturkoefficient...

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus RANDERS HF & VUC Øvelsesvejledninger til laboratoriekursus Fysik B 2013 Indhold 1. Galileis faldlov... 3 2. Pendulbevægelse... 5 3. Batteri som spændingskilde... 10 4. Joules lov... 13 5. Lydens fart...

Læs mere

Øvelsesvejledning RG Stående bølge. Individuel rapport. At undersøge bølgens hastighed ved forskellige resonanser.

Øvelsesvejledning RG Stående bølge. Individuel rapport. At undersøge bølgens hastighed ved forskellige resonanser. Stående bølge Individuel rapport Forsøgsformål At finde resonanser (stående bølger) for fiskesnøre. At undersøge bølgens hastighed ved forskellige resonanser. At se hvordan hastigheden afhænger af belastningen

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

Optisk gitter og emissionsspektret

Optisk gitter og emissionsspektret Optisk gitter og emissionsspektret Jan Scholtyßek 19.09.2008 Indhold 1 Indledning 1 2 Formål og fremgangsmåde 2 3 Teori 2 3.1 Afbøjning................................... 2 3.2 Emissionsspektret...............................

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik B 2013 Indhold 1. Galileis faldlov... 3 2. Pendulbevægelse... 5 3. Batteri som spændingskilde... 10 4. Wheatstones bro og temperaturkoefficient...

Læs mere

Opdrift i vand og luft

Opdrift i vand og luft Fysikøvelse Erik Vestergaard www.matematikfysik.dk Opdrift i vand og luft Formål I denne øvelse skal vi studere begrebet opdrift, som har en version i både en væske og i en gas. Vi skal lave et lille forsøg,

Læs mere

Velkommen til Laboratoriekursus i fysik C, forår 2015 KVUC, Sankt Petri Passage 1

Velkommen til Laboratoriekursus i fysik C, forår 2015 KVUC, Sankt Petri Passage 1 Velkommen til Laboratoriekursus i fysik C, forår 2015 KVUC, Sankt Petri Passage 1 Indholdsfortegnelse Program Rapporter og Journaløvelser Øvelserne Rapportøvelse: Densitet for faste stoffer og væsker Journaløvelse:

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

Ohms lov. Formål. Princip. Apparatur. Brug af multimetre. Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd.

Ohms lov. Formål. Princip. Apparatur. Brug af multimetre. Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd. Ohms lov Nummer 136050 Emne Ellære Version 2017-02-14 / HS Type Elevøvelse Foreslås til 7-8, (gymc) p. 1/5 Formål Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd. Princip Et stykke

Læs mere

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager Fysikrapport: Rapportøvelse med kalorimetri Maila Walmod, 1.3 HTX, Rosklide I gruppe med Ulrik Stig Hansen og Jonas Broager Afleveringsdato: 30. oktober 2007* *Ny afleveringsdato: 13. november 2007 1 Kalorimetri

Læs mere

Fysikrapport Joules lov. Gruppe Nr. 232 Udarbejdet af Nicolai og Martin

Fysikrapport Joules lov. Gruppe Nr. 232 Udarbejdet af Nicolai og Martin Fysikrapport Joules lov Gruppe Nr. 232 Udarbejdet af Nicolai og Martin 1 Indholdsfortegnelse Formål 3 Teori 3 Materialer 4 Fremgangsmåde 4-5 Måleresultater 5 Databehandling 5-6 Usikkerheder 6 Fejlkilder

Læs mere

Gruppemedlemmer gruppe 232: Forsøg udført d. 6/ Joule s lov

Gruppemedlemmer gruppe 232: Forsøg udført d. 6/ Joule s lov Joule s lov 1 Formål I dette eksperiment vil vi eftervise Joules lov. Teori P = Watt / effekt R = Modstand /resistor Ω I = Ampere / spænding (A) Tid = Delta tid / samlet tid m = Massen c =Specifik varmekapacitet

Læs mere

Øvelsesvejledning FH Stående bølge. Individuel rapport

Øvelsesvejledning FH Stående bølge. Individuel rapport Teori Stående bølge Individuel rapport Betragt en snøre udspændt mellem en vibrator og et fast punkt. Vibratorens svingninger får en bølge til at forplante sig hen gennem snøren. Så snart bølgerne når

Læs mere

Røntgenspektrum fra anode

Røntgenspektrum fra anode Røntgenspektrum fra anode Elisabeth Ulrikkeholm June 24, 2016 1 Formål I denne øvelse skal I karakterisere et røntgenpektrum fra en wolframanode eller en molybdænanode, og herunder bestemme energien af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2018 Institution HF & VUC Nordsjælland, Hillerød afdeling Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Enkelt og dobbeltspalte

Enkelt og dobbeltspalte Enkelt og dobbeltsalte Jan Scholtyßek 4.09.008 Indhold 1 Indledning 1 Formål 3 Teori 3.1 Enkeltsalte.................................. 3. Dobbeltsalte................................. 3 4 Fremgangsmåde

Læs mere

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen Strålingsintensitet Skal det fx afgøres hvor skadelig en given radioaktiv stråling er, er det ikke i sig selv relevant at kende aktiviteten af kilden til strålingen. Kilden kan være langt væk eller indkapslet,

Læs mere

Forsøg del 1: Beregning af lysets bølgelængde

Forsøg del 1: Beregning af lysets bølgelængde Forsøg del 1: Beregning af lysets bølgelængde Formål Formålet med denne forsøgsrække er, at vise mange aspekter inden for emnet lys med udgangspunkt i begrænset materiale. Formålet med forsøget er at beregne

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Længdebølger og tværbølger... 2 Forsøg med frembringelse af lyd... 3 Måling af lydens hastighed... 4 Resonans... 5 Ørets følsomhed over for lydfrekvenser.... 6 Stående tværbølger på en snor....

Læs mere

Sæt GM-tællererne til at tælle impulser i 10 sekunder. Sørg for at alle kendte radioaktive kilder er placeret langt væk fra målerøret.

Sæt GM-tællererne til at tælle impulser i 10 sekunder. Sørg for at alle kendte radioaktive kilder er placeret langt væk fra målerøret. Forsøge med stråling fra radioaktive stoffer Stråling fra radioaktive stoffer. Den stråling, der kommer fra radioaktive stoffer, kaldes for ioniserende stråling. Den kan måles med en Geiger-Müler-rør koblet

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2019

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2019 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2019 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Stx Fysik B Janus Juul Povlsen

Læs mere

Fysik 2 - Den Harmoniske Oscillator

Fysik 2 - Den Harmoniske Oscillator Fysik 2 - Den Harmoniske Oscillator Esben Bork Hansen, Amanda Larssen, Martin Qvistgaard Christensen, Maria Cavallius 5. januar 2009 Indhold 1 Formål 1 2 Forsøget 2 3 Resultater 3 4 Teori 4 4.1 simpel

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Stx Fysik 0- B Janus Juul Povlsen

Læs mere

Rapport uge 48: Skråplan

Rapport uge 48: Skråplan Rapport uge 48: Skråplan Morten A. Medici, Jonatan Selsing og Filip Bojanowski 2. december 2008 Indhold 1 Formål 2 2 Teori 2 2.1 Rullebetingelsen.......................... 2 2.2 Konstant kraftmoment......................

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2018

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2018 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2018 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Stx Fysik 0- B Janus Juul Povlsen

Læs mere

Matematiske modeller Forsøg 1

Matematiske modeller Forsøg 1 Matematiske modeller Forsøg 1 At måle absorbansen af forskellige koncentrationer af brilliant blue og derefter lave en standardkurve. 2 ml pipette 50 og 100 ml målekolber Kuvetter Engangspipetter Stamopløsning

Læs mere

Elevforsøg i 10. klasse Lyd

Elevforsøg i 10. klasse Lyd Fysik/kemi Viborg private Realskole Elevforsøg i 10. klasse Lyd Lydbølger og interferens SIDE 2 1062 At påvise fænomenet interferens At demonstrere interferens med to højttalere Teori Interferens: Det

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Stx Fysik B (Fysik C-B) Janus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold VUF - Voksenuddannelsescenter Frederiksberg

Læs mere

Eksempler på opgaver til mundtlig delprøve i fysik B (htx)

Eksempler på opgaver til mundtlig delprøve i fysik B (htx) Eksempler på opgaver til mundtlig delprøve i fysik B (htx) Af Morten Stoklund Larsen og Anne Handberg Pedersen Denne note indeholder forfatternes forslag til, hvordan opgaver til brug ved den mundtlige

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Bølgeegenskaber vha. simuleringsprogram... 2 Forsøg med lys gennem glas... 3 Lysets brydning i et tresidet prisme... 4 Forsøg med lysets farvespredning... 5 Forsøg med lys gennem linser... 6 Langsynet

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

Skråplan. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 2. december 2008

Skråplan. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 2. december 2008 Skråplan Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen 2. december 2008 1 Indhold 1 Formål 3 2 Forsøg 3 2.1 materialer............................... 3 2.2 Opstilling...............................

Læs mere

Lavet af Ellen, Sophie, Laura Anna, Mads, Kristian og Mathias Fysikrapport blide forsøg Rapport 6, skråt kast med blide Formål Formålet med f

Lavet af Ellen, Sophie, Laura Anna, Mads, Kristian og Mathias Fysikrapport blide forsøg Rapport 6, skråt kast med blide Formål Formålet med f Rapport 6, skråt kast med blide Formål Formålet med forsøget er at undersøge det skrå kast, bl.a. med fokus på starthastighed, elevation og kastevidde. Teori Her følger der teori over det skrå kast Bevægelse

Læs mere

Sted: Kurset afholdes i Sankt Petris Passage nr. 1.

Sted: Kurset afholdes i Sankt Petris Passage nr. 1. Øvelsesvejledninger fysik C-B selvstuderende KVUC Fredag den 21. april fra kl. 16.30 19.30 Lørdag den 22. april fra kl. 09.00 16.00 Søndag den 23. april fra kl. 09.00 16.00 Sted: Kurset afholdes i Sankt

Læs mere

STUDENTEREKSAMEN MAJ 2007 Vejledende opgavesæt nr. 2 FYSIK A-NIVEAU. Xxxxdag den xx. måned åååå. Kl. 09.00 14.00 STX072-FKA V

STUDENTEREKSAMEN MAJ 2007 Vejledende opgavesæt nr. 2 FYSIK A-NIVEAU. Xxxxdag den xx. måned åååå. Kl. 09.00 14.00 STX072-FKA V STUDENTEREKSAMEN MAJ 2007 Vejledende opgavesæt nr. 2 FYSIK A-NIVEAU Xxxxdag den xx. måned åååå Kl. 09.00 14.00 STX072-FKA V Opgavesættet består af 7 opgaver med i alt 15 spørgsmål samt 2 bilag i 2 eksemplarer.

Læs mere

Kulstofnanorør - småt gør stærk Side 20-23 i hæftet

Kulstofnanorør - småt gør stærk Side 20-23 i hæftet Kulstofnanorør - småt gør stærk Side 20-23 i hæftet SMÅ FORSØG OG OPGAVER Lineal-lyd 1 Lineal-lyd 2 En lineal holdes med den ene hånd fast ud over en bordkant. Med den anden anslås linealen. Det sker ved

Læs mere

Formelsamling til Fysik B

Formelsamling til Fysik B Formelsamling til Fysik B Af Dann Olesen og Søren Andersen Hastighed(velocity) Densitet Tryk Arbejde Definitioner og lignende Hastighed, [ ] Strækning, [ ] Volumen(rumfang), [ ] Tryk, [ ] : Pascal Kraft,

Læs mere

Faldmaskine. , får vi da sammenhængen mellem registreringen af hullerne : t = 2 r 6 v

Faldmaskine. , får vi da sammenhængen mellem registreringen af hullerne : t = 2 r 6 v Faldmaskine Rapport udarbejdet af: Morten Medici, Jonatan Selsing, Filip Bojanowski Formål: Formålet med denne øvelse er opnå en vis indsigt i, hvordan den kinetiske energi i et roterende legeme virker

Læs mere

Brugsvejledning for Frit fald udstyr

Brugsvejledning for Frit fald udstyr Brugsvejledning for 1980.10 Frit fald udstyr 13.12.10 Aa 1980.10 1. Udløser 2. Tilslutningsbøsninger for prøveledninger 3. Trykknap for udløser 4. Kontaktplader 5. Udfræsning for placering af kugle 6.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Stx Fysik 0- B Karin Hansen

Læs mere

Når strømstyrken ikke er for stor, kan batteriet holde spændingsforskellen konstant på 12 V.

Når strømstyrken ikke er for stor, kan batteriet holde spændingsforskellen konstant på 12 V. For at svare på nogle af spørgsmålene i dette opgavesæt kan det sagtens være, at du bliver nødt til at hente informationer på internettet. Til den ende kan oplyses, at der er anbragt relevante link på

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Indhold... 1 Måling af stråling med Datastudio... 2 Måling af baggrundsstrålingens variation... 3 Måling af halveringstid... 4 Nuklidkort. (teoriopgave)... 5 Fyldning af beholdere... 6 Sådan fungerer

Læs mere

Analyse af måledata I

Analyse af måledata I Analyse af måledata I Faldforsøg undersøgt med LoggerPro Af Michael Brix Pedersen, Birkerød Gymnasium I fysik skal eleverne lære at behandle og repræsentere måledata, som enten er indsamlet ved manuelle

Læs mere

Erik Vestergaard 1. Opgaver. i Lineære. funktioner. og modeller

Erik Vestergaard   1. Opgaver. i Lineære. funktioner. og modeller Erik Vestergaard www.matematikfsik.dk Opgaver i Lineære funktioner og modeller Erik Vestergaard www.matematikfsik.dk Erik Vestergaard, Haderslev. www.matematikfsik.dk Teknik. Aflæse forskrift fra graf...

Læs mere

Gammaspektrum med multikanalanalysatoren

Gammaspektrum med multikanalanalysatoren Fysikøvelse - Erik Vestergaard www.matematikfysik.dk 1 Gammaspektrum med multikanalanalysatoren Formål Formålet med øvelsen er at identificere et ukendt radioaktivt stof, som udsender gammastråling. Dette

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Sommer 2015 Thy-Mors HF & VUC Stx Fysik, niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Efterår 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Stx Fysik B Henrik Jessen(HEJE)

Læs mere

Jævn cirkelbevægelse udført med udstyr fra Vernier

Jævn cirkelbevægelse udført med udstyr fra Vernier Fysikøvelse - Erik Vestergaard www.matematikfysik.dk 1 Jævn cirkelbevægelse udført med udstyr fra Vernier Formål Formålet med denne øvelse er at eftervise følgende formel for centripetalkraften på et legeme,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2018 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Fysik B Jesper Sommer-Larsen

Læs mere

En sumformel eller to - om interferens

En sumformel eller to - om interferens En sumformel eller to - om interferens - fra borgeleo.dk Vi ønsker - af en eller anden grund - at beregne summen og A x = cos(0) + cos(φ) + cos(φ) + + cos ((n 1)φ) A y = sin (0) + sin(φ) + sin(φ) + + sin

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Marie Kruses Skole Uddannelse STX Fag og niveau Fysik B (start jan. 2014) Lærer(e)

Læs mere

Fysik- kalorimetri Roskilde Tekniske Gymnasium 30. oktober Flammetemperatur. Klasse 1.5 Filip Olsen. Indledning Materialer...

Fysik- kalorimetri Roskilde Tekniske Gymnasium 30. oktober Flammetemperatur. Klasse 1.5 Filip Olsen. Indledning Materialer... Flammetemperatur Klasse 1.5 Filip Olsen Indholdsfortegnelse Indledning... 2 Materialer... 3 Metode... 3 Resultater... 4 Diskussion... 4 Konklusion... 5 Kilder... Error! Bookmark not defined. 1 Indledning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 juni 2017 Institution AARHUS TECH, Aarhus Gymnasium Uddannelse Fag og niveau Lærer(e) Hold htx

Læs mere

Til at beregne varmelegemets resistans. Kan ohms lov bruges. Hvor R er modstanden/resistansen, U er spændingsfaldet og I er strømstyrken.

Til at beregne varmelegemets resistans. Kan ohms lov bruges. Hvor R er modstanden/resistansen, U er spændingsfaldet og I er strømstyrken. I alle opgaver er der afrundet til det antal betydende cifre, som oplysningen med mindst mulige cifre i opgaven har. Opgave 1 Færdig Spændingsfaldet over varmelegemet er 3.2 V, og varmelegemet omsætter

Læs mere

Forsøget blev udført af Gruppen: Anders Faurskov, Mikkel Rask og Victor Hjort

Forsøget blev udført af Gruppen: Anders Faurskov, Mikkel Rask og Victor Hjort Fysik rapport 2015, 1c, Vejen Gymnasium og Hf Titel: Opvarmning med spritkoger Dato for udførelse: 12/11-2015 Forsøget blev udført af Gruppen: Anders Faurskov, Mikkel Rask og Victor Hjort Rapporten er

Læs mere

Kuglers bevægelse i væske

Kuglers bevægelse i væske Kuglers bevægelse i væske Øvelsens formål er - at eftervise v 2 -loven for bevægelse i væsker: For et legeme der bevæger sig i vand. - at se at legemet i vores forsøg er så stort, at vi ikke har laminar

Læs mere

Mødested: Indhold: Introduktion til fysikøvelserne. Journaløvelse Rilleafstand for CD og DVD. Rapportøvelse Lydens fart i atmosfærisk luft

Mødested: Indhold: Introduktion til fysikøvelserne. Journaløvelse Rilleafstand for CD og DVD. Rapportøvelse Lydens fart i atmosfærisk luft Mødested: Vognmagergade 8, Lok. 319 (3. sal) Fredag 24. apr. Kl. 17.30 Indhold: Introduktion til fysikøvelserne Journaløvelse Rilleafstand for CD og DVD Rapportøvelse Lydens fart i atmosfærisk luft Journaløvelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold VUF - Voksenuddannelsescenter Frederiksberg

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Vejledende eksamensopgaver 16. januar 2008 Tilladte hjælpemidler: Medbragt litteratur, noter

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Indhold... 1 Måling af stråling med Capstone... 2 Måling af baggrundsstrålingens variation... 3 Måling af halveringstid... 4 Nuklidkort. (teoriopgave)... 5 Sådan fungerer et atomkraftværk.... 6

Læs mere

Apparatur: 1 EV3 startkasse, målebånd, sort bred lærredstape, oplader, kan benyttes som passer, kridt, plader til at lave bakker med, niveauborde.

Apparatur: 1 EV3 startkasse, målebånd, sort bred lærredstape, oplader, kan benyttes som passer, kridt, plader til at lave bakker med, niveauborde. Lego Mindstorms Education EV3 Projektarbejde med Lego Mindstorms version EV3. til Windows 7og 8 og Mac Apparatur: 1 EV3 startkasse, målebånd, sort bred lærredstape, oplader, kan benyttes som passer, kridt,

Læs mere

Måling af spor-afstand på cd med en lineal

Måling af spor-afstand på cd med en lineal Måling af spor-afstand på cd med en lineal Søren Hindsholm 003x Formål og Teori En cd er opbygget af tre lag. Basis er et tykkere lag af et gennemsigtigt materiale, oven på det er der et tyndt lag der

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 12/13 Institution Teknisk gymnasium Thisted, EUC - Nordvest Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 12/13 og maj/juni 13/14 Institution Teknisk gymnasium Thisted, EUC - Nordvest Uddannelse Fag og niveau

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Længdebølger og tværbølger... 2 Forsøg med frembringelse af lyd... 3 Resonans... 4 Ørets følsomhed over for lydfrekvenser.... 5 Stående tværbølger på en snor.... 6 Stående lydbølger i resonansrør.

Læs mere

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3 Gaslovene SH ver. 1.2 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................

Læs mere

Bevægelse op ad skråplan med ultralydssonde.

Bevægelse op ad skråplan med ultralydssonde. Bevægelse op ad skråplan med ultralydssonde. Formål: a) At finde en formel for accelerationen i en bevægelse op ad et skråplan, og at prøve at eftervise denne formel, ud fra en lille vinkel og vægtskål

Læs mere

Journalark. Varmekapacitet

Journalark. Varmekapacitet Journalark Varmekapacitet 1 Formål Formålet med dette eksperiment er at undersøge ændringer i temperatur og energimængder ved opvarmning af vand med en elkedel og med varme metalklodser. Til at opfylde

Læs mere

FYSIK RAPPORT. Forsøg med kalorimeter. Tim Ohlsen, Kim Kähler, Emil Lind, Jeppe Lauritsen og Lasse Klein

FYSIK RAPPORT. Forsøg med kalorimeter. Tim Ohlsen, Kim Kähler, Emil Lind, Jeppe Lauritsen og Lasse Klein FYSIK RAPPORT Forsøg med kalorimeter Tim Ohlsen, Kim Kähler, Emil Lind, Jeppe Lauritsen og Lasse Klein Indhold Formål:... 2 Beskrivelse:... 2 Formel for beregning af specifikke varmekapacitet:... 2 Udførsel

Læs mere

En f- dag om matematik i toner og instrumenter

En f- dag om matematik i toner og instrumenter En f- dag om matematik i toner og instrumenter Læringsmål med relation til naturfagene og matematik Eleverne har viden om absolut- og relativ vækst, og kan bruge denne viden til at undersøge og producerer

Læs mere

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2...

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... Introduktion til kvantemekanik Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... 6 Hvordan må bølgefunktionen se ud...

Læs mere

Øvelsesvejledninger for fysik C Labkursus fysik C Selvstuderende KVUC. Sted: Kurset afholdes i Sankt Petris Passage nr. 1.

Øvelsesvejledninger for fysik C Labkursus fysik C Selvstuderende KVUC. Sted: Kurset afholdes i Sankt Petris Passage nr. 1. Øvelsesvejledninger for fysik C Labkursus fysik C Selvstuderende KVUC Fredag den 17. marts fra kl. 16.30 19.30 Lørdag den 18. marts fra kl. 09.00 16.00 Søndag den 19. marts fra kl. 09.00 16.00 Sted: Kurset

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger Fysikøvelse Erik Vestergaard www.matematikfysik.dk Musik og bølger Formål Hovedformålet med denne øvelse er at studere det fysiske begreb stående bølger, som er vigtigt for at forstå forskellige musikinstrumenters

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2017 Institution Uddannelse Fag og niveau Lærer Hold VUC Skive-Viborg Hfe Fysik B Claus Ryberg Nielsen

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Bølgeegenskaber vha. simuleringsprogram... 2 Forsøg med lys gennem glas... 3 Lysets brydning i et tresidet prisme... 4 Forsøg med lysets farvespredning... 5 Forsøg med lys gennem linser... 6 Langsynet

Læs mere

Laboratorieøvelse Kvantefysik

Laboratorieøvelse Kvantefysik Formålet med øvelsen er at studere nogle aspekter af kvantefysik. Øvelse A: Heisenbergs ubestemthedsrelationer En af Heisenbergs ubestemthedsrelationer handler om sted og impuls, nemlig at (1) Der gælder

Læs mere

Dyr i bevægelse. Måling af iltforbrug hos fisk. Arbejdsark til eleverne. Naturhistorisk Museus Århus

Dyr i bevægelse. Måling af iltforbrug hos fisk. Arbejdsark til eleverne. Naturhistorisk Museus Århus Måling af iltforbrug hos fisk Tanker før forsøget I atmosfærisk luft er der ca. 21% ilt? Er det anderledes i vand? Hvorfor? Hvad bruger levende dyr ilt til? Forklar kort iltens vej i kroppen hos dyr, der

Læs mere

Respiration og stofskifte Forsøgsvejledning

Respiration og stofskifte Forsøgsvejledning Respiration og stofskifte Forsøgsvejledning Delforsøg A Delforsøg B Skoletjenesten Zoo Respiration og stofskifte Side 1 af 9 I Zoo skal I måle forskellige organismers respiration og stofskifte vha. to

Læs mere

Benjamin Franklin Prøv ikke at gentage forsøget! hvor er den passerede ladning i tiden, og enheden 1A =

Benjamin Franklin Prøv ikke at gentage forsøget! hvor er den passerede ladning i tiden, og enheden 1A = E3 Elektricitet 1. Grundlæggende Benjamin Franklin Prøv ikke at gentage forsøget! I E1 og E2 har vi set på ladning (som måles i Coulomb C), strømstyrke I (som måles i Ampere A), energien pr. ladning, også

Læs mere

Røntgenøvelser på SVS

Røntgenøvelser på SVS Røntgenøvelser på SVS Øvelsesvejledning Endelig vil du se hvordan radiograferne kan styre kvaliteten af billedet ved hjælp af mængden af stråling og energien af strålingen. Ved CT-scanneren vil du kunne

Læs mere

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Modtaget dato: (forbeholdt instruktor) Godkendt: Dato: Underskrift: Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Kristian Jerslev, Kristian Mads Egeris Nielsen, Mathias

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2013 Institution Uddannelse Fag og niveau Lærer(e) Hold HTX Sukkertoppen, Københavns Tekniske Skole Htx

Læs mere

Harmonisk oscillator. Thorbjørn Serritslev Nieslen Erik Warren Tindall

Harmonisk oscillator. Thorbjørn Serritslev Nieslen Erik Warren Tindall Harmonisk oscillator Thorbjørn Serritslev Nieslen Erik Warren Tindall November 27, 2007 Formål At studere den harmoniske oscillator, som indgår i mange fysiske sammenhænge. Den harmoniske oscillator illustreres

Læs mere

AFKØLING Forsøgskompendium

AFKØLING Forsøgskompendium AFKØLING Forsøgskompendium IBSE-forløb 2012 1 KULDEBLANDING Formålet med forsøget er at undersøge, hvorfor sneen smelter, når vi strøer salt. Og derefter at finde frysepunktet for forskellige væsker. Hvad

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2018 Institution Uddannelse Fag og niveau Lærer Hold VUC Skive-Viborg Hfe Fysik B Claus Ryberg Nielsen

Læs mere