Brownsk Bevægelse fra pollenkorn til matematisk blomst
|
|
|
- Bo Justesen
- 8 år siden
- Visninger:
Transkript
1 HCØ-dage 2007 Brownsk Bevægelse fra pollenkorn til matematisk blomst Niels Richard Hansen Institut for Matematiske Fag Forskningsgruppe: Statistik og Sandsynlighedsregning Præsentation ved HCØ-dage p.1/12
2 Brownsk Bevægelse Robert Brown Thorvald Nicolai Thiele Louis Bachelier Albert Einstein Norbert Wiener Paul Pierre Lévy. p.2/12
3 Brownsk Bevægelse Gulvet i Hafnias forhal (Foto: Jan Parner, Codan Forsikring A/S) En liter mælk og et gulv i Hafnia.... p.3/12
4 Brownsk Bevægelse Botanikeren Robert Brown lagde navn til fysisk Brownsk bevægelse det observerbare at små partikler i væske bevæger sig.. p.4/12
5 Brownsk Bevægelse Botanikeren Robert Brown lagde navn til fysisk Brownsk bevægelse det observerbare at små partikler i væske bevæger sig. Robert Brown, A brief Account of Microscopical Observations on the Particles Contained in the Pollen of Plants; and of the General Existence of Active Molecules in Organic and Inorganic Bodies (1827).. p.4/12
6 Brownsk Bevægelse Botanikeren Robert Brown lagde navn til fysisk Brownsk bevægelse det observerbare at små partikler i væske bevæger sig. Robert Brown, A brief Account of Microscopical Observations on the Particles Contained in the Pollen of Plants; and of the General Existence of Active Molecules in Organic and Inorganic Bodies (1827). En fysisk endsige matematisk teori og forståelse ligger et stykke ude i fremtiden.. p.4/12
7 Brownsk Bevægelse Albert Einstein udleder teoretisk i 1905 tilsyneladende uden referencer til empiriske observationer Brownsk bevægelse som en konsekvens af eksistensen af atomer.. p.5/12
8 Brownsk Bevægelse Albert Einstein udleder teoretisk i 1905 tilsyneladende uden referencer til empiriske observationer Brownsk bevægelse som en konsekvens af eksistensen af atomer. Einstein giver også en korrekt beskrivelse af, hvordan det matematiske objekt Brownsk bevægelse ser ud dersom det findes.... p.5/12
9 Matematisk Brownsk Bevægelse Wiener processen eller Matematisk Brownsk bevægelse er defineret som en kontinuert funktion med følgende statistiske karakteristika:. p.6/12
10 Matematisk Brownsk Bevægelse Wiener processen eller Matematisk Brownsk bevægelse er defineret som en kontinuert funktion med følgende statistiske karakteristika: Tilvæksten ændringen over et tidsinterval af længde er normalfordelt med middelværdi 0 og varians σ 2. Tilvækster over disjunkte tidsintervaller er stokastisk uafhængige.. p.6/12
11 Matematisk Brownsk Bevægelse Wiener processen eller Matematisk Brownsk bevægelse er defineret som en kontinuert funktion med følgende statistiske karakteristika: Tilvæksten ændringen over et tidsinterval af længde er normalfordelt med middelværdi 0 og varians σ 2. Tilvækster over disjunkte tidsintervaller er stokastisk uafhængige. Vi tilskriver beviset for eksistensen af sådan et matematisk objekt til Norbert Wiener (1923).. p.6/12
12 Kvadratiske rester Et tal d er kvadratisk rest modulo c, hvis der findes x således at resten af x 2 ved division med c er lig d der er altså en løsning (x, r) til x 2 = rc + d.. p.7/12
13 Kvadratiske rester Et tal d er kvadratisk rest modulo c, hvis der findes x således at resten af x 2 ved division med c er lig d der er altså en løsning (x, r) til x 2 = rc + d. Man kan fortolke ovenstående i heltalsringen Z eller i den Gaussiske talring af komplekse tal a + ib for a, b Z.. p.7/12
14 Thiele Thorvald Nicolai Thiele var professor i astronomi ved Københavns Universitet, medstifter af Dansk Matematisk Forening (1873) og Dansk Aktuarforening (1901). Medstifter af livsforsikringsselskabet Hafnia (1872) og angiveligt ophavsmand til fliselægningen i Hafnias gamle forhal (bygget ).. p.8/12
15 Thiele Thorvald Nicolai Thiele var professor i astronomi ved Københavns Universitet, medstifter af Dansk Matematisk Forening (1873) og Dansk Aktuarforening (1901). Medstifter af livsforsikringsselskabet Hafnia (1872) og angiveligt ophavsmand til fliselægningen i Hafnias gamle forhal (bygget ). Thiele dør i 1910, 71 år gammel. Gulvet er med stor sikkerhed en farvelægning af de kvadratiske rester i den Gaussiske talring modulo 71!. p.8/12
16 Thiele og Brownsk bevægelse Thiele beskriver i 1880 en fejlmodel for målinger med aggregering af fejl over tid i artiklen Om Anvendelser af mindste Kvadraters Methode i nogle Tilfælde, hvor en Komplikation af visse Slags uensartede tilfældige Fejlkilder giver Fejlene en systematisk Karakter. Modellen er essentielt identisk med den matematiske Brownske bevægelse.. p.9/12
17 Brownsk bevægelse i arbejdstøjet Som model for fluktuationer på de finansielle markeder går tilbage til Bachelier: The Theory of Speculation (1900).. p.10/12
18 Brownsk bevægelse i arbejdstøjet Som model for fluktuationer på de finansielle markeder går tilbage til Bachelier: The Theory of Speculation (1900). Robert C. Merton (Harvard) og Myron S. Scholes (Stanford) får Nobelprisen i økonomi i 1997 for Black-Scholes modellen fra Modellen baseret på Brownsk bevægelse giver bl.a. en eksplicit metode til hvorledes en option på køb af en aktie skal prisfastsættes.. p.10/12
19 Emner fra moderne forskning Lévy processer Paul Lévy. p.11/12
20 Emner fra moderne forskning Lévy processer Paul Lévy Som Wiener processen men med normalfordelingen erstattet af andre statistiske fordelinger.. p.11/12
21 Emner fra moderne forskning Lévy processer Paul Lévy Som Wiener processen men med normalfordelingen erstattet af andre statistiske fordelinger. Anvendes bl.a. i økonomi/finansiering som erstatning for Brownsk bevægelse.. p.11/12
22 Emner fra moderne forskning Lévy processer Paul Lévy Som Wiener processen men med normalfordelingen erstattet af andre statistiske fordelinger. Anvendes bl.a. i økonomi/finansiering som erstatning for Brownsk bevægelse. Stokastisk analyse (stokastiske differentialligninger) og statistik.. p.11/12
23 Emner fra moderne forskning Lévy processer Paul Lévy Som Wiener processen men med normalfordelingen erstattet af andre statistiske fordelinger. Anvendes bl.a. i økonomi/finansiering som erstatning for Brownsk bevægelse. Stokastisk analyse (stokastiske differentialligninger) og statistik. Wendelin Werner modtager Fields medaljen 2006 bl.a. for sit arbejde med 2-dimensional Brownsk bevægelse.. p.11/12
24 Mere om Brownsk bevægelse Brownsk bevægelse er selv-similær dvs. zoomer vi ind på processen ser den ud, som før vi zoomede ind.. p.12/12
25 Mere om Brownsk bevægelse Brownsk bevægelse er selv-similær dvs. zoomer vi ind på processen ser den ud, som før vi zoomede ind. Brownsk bevægelse er kontinuerte funktioner, der er intetsteds differentiable. Dvs. til intet tidspunkt er der en veldefineret tangent til bevægelsen.. p.12/12
26 Mere om Brownsk bevægelse Brownsk bevægelse er selv-similær dvs. zoomer vi ind på processen ser den ud, som før vi zoomede ind. Brownsk bevægelse er kontinuerte funktioner, der er intetsteds differentiable. Dvs. til intet tidspunkt er der en veldefineret tangent til bevægelsen.... og der vides helt utroligt meget mere om den matematiske teori for Brownsk bevægelse. Brownsk bevægelse spiller i dag stadig en stor rolle i matematisk finansieringsteori, forsikringsmatematik og statistik.. p.12/12
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Løsninger til kapitel 6
Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180)
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Den Brownske Bevægelse
Den Brownske Bevægelse N.J. Nielsen 1 Notation I dette notesæt vil vi generelt benytte samme notation som i det øvrige undervisningsmateriale i MM23. For ethvert n N betegner B n Borelalgebraen på R, og
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde
Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Thieles talmønstre gulvfliser og komplekse heltal
Thieles talmønstre gulvfliser og komplekse heltal Af Steffen L. Lauritzen, Institut for Matematiske Fag, Aalborg Universitet - et særtryk af Matilde nr. 15 Forord Steffen Lauritzens artikel "Thieles talmønstre
standard normalfordelingen på R 2.
Standard normalfordelingen på R 2 Lad f (x, y) = 1 x 2 +y 2 2π e 2. Vi har så f (x, y) = 1 2π e x2 2 1 2π e y2 2, og ved Tonelli f dm 2 = 1. Ved µ(a) = A f dm 2 defineres et sandsynlighedsmål på R 2 målet
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring
Fagplan for statistik, efteråret 2015
Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat
Hvad bør en option koste?
Det Naturvidenskabelige Fakultet Rolf Poulsen [email protected] Institut for Matematiske Fag 9. oktober 2012 Dias 1/19 Reklame først: Matematik-økonomi-uddannelsen Økonomi på et solidt matematisk/statistisk
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
Uge 10 Teoretisk Statistik 1. marts 2004
1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Eksamen 2014/2015 Mål- og integralteori
Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug-juni 10/11 Institution Campus Vejle Handelsgymnasie Uddannelse Fag og niveau Lærer(e) Hold HHX Statistik
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)
; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians
statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag
Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale
1 Sandsynlighed Sandsynlighedsbegrebet Definitioner Diskret fordeling Betinget sandsynlighed og uafhængighed...
Indhold 1 Sandsynlighed 1 1.1 Sandsynlighedsbegrebet................................. 1 1.2 Definitioner........................................ 2 1.3 Diskret fordeling.....................................
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Eksamen i Statistik for biokemikere. Blok
Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)
13 Markovprocesser med transitionssemigruppe
13 Markovprocesser med transitionssemigruppe I nærværende kapitel vil vi antage at tilstandsrummet er polsk, hvilket sikrer, at der findes regulære betingede fordelinger. Vi skal se på eksistensen af Markovprocesser.
En martingalversion af CLT
Kapitel 11 En martingalversion af CLT Når man har vænnet sig til den centrale grænseværdisætning for uafhængige, identisk fordelte summander, plejer næste skridt at være at se på summer af stokastiske
Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()
Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne
Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne 5. undervisningsuge, onsdag
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning
Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI. 4 timers skriftlig eksamen, 9-13 torsdag 6/
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI 4 timers skriftlig eksamen, 9-13 torsdag 6/6 2002 VEJLEDENDE BESVARELSE OG KOMMENTARER Opgave 1 Spg 1a
Opgave nr. 5 og 31. Værdiansættelse af stiafhængige bermuda optioner, ved Least Squares Monte Carlo simulation.
H.D.-studiet i Finansiering Hovedopgave - forår 2009 ---------------- Opgaveløser: Martin Hofman Laursen Joachim Bramsen Vejleder: Niels Rom-Poulsen Opgave nr. 5 og 31 Værdiansættelse af stiafhængige bermuda
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2019 Institution Niels Brock Innovationsgymnasiet Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik
Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen
Hvad bør en option koste?
Det Naturvidenskabelige Fakultet Rolf Poulsen [email protected] Institut for Matematiske Fag 19. marts 2015 Dias 1/22 Reklame først: Matematik-økonomi-uddannelsen Økonomi på et solidt matematisk/statistisk
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Nanostatistik: Opgaver
Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold Stx (B-A) MATEMATIK A Peter Ove
Preben Blæsild og Jens Ledet Jensen
χ 2 Test Preben Blæsild og Jens Ledet Jensen Institut for Matematisk Fag Aarhus Universitet Egå Gymnasium, December 2010 Program 8.15-10.00 Forelæsning 10.15-12.00 Statlab: I arbejder, vi cirkler rundt
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Campus Vejle HHX Matematik A Ejner Husum
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset
Vejledende løsninger til opgaver i kapitel 6
Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
