Preben Blæsild og Jens Ledet Jensen

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Preben Blæsild og Jens Ledet Jensen"

Transkript

1 χ 2 Test Preben Blæsild og Jens Ledet Jensen Institut for Matematisk Fag Aarhus Universitet Egå Gymnasium, December 2010

2 Program Forelæsning Statlab: I arbejder, vi cirkler rundt Frokost Øvelser: I fremlægger jeres resultater

3 Program for forelæsning Challenger katastrofen Model / Teststørrelse / p-værdi χ 2 -test 2 modeller, 2 hypoteser teststørrelse, frihedsgrader hvorfor χ 2 -fordeling χ 2 -test generelt Brug af excel Andre test - Andre modeller

4 Challenger Challenger katastrofen 28/ Aftenen før opsendelse: ingeniører forsøgte at advare mod problemer med O-ringe ved lave temperaturer Temperatur: 31 F ( 1 C)

5 Challenger Data (Rogers Commission report 1986) Missed opportunity: så kun på flyvninger med fejl

6 Challenger Model Hver opsendelse kan enten resultere i fejl i O-ringe eller resultere i ingen fejl i O-ringe Sandsynligheden for fejl er p(t ) T er temperaturen Data: 24 sammenhørende værdier af temperatur og indikator for fejl Fejl i 7 og ingen fejl i 17

7 Challenger Hypotese Ingen afhængighed af temperatur: p(t ) = konstant Under hypotesen: de 7 flyvninger med fejl vælges tilfældigt blandt de 24 flyvninger Eksempel på alternativ: log ( p(t ) 1 p(t )) = α βt P(Data) = c(α, β) exp{24α β 24 i=1 T ix i } x i er 1 ved fejl og 0 ved ingen fejl Teststørrelse: 24 i=1 T ix i = i:x i =1 T i observeret værdi = 446

8 Challenger Simulere p-værdi Trække 7 tilfældigt blandt de 24 og beregne sum af de 7 tilhørende temperaturer. Gentage 1 million gange. Density Histogram of sim Data: sim Konklusion: hvis der ingen sammenhæng er mellem temperatur og fejlsandsynlighed, vil sandsynligheden for at få en sum af temperaturer fra 7 flyvninger med fejl, der er mindre end eller lig med 446 være cirka 0.32% Da denne er lille tror vi ikke på hypotesen om ingen sammenhæng

9 Challenger p-værdi p-værdien: forestiller os at vi laver uafhængige gentagelser af eksperimentet i situationen hvor hypotesen er sand Beregner hvor ofte vi får udfald der er mere ekstreme end det faktisk observerede p-værdi = hyppighed af mere ekstreme udfald Mere ekstrem: defineres ud fra valg af teststørrelse

10 Challenger p-værdi p-værdien < 0.05: det observerede er meget usædvanligt under hypotesen: data strider mod hypotesen og vi tror ikke på hypotesen p-værdien > 0.05: det observerede er normalt under hypotesen: data strider ikke mod hypotesen, der er ikke grund til at forkaste hypotesen p-værdien er IKKE sandsynligheden for at hypotesen er sand

11 Challenger Tre vigtige punkter Model: bestemt af den sandsynlighedsmekanisme der frembringer data Teststørrelse: vælges klogt af statistiker p-værdi: beregnes (eller simuleres) under hypotesen

12 Challenger En test af jer Er det godt at få en stor p-værdi? JA NEJ

13 To dataeksempler Teststørrelse χ 2 approksimationen Dataeksempel I Ved 715 indlæggelser af spædbørn har man registreret om moderen har givet lav eller høj omsorg og om barnet har overlevet død lever lav høj Spørgsmål: er overlevelse uafhængig af graden af omsorg? Hvad synes I?

14 To dataeksempler Teststørrelse χ 2 approksimationen Generel model I n individer vælges tilfældigt fra population: individer er uafhængige For hvert individ undersøges to egenskaber der er r muligheder for den ene egenskab der er s muligheder for den anden egenskab r s tabel: x ij er antallet af individer der falder i celle (i, j) d.v.s. har værdien i for den første egenskab og værdien j for den anden egenskab x 11 x 1s x x r1 x rs x r x 1 x s n

15 To dataeksempler Teststørrelse χ 2 approksimationen General model I Sandsynlighed for at falde i række i og søjle j, d.v.s. celle (i, j) er p ij grundmodel: p ij er vilkårlige: p ij > 0, r s i=1 j=1 p ij = 1 Hypotese om uafhængighed: p ij = ρ i σ j ρ i = sandsynlighed for at falde i række i σ j = sandsynlighed for at falde i søjle j Sandsynlighed for at falde i søjle j givet at individ falder i række i er σ j, d.v.s. uafhængig af i

16 To dataeksempler Teststørrelse χ 2 approksimationen Dataeksempel II Blandt 1176 Thulearbejdere, der deltog i oprydning efter nedstyrtning af B52 bombefly fik 40 kræft indenfor en bestemt tidsperiode Blandt 3025 Thulearbejdere, der var rejst hjem før nedstyrtningen, fik 100 kræft i en tilsvarende tidsperiode kræft ikke kræft total under B før B Spørgsmål: er der samme kræfthyppighed i de to grupper af Thulearbejdere

17 To dataeksempler Teststørrelse χ 2 approksimationen Generel model II Vi har r populationer Fra den i te population vælges n i individer tilfældigt For hvert individ undersøges en egenskab der er s muligheder for denne egenskab r s-table: x ij er antallet af individer fra population i der falder i kasse j x 11 x 1s n x r1 x rs n r x 1 x s n

18 To dataeksempler Teststørrelse χ 2 approksimationen General model II Sandsynlighed for at individ fra population i falder i kasse j er p ij grundmodel: p ij er vilkårlige: p ij > 0, for hvert i: s j=1 p ij = 1 Hypotese om homogenitet: p ij = π j π j = fælles sandsynlighed for at falde i kasse j

19 To dataeksempler Teststørrelse χ 2 approksimationen Teststørrelse Klassiske (Karl Pearson, 1900): X 2 = celler (observerede forventede) 2 forventede skalerede kvadrerede afstande Statistiker i dag: 2 ln(q)= 2 celler obs ln( ) obs forv Generelt princip: Q = max hypotese P(data) max grundmodel P(data) Generelt resultat: under hypotesen: 2 ln(q) χ 2 (f ), X 2 χ 2 (f ) f = antal (frie) parametre i grundmodel antal (frie) parametre under hypotesen

20 To dataeksempler Teststørrelse χ 2 approksimationen Frie parametre Resultat: Med følgende setup: model: n individer fordeles på k kasser sandsynligheden for at falde i kasse j er p j sandsynlighederne kan være vilkårlige: p j > 0, k j=1 p j = 1 er antallet af frie parametre k 1 Bevis: p k = 1 p 1 p k 1 (p 1,..., p k 1 ) kan variere i et åbent område: p j > 0, k 1 j=1 p j < 1

21 To dataeksempler Teststørrelse χ 2 approksimationen Frihedsgrader Model I: test for uafhængighed grundmodel: ingen bånd på p ij : r s 1 frie parametre hypotesen: p ij = ρ i σ j : (r 1) + (s 1) frie parametre f = [r s 1] [(r 1) + (s 1)] = (r 1)(s 1) Model II: test for homogenitet grundmodel: for alle i = 1,..., r er s j=1 p ij = 1: r (s 1) frie parametre hypotesen: p ij = π j : s 1 frie parametre f = [r (s 1)] [s 1] = (r 1)(s 1)

22 To dataeksempler Teststørrelse χ 2 approksimationen Forventede antal Forventede = samlede antal skøn over sandsynlighed for at falde i kasse under hypotesen Model I: test for uafhængighed forventede ij = n ˆρ i ˆσ j = n x i x j n n Model II: test for homogenitet forventede ij = n i ˆπ j = n i x j n = x i x j n = x i x j n Forventede = rækkesum søjlesum / samlede antal

23 To dataeksempler Teststørrelse χ 2 approksimationen Cochrans regel Når vi finder p-værdien fra en χ 2 -fordeling er dette en approksimation Må bruges når: alle forventede er 1 højst 20% af de forventede er mindre end 5 Hvis dette ikke er opfyldt, så: eventuelt simulere eventuelt bruge Fishers eksakte test

24 To dataeksempler Teststørrelse χ 2 approksimationen Beregning af p-værdi Da store værdier af X 2 -teststørrelsen er kritiske og er testsandsynligheden X 2 χ 2 (f ), p-værdi = P(χ 2 (f ) X 2 ), som kan beregnes ved hjælp af Excel funktionen CHIFORDELING, idet P(χ 2 (f ) X 2 ) = CHIFORDELING(X 2 ; f ). Tilsvarende bemærkninger gælder for 2 ln(q)-teststørrelsen.

25 To dataeksempler Teststørrelse χ 2 approksimationen Illustration af approksimation: 2 ln(q) Ser på 2 2 tabel: x 11 x 12 n 1 x 21 x 22 n 1 Hypotese: p 11 = p 21 = p, p 12 = p 22 = 1 p P(χ 2 (1) 3.84) = 0.05 Finde P(teststørrelse 3.84) Regel: n 1 p 5, n 1 (1 p) 5, n 1 (1 p) 5, n 2 (1 p) 5

26 To dataeksempler Teststørrelse χ 2 approksimationen Illustration af approksimation: 2 ln(q) n1=25; n2=25; p=0.4 pberegn=0 # sandsynlighed for værdi >= 3.84 for (x1 in 0:n1){ for (x2 in 0:n2){ phat=(x1+x2)/(n1+n2) X2=(x1-n1*phat)^2/(n1*phat)+(n1-x1-n1*(1-phat))^2/(n1*(1-ph (x2-n2*phat)^2/(n2*phat)+(n2-x2-n2*(1-phat))^2/(n2*(1-ph if (X2>=3.84){ pberegn=pberegn+dbinom(x1,n1,p)*dbinom(x2,n2,p)} }} pberegn

27 To dataeksempler Teststørrelse χ 2 approksimationen Illustration af approksimation: 2 ln(q) n1=25, n2=25 n1=50, n2=25 P( 2lnQ>=3.84) P( 2lnQ>=3.84) faelles p faelles p n1=50, n2=50 n1=100, n2=100 P( 2lnQ>=3.84) P( 2lnQ>=3.84) faelles p faelles p

28 To dataeksempler Teststørrelse χ 2 approksimationen Illustration af approksimation: X 2 n1=25, n2=25 n1=50, n2=25 P(X2>=3.84) P(X2>=3.84) faelles p faelles p n1=50, n2=50 n1=100, n2=100 P(X2>=3.84) P(X2>=3.84) faelles p faelles p

29 To dataeksempler Teststørrelse χ 2 approksimationen Hvorfor χ 2 approksimationen Definition på en χ 2 (f )-fordeling: lad U 1,..., U f være uafhængige N(0, 1)-fordelte V = U U2 f siges at følge en χ 2 (f )-fordeling P(χ 2 (1) > 3.84) = 0.05, P(χ 2 (2) > 5.99) = 0.05 Karl Pearson 1900: obs i forv i lineær transformation: ukorrelerede og varians = 1 kvadrere og summere: X 2

30 To dataeksempler Teststørrelse χ 2 approksimationen To dataeksempler Spædbørnsdødelighed: observerede antal død lever lav høj X 2 = 5.24, P(χ 2 (1) 5.24) = forventede antal død lever lav høj Thulearbejdere: observerede antal kræft ikke kræft total under B før B X 2 = 0.023, P(χ 2 (1) 0.023) = 0.88 forventede antal kræft ikke kræft

31 To dataeksempler Teststørrelse χ 2 approksimationen Pause Preben tager over

32 χ 2 -test: generelt χ 2 -test: generelt Tælledata: k kasser x j = antal der falder i kasse j n = x x k, samlede antal Grundmodel: sandsynlighed p j for at falde i kasse j er vilkårlig 0 < p j < 1, p p k = 1 Hypotese: p j = π j (θ) θ: parameter, π j ( ) kendt funktion ˆθ: find θ der maksimerer k j=1 π j(θ) x j

33 χ 2 -test: generelt χ 2 -test: generelt Forventede under hypotesen: Teststørrelse: e j = n π j (ˆθ) 2 ln(q) = 2 k j=1 x j ln ( x j e j ) eller X 2 = k (x j e j ) 2 j=1 e j Approksimative p-værdi: sandsynlighed for at få en værdi teststørrelse i en χ 2 (f )-fordeling f = (k 1) (dimension af θ) p-værdi = P(χ 2 (f ) 2 ln(q)) eller P(χ 2 (f ) X 2 )

34 χ 2 -test: generelt χ 2 -test: k = 2 Tælledata: k = 2 kasser (her kaldet + og ) antal der falder i kasse + er lig med x antal der falder i kasse er lig med n x + ialt x n x n Grundmodel p = sandsynlighed for at falde i kasse + 1 p = sandsynlighed for at falde i kasse 0 < p < 1 Hypotese: p = p 0 hvor p 0 er vilkårlig men kendt frihedsgrader f = k 1 0 = = 1

35 χ 2 -test: generelt χ 2 -test: k = 2, X 2 -teststørrelsen X 2 -teststørrelsen beregnes ud fra: observerede antal + ialt x n x n forventede antal + ialt np 0 n(1 p 0 ) n X 2 = (x np 0) 2 + ((n x) n(1 p 0)) 2 np 0 n(1 p 0 ) = (x np 0) 2 ( ) n p 0 1 p 0 = (x np 0) 2 np 0 (1 p 0 ) = ( (x np 0 ) np0 (1 p 0 ) ) 2

36 χ 2 -test: generelt χ 2 -test: k = 2, X 2 -teststørrelsens fordeling Hvorfor χ 2 (1): X i = 1 hvis individ i falder i kasse +, 0 ellers sandsynlighed for at falde i kasse + er p 0 n i=1 X i np 0 np0 (1 p 0 ) N(0, 1) Centrale grænseværdisætning: sum af mange små uafhængige led har en fordeling der ligner normalfordelingen Da X = n i=1 X i er X np 0 np0 (1 p 0 ) N(0, 1) X 2 = ( (X np 0 ) np0 (1 p 0 )) 2 χ 2 (1)

37 χ 2 -test: generelt χ 2 -test: k = 2, eksempel Partiet Æ fik ved sidste valg 25 % af stemmerne. I en opinionsundersøgelse, hvori 1200 deltager, tilkendegiver 335, at de vil stemme på Æ. Har tilslutningen til partiet ændret sig? Teste hypotesen p = 0.25 Æ andet ialt observeret forventet Da de forventede antal er > 5, beregnes og p-værdien X 2 = ( ) = 5.44 p-værdi = P(χ 2 (1) 5.44) = , så tilslutningen har ændret sig. Da 335/1200 = 27.9%, er Æ gået frem.

38 χ 2 -test: generelt χ 2 -test: k = 3, eksempel 100 personer bliver spurgt om, hvilket af to vaskepulvere A og B de foretrækker. Resultatet blev: A (x 1 ) B (x 2 ) ved ikke (x 3 ) ialt Spørgsmålet om, at vaskepulverne er lige populære, kan afgøres ved at teste hypotesen (p 1, p 2, p 3 ) = (θ, θ, 1 2θ), hvor parameteren θ ligger i intervallet ]0, 0.5[. Starter med at finde ˆθ, der maksimerer funktionen L(θ) = θ x 1 θ x 2 (1 2θ) x 3 eller, ækvivalent hermed, funktionen l(θ) = ln(l(θ)) = (x 1 + x 2 ) ln(θ) + x 3 ln(1 2θ).

39 χ 2 -test: generelt χ 2 -test: k = 3, eksempel (fortsat) Maksimum for l(θ) antages i ˆθ = x 1 + x 2. 2n De forventede antal bliver derfor så (e 1, e 2, e 3 ) = n(ˆθ, ˆθ, 1 2ˆθ) = ( x 1 + x 2 2 A B ved ikke ialt observeret forventet , x 1 + x 2, x 3 ), 2 De forventede antal >5 så X 2 -testet kan benyttes. f = 3 1 1, så X 2 = 2.90 og p-værdi = P(χ 2 (1) 2.90) = Vi kan derfor ikke afvise, at de to vaskepulvere er lige populære.

40 χ 2 -test: generelt Goodness of fit test Måling: styrken af jordens magnetfelt (målt i lava) vi måler en kontinuert variabel (ingen kasser vi falder i) Spørgsmål: er X = ln(styrken) normalfordelt? d.v.s.: P(a < X < b) = b 1 a exp{ 1 (x µ) 2} dx 2πσ 2 2σ målinger fra forskellige geologiske perioder x 1, x 2,..., x n, n = 2163

41 χ 2 -test: generelt Kontinuerte data tælledata Inddeler aksen med ln(magnetstyrker): (, z 1 ], (z 1, z 2 ],..., (z k 1, z k ], (z k, ) Ser blot på hvilket interval ( kasse ) x i falder i: a j = antal blandt x 1,..., x n der falder i kasse j

42 χ 2 -test: generelt Data styrke antal < >

43 χ 2 -test: generelt Histogram taethed ln(styrke)

44 χ 2 -test: generelt Fraktilsamenligning Fraktilsammenligning N(0,1) fraktiler ln(styrke)

45 χ 2 -test: generelt Model Model M 0 : p j sandsynlighed for at falde i kasse j er vilkårlig p j > 0, j p j = 1 (siger ikke noget om fordeling af X ) Model M 1 : p j (µ, σ 2 ) = z j z j 1 1 2πσ 2 exp{ 1 2σ 2 (x µ) 2} dx (X er normalfordelt) Forventede under M 1 : e j = n p j (ˆµ, ˆσ 2 )

46 χ 2 -test: generelt Forventede styrke antal forventede (obs-forv) 2 /forv < > Test for goodness of fit: X 2 = 92.3 p-værdi: 1 P(χ 2 (14 1 2) 92.3) = (Cochrans regel!)

47 χ 2 -test: generelt χ 2 -test: Excel

48 Fordeling af variansestimat t-fordelingen t-test F -fordelingen F -test Andre anvendelser af chi2-fordelingen modeller for normalfordelte data fordeling af variansestimat t-test F -test generelle modeller fordeling af 2ln(Q)-teststørrelsen

49 Fordeling af variansestimat t-fordelingen t-test F -fordelingen F -test Fordeling af variansestimat i normalfordeling Lad x 1,..., x n være realisationer af uafhængige identisk N(µ, σ 2 )-fordelte stokastiske variable X 1,..., X n. Som skøn over middelværdien µ benyttes den empiriske middelværdi, gennemsnittet, x = 1 n n i=1 x i N(µ, σ2 n ) og som skøn over variansen σ 2 den empiriske varians, dvs. s 2 = 1 n (x i x ) 2 σ 2 χ 2 (n 1)/(n 1), n 1 så i=1 n 1 σ 2 s2 = n (x i x ) 2 χ 2 (n 1). i=1 De tilsvarende stokastiske variable X og s 2 (X) er uafhængige.

50 Fordeling af variansestimat t-fordelingen t-test F -fordelingen F -test t-fordelingen Hvis U og Z er to uafhængige stokastiske variable således at U N(0, 1) og Z χ 2 (f )/f, er størrelsen t = U Z t-fordelt med f frihedsgrader og vi skriver t t(f ). Symbolsk kan definitionen af t-fordelingen gengives som t(f ) = N(0, 1) χ 2 (f )/f, hvis vi husker på at nævner og tæller symboliserer uafhængige stokastiske variable. Fordelingen kaldes undertiden Student fordelingen eller Student s t-fordeling.

51 Fordeling af variansestimat t-fordelingen t-test F -fordelingen F -test t-test Lad x 1,..., x n være realisationer af uafhængige identisk N(µ, σ 2 )-fordelte stokastiske variable X 1,..., X n. Hypotese µ = µ 0, hvor µ 0 er kendt. Hvis σ 2 er ukendt benyttes t-teststørrelsen t(x) = t(x 1,..., x n ) = x µ 0 s 2 /n og p-værdien bliver hvor t t(n 1). p-værdi = 2P(t t(x) ),

52 Fordeling af variansestimat t-fordelingen t-test F -fordelingen F -test F -fordelingen Lad Z 1 og Z 2 være to uafhængige stokastiske variable så Z i χ 2 (f i )/f i, i = 1, 2. Da er den stokastiske variabel F = Z 1 Z 2 F -fordelt med (f 1, f 2 ) frihedsgrader, eller med f 1 frihedsgrader i tælleren og f 2 frihedgrader i nævneren. Symbolsk er definitionen F (f 1, f 2 ) = χ2 (f 1 )/f 1 χ 2 (f 2 )/f 2, hvor tæller og nævner symboliserer uafhængige stokastiske variable.

53 Fordeling af variansestimat t-fordelingen t-test F -fordelingen F -test F -test Antag, at man i en model har to uafhængige variansskøn og s 2 1 σ 2 χ 2 (f 1 )/(f 1 ), s 2 2 σ 2 χ 2 (f 2 )/(f 2 ) Rimeligheden af modellen kan da ofte vurderes ved hjælp af F = s2 1 s2 2 F (f 1, f 2 ). Beregning af testsandsynligheden p afhænger af modellen.

54 Referenser χ 2 -test t-test Blæsild,P. og Kristensen,L.B.(2006):JOKER statistik. Hæfte 10 i serien Matematiske emner, Matematiklærerforeningen. Christensen,E.S.: At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Aalborg Universitet. Poulsen,J.R Poulsen, Vestergaard,H. og Lundbye-Christensen,S.: Hvad er meningen? Aalborg Universitet. Blæsild,P. og Kristensen,L.B.(2007):Statistik i løb. Hæfte 11 i serien Matematiske emner, Matematiklærerforeningen.

55 Referenser (fortsat) Begynderlærebog i statistik Jensen,J.L.(2010):Et Nanokursus i Statistik. Institut for Matematiske Fag, Aarhus Universitet. Gratis programpakke R (kan findes på nettet ved at lave Google-søgningen R. og gå ind under The R Project for Statistical Computing )

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

StatDataN: Test af hypotese

StatDataN: Test af hypotese StatDataN: Test af hypotese JLJ StatDataN: Test af hypotese p. 1/69 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 7. undervisningsuge, mandag 1 Estimation og konfidensintervaller

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Nanostatistik: Test af hypotese

Nanostatistik: Test af hypotese Nanostatistik: Test af hypotese JLJ Nanostatistik: Test af hypotese p. 1/50 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Lidt om fordelinger, afledt af normalfordelingen

Lidt om fordelinger, afledt af normalfordelingen IMM, 2002-10-10 Poul Thyregod Lidt om fordelinger, afledt af normalfordelingen 1 Introduktion I forbindelse med inferens i normalfordelinger optræder forskellige fordelinger, der er afledt af normalfordelingen,

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere