Hans J. Munkholm: En besvarelse af

Størrelse: px
Starte visningen fra side:

Download "Hans J. Munkholm: En besvarelse af"

Transkript

1 Hans J. Munkholm: En besvarelse af Projekt for MM501, Lineære differentialligninger November-december 2009 Nummererede formler fra opgaveformuleringen Her samles alle opgavens differentialligninger og de gæt, der foretages, med den oprindelige nummerering. y (t) + b(t) y (t) + c(t) y(t) = f(t), t R, (1) y (t) + b(t) y (t) + c(t) y(t) = 0, t R, (2) y (t) 7y (t) + 12y(t) = 130 cos(2t). (3) z 0 (t) = α sin(2t) + β cos(2t) (4) y (t) + 9y(t) = 10 cos(2t). (5) y (t) + 4y(t) = 8 cos(2t). (6) z 1 (t) = tz 0 (t). (7) 1

2 Delopgave A Da z 0 (t) er givet at være en løsning til (1), har man z 0(t) + b(t) z 0(t) + c(t) z 0 (t) = f(t). (8) Bevis for første påstand: Når w(t) løser (2), har man w (t) + b(t) w (t) + c(t) w(t) = 0. (9) Man adderer nu ligningerne (8) og (9). Så omskriver man resultatet ved først at omordne summandernes rækkefølge, og dernæst at sætte faktoren b(t) uden for en parentes, og faktoren c(t) uden for en anden parentes. Dette giver ligningen (z 0(t) + w (t)) + b(t) (z 0(t) + w (t)) + c(t) (z 0 (t) + w(t)) = f(t). (10) Da z(t) = z 0 (t) + w(t), gælder også z (t) = z 0(t) + w (t) og z (t) = z 0(t) + w (t). Disse tre ligninger kan benyttes til at omskrive (10) til og det er hermed påvist, at z(t) løser (1). z (t) + b(t) z (t) + c(t) z(t) = f(t), (11) Bevis for anden påstand: Når z(t) løser (1), har man z (t) + b(t) z (t) + c(t) z(t) = 0. (12) Man trækker nu ligningen (8) fra (12). Så omskriver man resultatet ved først at omordne leddenes rækkefølge, og dernæst at sætte faktoren b(t) uden for en parentes, og faktoren c(t) uden for en anden parentes. Dette giver ligningen (z (t) z 0(t)) + b(t) (z (t) z 0(t)) + c(t) (z(t) + z 0 (t)) = 0. (13) Da z(t) = z 0 (t) + w(t), er w(t) = z(t) z 0 (t), w (t) = z (t) z 0(t) og w (t) = z (t) z 0(t). De tre sidste ligninger kan benyttes til at omskrive (13) til og det er hermed påvist, at w(t) løser (2) w (t) + b(t) w (t) + c(t) w(t) = 0, (14) 2

3 Delopgave B Lad L 0 betegne mængden af løsninger til (2). Lad L f betegne mængden af samtlige løsninger til (1). Da gælder formlen: L f = {z 0 (t) + w(t) w(t) L 0 }. Udtrykt i ord: Man får samtlige løsninger til den inhomogene ligning (1) ved at starte med en enkelt af dem, og lægge samtlige løsninger til den homogene ligning (2) til. Bevis: Det første resultat i delopgave A viser at alle funktioner af formen z 0 (t) + w(t) med w(t) L 0 er med i L f. Det skal omvendt vises, at når z(t) L f, så findes der en funktion w(t) L 0 med z(t) = z 0 (t) + w(t). Ligningen kan selvfølgelig løses (tag w(t) = z(t) z 0 (t)), og det andet resultat fra delopgave A sikrer, at w(t) ligger i L 0. Delopgave C Den til (3) hørende homogene ligning er y (t) 7y (t) + 12y(t) = 0. (15) Til den svarer andengradsligningen r 2 7r + 12 = 0 med diskriminant D = = 1. Rødderne er altså r 1 = 7+1 = 4 og r 2 2 = 7 1 = 3. Opskriften fra slides for uge 47 (Tilfælde 2 I) fortæller derfor, at den fuldstændige løsning til den homogene ligning (15) er givet ved formlen w(t) = Ae 4t + Be 3t, hvor A og B er vilkårlige konstanter. (16) Gættefunktionen (4) har z 0 (t) = α sin(2t) + β cos(2t), z 0(t) = 2α cos(2t) 2β sin(2t), og z 0(t) = 4α sin(2t) 4β cos(2t). Når man indsætter y = z 0 i (3) og samler leddene efter om de indeholder faktoren cos(2t) eller faktoren sin(2t) får man ligningen (8α + 14β) sin(2t) + ( 14α + 8β) cos(2t) = 130 cos(2t). (17) Betingelsen for at z 0 (t) løser (3) bliver altså udtrykt ved to ligninger til bestemmelse af α og β, nemlig 8α + 14β = 0 14α + 8β = 130 Dette system har løsningen (α, β) = ( 7, 4), så den løsning til (3), vi når frem til, er Den endelige formel for samtlige løsninger til (3) er så z 0 (t) = 7 sin(2t) + 4 cos(2t) (18) z(t) = 7 sin(2t) + 4 cos(2t) + Ae 4t + Be 3t, hvor A og B er vilkårlige konstanter. (19) 3

4 Delopgave D Den homogene ligning, der svarer til (5). er y (t) + 9y(t) = 0. (20) Til den svarer andengradsligningen r = 0 med diskriminant D = = 36. Rødderne er altså komplekse tal k ± iω, hvor k = 0, ω = 3. Opskriften fra slides for uge 47 (Tilfælde III) fortæller derfor, at den fuldstændige løsning til den homogene ligning (20) er givet ved formlen w(t) = A cos(3t) + B sin(3t), hvor A og B er vilkårlige konstanter. (21) Gættefunktion z 0 (t) er den samme som i delopgave C, hvor vi allerede har udregnet z 0(t) og z 0(t). Når man indsætter y = z 0 i (5) og samler leddene efter om de indeholder faktoren cos(2t) eller faktoren sin(2t) får man ligningen 5α sin(2t) + 5β cos(2t) = 10 cos(2t). (22) Betingelsen for at z 0 (t) løser (5) bliver altså udtrykt ved to ligninger til bestemmelse af α og β, nemlig 5α = 0 5β = 10 Dette system har løsningen (α, β) = (0, 2), så den løsning til (5), vi når frem til, er Den endelige formel for samtlige løsninger til (5) er så z 0 (t) = 2 cos(2t) (23) z(t) = 2 cos(2t) + A cos(3t) + B sin(3t), hvor A og B er vilkårlige konstanter. (24) Delopgave E Den homogene ligning, der svarer til (6). er y (t) + 4y(t) = 0. (25) Til den svarer andengradsligningen r = 0 med diskriminant D = = 16. Rødderne er altså komplekse tal k ± iω, hvor k = 0, ω = 2. Opskriften fra slides for uge 47 (Tilfælde III) fortæller derfor, at den fuldstændige løsning til den homogene ligning (25) er givet ved formlen w(t) = A cos(2t) + B sin(2t), hvor A og B er vilkårlige konstanter. (26) Det ses, at gættefunktionen (uanset, hvordan α og β vælges) er losning til den homogene ligning (25). Og så kan den ikke være løsning til den inhomogene ligning (6). 4

5 Delopgave/oplysning F 1 I delopgave E har vi allerede opskrevet og løst den homogene ligning svarende til (6). Vi altså bare se at/om vi kan finde konstanter α og β så funktionen z 1 (t) = tz 0 (t) = αt sin(2t) + βt cos(2t), (27) løser (6). Man differentierer to gange og får z 1(t) = z 0 (t) + tz 0(t) og z 1(t) = 2z 0(t) + tz 0(t). Derfor er z 1(t) + 4z 1 (t) = 2z 0(t) + tz 0(t) + 4tz 0 (t) = 2z 0(t) + t(z 0(t) + 4z 0 (t)) = 2z 0(t), hvor vi til allersidst har benyttet, at z 0 (t) (som set i delopgave E) løser den homogene ligning (25). Betingelsen for at z 1 (t) løser den inhomogene ligning (6) er altså, at 2z 0(t) = 8 cos(2t), dvs z 0(t) = 2α cos(2t) 2β sin(2t) = 4 cos(2t). Her er løsningen (α, β) = (2, 0). Vi får hermed z 1 (t) = 2t sin(2t). For at få samtlige løsninger ud fra denne ene, skal vi lægge løsningerne til den homogene (25) til. De kendes fra delopggave E, og vort endelige svar på denne delopgave/oplysning bliver så følgende: Samtlige løsninger til (6) er givet ved formlen z(t) = 2t sin(2t) + A cos(2t) + B sin(2t), hvor A og B er vilkårlige konstanter. 1 Oprindelig var der også en opgave F, men jeg fandt, at sættet måske var blevet lidt langt. Udeladelsen af opgave F efterlader en interessant problemstilling hængende sært i den frie luft. Derfor er opgaven stadig med i teksten, og evt. interesserede er velkomne til at aflevere den. Tyve point er dog stadig det højest opnåelige. 5

Eulers equidimensionale differentialligning

Eulers equidimensionale differentialligning Eulers equidimensionale differentialligning Projektbesvarelse for MM501, udformet af Hans J. Munkholm Differentialligningen September-oktober 2009 For at kunne referere let og elegant gentages differentialligningen

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge Forår 0 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En differentialligning,

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

Lineære 2. ordens differentialligninger med konstante koefficienter

Lineære 2. ordens differentialligninger med konstante koefficienter enote 13 1 enote 13 Lineære 2. ordens differentialligninger med konstante koefficienter I forlængelse af enote 11 og enote 12 om differentialligninger, kommer nu denne enote omkring 2. ordens differentialligninger.

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler Lektion 12 2. ordens lineære differentialligninger homogene inhomogene eksempler højere ordens lineære differentiallininger 1 Anden ordens lineære differentialligninger med konstante koefficienter A. Homogene

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote 7 enote 7 Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses Der bruges egenværdier og egenvektorer i løsningsproceduren,

Læs mere

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016 Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017 Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Rettevejledning til Georg Mohr-Konkurrencen runde

Rettevejledning til Georg Mohr-Konkurrencen runde Rettevejledning til Georg Mohr-Konkurrencen 2006 2. runde Det som skal vurderes i bedømmelsen af en opgave, er om deltageren har formået at analysere problemstillingen, kombinere de givne oplysninger til

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 9. august 6 Dette eksamenssæt består af nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Bedste rette linje ved mindste kvadraters metode

Bedste rette linje ved mindste kvadraters metode 1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011 Matematik A Højere teknisk eksamen Forberedelsesmateriale htx112-mat/a-26082011 Fredag den 26. august 2011 Forord Forberedelsesmateriale til prøverne i matematik A Der er afsat 10 timer på 2 dage til

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3.

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3. Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. januar 7 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Førsteordens lineære differentialligninger

Førsteordens lineære differentialligninger enote 16 1 enote 16 Førsteordens lineære differentialligninger I denne enote gives først en kort introduktion til differentialligninger i almindelighed, hvorefter hovedemnet er en særlig type af differentialligninger,

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Prøveeksamen i Calculus

Prøveeksamen i Calculus Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En

Læs mere

Lektion ordens lineære differentialligninger

Lektion ordens lineære differentialligninger Lektion 11 1. ordens lineære differentialligninger Lineære differentialligninger Lineære differentialligninger af 1. orden 1. homogene 2. inhomogene Lineære differentialligninger af 1. orden med konstante

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til.

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. DESIGNMAT FORÅR 2012: UGESEDDEL 13 INSTITUT FOR MATEMATIK 1. Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. 2. Aktiviteter mandag 13 17 2.1.

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 0. februar 019 Dette eksamenssæt

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

DiploMat 1 Inhomogene lineære differentialligninger

DiploMat 1 Inhomogene lineære differentialligninger DiploMat 1 Inhomogene lineære differentialligninger Preben Alsholm Uge Efterår 2008 1 Lineære Differentialligninger af anden orden 1.1 Den inhomogene ligning I Den inhomogene ligning I Vi betragter nu

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene. MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)

Læs mere

Andengradsligninger. Frank Nasser. 12. april 2011

Andengradsligninger. Frank Nasser. 12. april 2011 Andengradsligninger Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2017

Besvarelser til Calculus Ordinær Eksamen Juni 2017 Besvarelser til Calculus Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J.

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J. Diffusionsligningen Fællesprojekt for FY50 og MM50 Marts 009 Hans J. Munkholm og Paolo Sibani Besvarelse fra Hans J. Munkholm 1 (a) Lad [x, x + x] være et lille delinterval af [a, b]. Den masse, der er

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2019

Besvarelser til Calculus Ordinær Eksamen Juni 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1 1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy

Læs mere

Reeksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 17.

Reeksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 17. Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 17. februar 2017 Dette eksamenssæt består af 11 nummererede sider med

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 08 Dette eksamenssæt består af 8 nummererede sider med afkrydsningsopgaver.

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 Sættet består af 3 opgaver med ialt 15 delopgaver. Besvarelsen vil blive forkastet, medmindre der er gjort et

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Her skal du lære om Separable ligninger Logistisk ligning og eksponentiel vækst 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens

Læs mere

Differensligninger og populationsstørrelser

Differensligninger og populationsstørrelser Differensligninger og populationsstørrelser Søren Højsgaard Department of Mathematical Sciences Aalborg University, Denmark October 22, 2015 Printed: October 22, 2015 File: differensligninger-slides.tex

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Eksamen i Calculus Tirsdag den 3. juni 2014

Eksamen i Calculus Tirsdag den 3. juni 2014 Eksamen i Calculus Tirsdag den 3. juni 2014 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 19 Opgave 1 (6 point) En funktion

Læs mere

D = 0. Hvis rører parablen x- aksen i et enkelt punkt, dvs. den tilhørende andengradsligning

D = 0. Hvis rører parablen x- aksen i et enkelt punkt, dvs. den tilhørende andengradsligning Projekt 55 Andengradspolynomier af to variable Kvadratiske funktioner i to variable - de tre typer paraboloider f() = A + B + C, hvor A 0 Et andengradspolynomium i en variabel har en forskrift på formen

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Polynomier af én variabel

Polynomier af én variabel enote 30 1 enote 30 Polynomier af én variabel I denne enote introduceres komplekse polynomier af én variabel. Der forudsættes elementært kendskab til komplekse tal, og kendskab til reelle polynomier af

Læs mere

Matematik B. Anders Jørgensen

Matematik B. Anders Jørgensen Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren

Læs mere

DOK-facitliste DOK. DOK-facitliste 1

DOK-facitliste DOK. DOK-facitliste 1 -facitliste 1 -facitliste Listens numre refererer til samlingen af supplerede -opgaver (de gamle eksamensopgaver. På listen står næsten kun facitter, og ikke tilstrækkelige svar på opgaverne. [Korrigeret

Læs mere

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 5.

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 5. Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 5. januar 08 Dette eksamenssæt består af 8 nummererede sider med afkrydsningsopgaver.

Læs mere

DiploMat. Eksempel på 4-timersprøve.

DiploMat. Eksempel på 4-timersprøve. DiloMat. Eksemel å 4-timersrøve. Preben lsholm Maj 4 Ogave Vi skal løse ligningen e i 4 z 3 i = Løsningen skal angives å olær form, dvs. å formen re i, hvor r > og R. Først nder vi e i 4 z = 3 Heraf fås

Læs mere

MATEMATIK 3 EN,MP 17. september 2014 Oversigt nr. 1

MATEMATIK 3 EN,MP 17. september 2014 Oversigt nr. 1 MATEMATIK 3 EN,MP 7. september 204 Oversigt nr. Her bringes en samling af de gamle eksamensopgaver: (jan. 204) Betragt begyndelsesværdiproblemet y (t) + 7y (t) + 2y(t) = e t sin(2t) for t > 0, y(0) = 2,

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6. Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Slides til Makro 2, Forelæsning oktober 2006 Chapter 5, anden halvdel

Slides til Makro 2, Forelæsning oktober 2006 Chapter 5, anden halvdel DEN FULDSÆNDIGE SOLOW-MODEL Y t = K α t (A t L t ) 1 α, Slides til Makro 2, Forelæsning 7 26 oktober 2006 Chapter 5, anden halvdel r t = αk α 1 t (A t L t ) 1 α = α Ã Kt A t L t! α 1, Ã! α w t =(1 α) Kt

Læs mere

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

DesignMat Uge 1 Repetition af forårets stof

DesignMat Uge 1 Repetition af forårets stof DesignMat Uge 1 Repetition af forårets stof Preben Alsholm Efterår 008 01 Lineært ligningssystem Lineært ligningssystem Et lineært ligningssystem: a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + +

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Polynomier af én variabel

Polynomier af én variabel enote 30 1 enote 30 Polynomier af én variabel I denne enote introduceres komplekse polynomier af én variabel. Der forudsættes elementært kendskab til komplekse tal og kendskab til reelle polynomier af

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Fourier transformationen

Fourier transformationen MODUL 6 Fourier transformationen Forfattere: Øistein WIND-WILLASSEN & Michael ELMEGÅRD 4. juni 4 Indhold Fourier transformationen 5. Definition og oprindelse.............................. 5.. Funktioner

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Eksamen i Calculus. Onsdag den 1. juni Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet

Eksamen i Calculus. Onsdag den 1. juni Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Eksamen i Calculus Onsdag den 1. juni 211 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt

Læs mere

Matematik F2 Opgavesæt 2

Matematik F2 Opgavesæt 2 Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Indhold. Litteratur 11

Indhold. Litteratur 11 Indhold Forord ii 00-sættet 1 Opgave 1....................................... 1 Spørgsmål (a).................................. 1 Spørgsmål (b).................................. 1 Spørgsmål (c)..................................

Læs mere

Besvarelse til eksamen i Matematik F2, 2012

Besvarelse til eksamen i Matematik F2, 2012 Besvarelse til eksamen i Matematik F2, 202 Partiel besvarelse - har ikke inkluderet alle detaljer! Med forbehold for tastefejl. Opgave Find og bestem typen af alle singulariteter for følgende funktioner:

Læs mere

Eksamen i Calculus Mandag den 4. juni 2012

Eksamen i Calculus Mandag den 4. juni 2012 Eksamen i Calculus Mandag den 4. juni 212 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt

Læs mere

Matematisk modellering og numeriske metoder. Lektion 4

Matematisk modellering og numeriske metoder. Lektion 4 Matematisk modellering og numeriske metoder Lektion 4 Morten Grud Rasmussen 17. september, 013 1 Homogene andenordens lineære ODE er [Bogens afsnit.1] 1.1 Linearitetsprincippet Vi så sidste gang, at førsteordens

Læs mere