Løsningsforslag MatB Juni 2013
|
|
- Elias Mikkelsen
- 5 år siden
- Visninger:
Transkript
1 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x 2 4x + 3 T ( B A ; D 4A ) hvor D = B2 4AC D = ( 4) = 4 T ( 4 2 ; 4 ) = T (2; 1) 4 Opgave 2 (5 %) Et rektangel har sidelængderne 3 og 4. a) Bestem længden af rektanglets diagonal. 1
2 Løsning: a) c 2 = a 2 + b 2 c = a 2 + b 2 c = c = =5 Opgave 3 (5 %) a) Løs ligningen: x = 3 x 4 2
3 Løsning: a) x = 3 x 4 G = R 4(x + 1) = 2(3 x) 4x + 4 = 6 2x 4x + 2x = 6 4 6x = 2 x = 1 3 L = { 1 3 } Opgave 4 (5 %) Grafen for funktionen f (x) = x har en tangent med hældningskoefficient 1 4. a) Bestem en ligning for denne tangent. Løsning: a) f (x) = x α t = f (x) = 1 4 f (x) = 1 2 x 1 4 = 1 2 x 3
4 2 x = 4 x = 2 x = 4 α t = f (x) = 1 4 y f (x 0 ) = f (x) = (x x 0 ) y f (4) = f (4)(x 4) f (4) = 4 = 2 y 2 = 1 (x 4) 4 y 2 = 1 4 x 1 y = 1 4 x + 1 Opgave 5 ( 5 %) Funktionerne f og g er givet ved forskrifterne: f (x) = ln( 1 x 5) og g(x) = 4x+2 2 a) Bestem definitionsmængden for den sammensætte funktion: ( f g)(x) = f (g(x)). Løsning: a) 4
5 f (x) = ln( 1 x 5) Dm f =]10; [ V m f = R x 5 > 0= 1 x > 5= x > 10 2 g(x) = 4x + 2 Dmg = R V mg = R f (g(x)) = ln( 1 (4x + 2) 5) = ln(2x + 1 5) = ln(2x 4) 2 Vi undersøger først om f (g(x)) og V mg Dm f og konstaterer at det ikke er tilfældet. Dvs. at vi er nødt til at indskrenke definitionsmængden, ved at se på at x > 10 for funktionen f g(x) > 10 4x + 2 > 10 4x > 8 x > 2 Dm( f g) =]2; [ Opgave 6 (10 %) To funktioner f og g er givet ved: f (x) = 2x + 5 og g(x) = 2x 2 + 6x 1. a) Bestem g( 1 ) og løs ligningen f (x) = 3 2 b) Bestem koordinatsættet til hvert af skæringspukterne mellem graferne for de to funktioner. 5
6 Løsning: a) g(x) = 2x 2 + 6x 1 g( 1 2 ) = 2 (1 2 )2 + 6 ( 1 2 ) 1 = 5 2 f (x) = 3 f (x) = 2x + 5 = 3 2x = 2 x = 1 L = { 1} b) Vi starter med at skitsere grafen for de to funktioner og aflæse skæringskoordinaterne på følgende måde: 6
7 Vi kan også beregne skæringspunkterne ved at sætte de to funktioner lig hinanden: f (x) = g(x) 2x + 5 = 2x 2 + 6x 1 2x 2 + 4x 6 = 0 Vi løser denne andengradsligning ved først at finde diskriminanten: D = B 2 4AC D = ( 6) D = = 64 > 0 altså der er to reelle rødder. 4 8 = 3 x = = 1 4 Disse x-koordinater indsættes i den ene af funktionerne for at bestemme de tilhørende y-koordinater: f ( 3) = 2 ( 3) + 5 = = 1 f (1) = = = 7 Koordinaterne til skæringspunkterne mellem de to funktioner: A( 3, 1) og B(1,7) 7
8 Opgave 7 (15 %) Om firkanten ABCD oplyses, at B = 78 0, D = 90 0, AB = 4,3, BC = 9,1 og CD = 6,1. a) Bestem længden af diagonalen AC. b) Bestem længden af siden AD. c) Bestem C. Løsning: a) Vi skitsérer firkanten vha. GeoGebra: a) Vi bestemmer diagonalen AC vha. cosinusrelationen: AC 2 = AB 2 + BC 2 2 AB BC Cas(B) AC = 4, , ,3 9,1 cos(78 0 ) = 9,22 b) Bestemmelse af siden AD 8
9 Her kan vi umiddelbart bruge den Pythagoræiske sætning da trekanten ACD er retvinklet dvs. D = 90 0 AC 2 = AD 2 +CD 2 AD 2 = AC 2 CD 2 AD = AC 2 CD 2 AD = 9, ,1 2 = 6,92 c) Vinklen C Først beregnes vinkel C i trekanten ABC, dvs C 1 vha. cosinusrelatioenen: C 1 = cos 1 ( AC2 + BC 2 AB 2 2 AC BC ) = cos 1 ( 9, ,1 2 4,3 2 ) = 27, ,22 9,1 Dernæst beregnes vinklen C i trekanten ACD,dvs. C 2 vha. tangens i en retvinklet trekant: tanc 2 = AD CD = 6,92 6,1 = C 2 = 48,60 Hermed bliver vinklen C summen af C 1 og C 2 C = C 1 + C 2 = 27, ,60 0 = 75,74 0 Opgave 8 (20 %) En funktion f er givet ved: f (x) = x x a) Bestem definitionsmængden for f. b) Bestem det interval hvor f voksende. c) Bestem koordinatsættet til funktionens lokale minimum. d9 Bestem en ligning for tangenten til grafen for f i punktet P( 1, f ( 1)). 9
10 Løsning: a) Vi skitserer grafen for funktionen vha. GeoGebra Definitionsmængden af funktionen bliver følgende da man ikke kan dividere med nul: Dm f = R\0 b) Bestemmelse af det interval hvor funktionen er voksende: Vi bestemmer først funktionen differentialkvotient og sætter denne til nul. f (x) = x x f (x) = 2x 2 x 2 Løses denne ligning vha. solve fås: solve(2x 3 2 = 0,x) som giver x = 1 Vi tegner følgende tabel over fortegnsvariationen for den afldede funktion 10
11 x 1 0, 5 0 0, f (x) 4 9 I.D ,5 f ortegnet f or f (x) I.D. + f (x) I.D. lok min. Og konstatere at funktionen er aftagende i ] ;0[ ]0;1[og voksende i ]1; [. Funktionen er ikke defineret for x = 0. c) Koordinatsættet til funktionens lokale minimum Findes ved at indsætte x = 1 i den originale funktion for at finde den tilsvarende y-værdi: f (1) = = 3 Koordinatsættet til den lok. minimum er altså: (1,3) d) Tangenten til grafen for f i punktet P( 1, f ( 1)) y f (x 0 ) = f (x 0 )(x x 0 ) y f ( 1) = f ( 1)(x ( 1)) f ( 1) = ( 1) = 1 f ( 1) = 2 ( 1) 2 ( 1) 2 = 4 Indsættes disse i tangentligningen fås; y ( 1) = 4(x + 1) y + 1 = 4x 4 y = 4x 5 11
12 Opgave 9 (10 %) I tabellen ses karakterfordelingen ved en matematikprøve. Karakter Hyppighed a) Udregn middelværdien for karakterfordelingen. b) Bestem kvartilsættet og tegn et boksplot for karakterfordelingen. Løsning: a) Middelværdien kan beregnes ved at addere produkterne af de givne karakterer og deres hyppighed, for derefter at dividere med det samlede antal observationer: µ = ( 3 0) + (0 4) + (2 6) + (4 4) + (7 8) + (10 6) + (12 3) 31 b) Kvartilsættet og boksplot = = 5,81 Vi bruger GeoGebra til at beregne kvartilsættet ved at skitsere boksplot. Opgave 10 ( 10 %) En funktion f er givet ved forskriften: f (x) = 1 4 x x3 5 2 x2 + 3x
13 a) Gør rede for, at grafen for f har to vandrette tangenter. b) Bestem tallet a således, at ligningen f (x) = 2 a x 1har løsningen x =-4 Løsning: a) Inden vi finder vandrette tangenter skitseres funktionen Vi skal gøre rede for, at grafen for f har to vandrette tangenter vad at sætte funtionens første afledede til nul på følgende måde: Solve giver følgende: f (x) = 1 4 x x3 5 2 x2 + 3x + 5 f (x) = 4 4 x x x + 3 = x3 + x 2 5x + 3 solve[x 3 + x 2 5x + 3 = 0] {x = 1, x = 3] To af skøringspunkterne er sammenfaldende derfor har funktionen f vandrette tangenter i x = 1 og x = 3. 13
14 b) Vi skal bestemme tallet a således at ligningen f (x) = 2ax 1 har løsningen x = 4 Vi kender således løsningen til ligningen derfor er det jo oplagt at indsætte løsningen til ligningen: f ( 4) = 2a( 4) 1 = 8a 1 dvs. Den første afledede af funktionen med x = 4 skal være lig med ovenstående, f (x) = x 3 + x 2 5x + 3 ( 4) 3 + ( 4) 2 5( 4) + 3 = 8a = 8a 1 25 = 8a 1 a = 3 Opgave 11 (10 %) En funktion f er givet ved forskriften: f (x) = ln(x 2 ) + ln(5x). Funktionen kan skrives på formen f (x) = a ln(x)+b, hvor a og b er konstanter. a) Bestem konstanterne a og b. b) Bestem en ligning for den tangent til grafen for f, som er vinkelret på linjen givet ved ligningen: 3y + x = 1. 14
15 Løsning: a) For at bestemme konstanterne a og b, omskrives forskrifteen ved at anvende følgende logaritmeregler ln(a) + ln(b) = ln(a b) ln(a n ) = n ln(a) f (x) = ln(x 2 ) + ln(5x) f (x) = ln(x 2 5x) f (x) = ln(5x 3 ) f (x) = 3 ln(5x) f (x) = 3 ln(x) + ln(5) f (x) = 3 ln(x) + 1,61 Man kan nu tydeligt se af ovenstående, at a = 3 og b = 1,61 b) Tangentligningen som er vinkelret på 3y + x = 1 bestemmes. Først skal vi finde den første afledede af funktionen f (x) = 3 ln(x) + 1,61 som er et udtryk for hældningskoefficienten for funktionen: f (x) = 3 x Dernæst skal vi finde tangentligningengs hældning ved at omskrive ligningen 3y + x = 1 og finde hældningen af denne først: 3y + x = 1 15
16 3y = x + 1 y = 1 3 x Man kan umuddelbart aflæse hældningen til at være α = 1 3 Da vi ved at der gælder følgende for ortogonale linjer, kan vi hurtigt finde β α β = β = 1 β = 3 Tangentens hældning skal være lig funktionens første afldede: 3 x 0 = 3 x 0 = 1 Nu ved vi at vi har en tangent som står vinkelret på linjen 3y + x = 1 Tangentligningen har forskriften: y f (x 0 ) = f (x 0 )(x x 0 ) y f (1) = f (1)(x 1 f (1) = ln(1) + 1,61 = 1,61 f (1) = 3 1 = 3 Indsættes disse fås den vinkelrette linjes ligning: y 1,61 = 3(x 1) y = 3x 3 + 1,61 y = 3x 1,39 16
Løsningsforslag MatB Juni 2012
Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion
Løsningsforslag MatB December 2013
Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor
Løsningsforslag 27. januar 2011
Løsningsforslag 27. januar 2011 Opgave 1 (5%) Isolér t i udtrykket: 3x + 4 = 2x + t t 3x + 4 = 2x + t t og t 0 t(3x + 4) = 2x + t 3tx + 4t t = 2x t(3x + 4 1) = 2x t = 2x 3x + 3 og G = R\{-1} Opgave 2 (5%)
Løsningsforslag Mat B August 2012
Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave
Løsningsforslag MatB Jan 2011
Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige
Løsningsforslag MatB Juni 2014
Løsningsforslag MatB Juni 2014 Opgave 1 (5 %) a) Bestem en ligning for den rette linje l, der indeholder punkterne P( 2,4) og Q(4, 1) Løsning: Da de to punkter er givet kan vi beregne hældningen på følgende
Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:
Løsning MatB - januar 2013
Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:
Løsningsforslag Mat B 10. februar 2012
Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.
Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner
Løsninger til eksamensopgaver på A-niveau 2017
Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på
Matematik B-niveau 31. maj 2016 Delprøve 1
Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =
Ib Michelsen Vejledende løsning stxb 101 1
Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er
Studentereksamen i Matematik B 2012
Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Besvarelse af stx_081_matb 1. Opgave 2. Opgave 1 2. Ib Michelsen, 2z Side B_081. Reducer + + = + + = Værdien af
Ib Michelsen, z Side 1 7-05-01 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 Besvarelse af stx_081_matb 1 Opgave 1 Reducer ( x + h) h( h + x) ( x h) h( h x) + + = x h xh h h x x + + = Værdien
navn: dato: fag: Matematik hold: 2dMa modtaget af: ark nr: 1 af i alt 12 ark
ark nr: af i alt ark Opgave En lineær funktion f opfylder at dens graf går gennem A(3,7) og B(9,5) Vi finder hældningen a af grafen a = y - y 5-7 8 = = = 3 x - x 9-3 6 Forskriften for f kan nu bestemmes
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4
Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat
11. Funktionsundersøgelse
11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med
Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.
Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående
10. Differentialregning
10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side
Differentialregning 2
Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()
VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri
VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Løsninger til eksamensopgaver på B-niveau 2017
Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver
Eksempler på problemløsning med differentialregning
Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3
Matematik A, STX. Vejledende eksamensopgaver
Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,
MATEMATIK A-NIVEAU 2g
NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,
GL. MATEMATIK B-NIVEAU
GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver
Løsninger til eksamensopgaver på B-niveau 2014
Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.
Matematik B-niveau STX 7. december 2012 Delprøve 1
Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme
(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2
MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar
Matematik A-niveau Delprøve 1
Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette
GUX. Matematik Niveau B. Prøveform b
GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.
Løsninger til eksamensopgaver på A-niveau 2016
Løsninger til eksamensopgaver på A-niveau 2016 24. maj 2016: Delprøven UDEN hjælpemidler Opgave 1: Da trekanterne er ensvinklede, er forholdene mellem korresponderende linjestykker i de to trekanter det
STUDENTEREKSAMEN MAJ-JUNI 2009 2009-8-2 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER
STUDENTEREKSAMEN MAJ-JUNI 009 009-8- MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Mandag den 11. maj 009 kl. 9.00-10.00 BESVARELSEN AFLEVERES KL. 10.00 Der tildeles
Løsningsforslag 7. januar 2011
Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen
Løsning til aflevering - uge 12
Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store
DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015
DELPRØVE 1 Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1, maj 2008 Følgende opgaver i delprøve 1 er løst i hånden, hvorefter det er skrevet ind i Word, så det er lettere at læse og evt. kommentere på udregningerne.
Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo
SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den
Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!
Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da
Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.
Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f
Differentialregning ( 16-22)
Differentialregning ( 16-22) 16-22. Side 1 Opgaver med rødt nummer er opgaver der går ud over B-niveauet. 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5)
Løsninger til eksamensopgaver på B-niveau 2013
Løsninger til eksamensopgaver på B-niveau 013 Opgave 1: y a x b x 6 y 5 9 4. maj 013: Delprøven UDEN hjælpemidler Metode 1: Man kan bestemme a ved at indsætte de sammenhørende værdier i ligningsudtrykket,
Stx matematik B december 2007. Delprøven med hjælpemidler
Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem
Funktioner. 3. del Karsten Juul
Funktioner 3. del 019 Karsten Juul Funktioner 3. del, 019 Karsten Juul 1/9-019 Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes i undervisningen hvis læreren
Differentialregning. Ib Michelsen
Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 2016 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 Dette
Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler
Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.
Stx matematik B maj 2009
Ib Michelsen Svar stxb maj 2009 1 Stx matematik B maj 2009 Opgave 1 Bestem f ' ( x), idet f (x )=2 x 3 +4 x 2 f ' ( x)=(2 x 3 +4 x 2 )'=(2 x 3 )'+(4 x 2 )'=2 ( x 3 )' +4 ( x 2 )'=2 3 x 3 1 +4 2 x 2 1 =6
Løsninger til eksamensopgaver på B-niveau 2018
Løsninger til eksamensopgaver på B-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler Opgave 1: Da trekant ABC er retvinklet, kan længden af hypotenusen bestemmes med Pythagoras: 2 2 2 AB AC BC 2 2
Ang. skriftlig matematik B på hf
Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,
Matematik A August 2016 Delprøve 1
Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,
Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren
Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave
Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl Digital eksamensopgave med adgang til internettet. 1stx161-MATn/A
Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx161-MATn/A-24052016 Tirsdag den 24. maj 2016 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret
Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:
Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med
Formelsamling B-niveau
Formelsamling B-niveau Maj 2017 Indhold B-niveau 1 Andengradspolynomium og -ligning 4 1.1 Diskriminantformlen.................................... 4 1.2 Kvadratkomplettering...................................
Delprøven uden hlælpemidler
Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.
Undersøge funktion ved hjælp af graf. For hf-mat-c.
Undersøge funktion ved hjælp af graf. For hf-mat-c. 2018 Karsten Juul Bestemme x og y 1. Bestemme x eller y...1 Andengradspolynomium 2. Forskrift for andengradspolynomium...2 3. Graf for andengradspolynomium...2
Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet
Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs101-matn/a-605010 Onsdag den 6 maj 010 kl 0900-1400 Opgavesættet er delt i to dele Delprøve 1: timer med autoriseret
Matematik Niveau B Prøveform b
GUX Matematik Niveau B Prøveform b Torsdag den 15. maj 2014 Kl. 09.00-13.00 GL141 - MAB - NY 1 GUX matematik B sommer 2014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler
Matematik A. Studentereksamen
Matematik A Studentereksamen stx122-mat/a-15082012 Onsdag den 15. august 2012 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Ugesedler til sommerkursus
Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag
MATEMATIK B-NIVEAU STX081-MAB
MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2019 Institution Uddannelse Fag og niveau Lærer(e) Hold Undervisningstid VUC Vestegnen, Albertslund Gymnasievej
Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3
eks. Intro til differentialregning side 1 Opvarmningsopgaver 10. november 2012 12:58 Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3 Gang parentesen ud: Forkort brøken (x
matx.dk Differentialregning Dennis Pipenbring
mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten
Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x =
MAT B GSK august 009 delprøven uden hjælpemidler Opg 1 For en vare er sammenhængen mellem pris og efterspørgsel bestemt ved funktionen d() = + 1 0 1 hvor angiver den efterspurgte mængde og d() angiver
Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet
Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx121-MATn/A-31052012 Torsdag den 31. maj 2012 kl. 09.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve
Matematik B. Studentereksamen
Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Matematik B1. Mike Auerbach. c h A H
Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet
Besvarelser til Lineær Algebra og Calculus Globale Forretningssystemer Eksamen - 6. Juni 2016
Besvarelser til Lineær Algebra og Calculus Globale Forretningssystemer Eksamen - 6 Juni 206 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind Kontakt mig endelig, hvis du skulle falde over en
1 Løsningsforslag til årsprøve 2009
1 Løsningsforslag til årsprøve 009 Opgave 1 Figur 1 viser en tegning af en person der står på en skrænt og smider en sten ud over vandet. Vandet har overflade i t-aksen. Stenen følger grafen for funktionen
20 = 2x + 2y. V (x, y) = 5xy. V (x) = 50x 5x 2.
17 Optimering 17.1 Da omkræsen skal være 0cm har vi at 0 = x + y. Rumfanget V for kassen er en funktion der afhænger af både x og y givet ved V (x, y) = 5xy. Isolerer vi y i formlen for omkredsen og indsætter
Matematik B. Anders Jørgensen
Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren
Løsninger til eksamensopgaver på A-niveau 2018
Løsninger til eksamensopgaver på A-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler 2 Opgave 1: 2 2 12 0 Man kan løse andengradsligningen med diskriminantmetoden, men man kan også som her forkorte
Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )
Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,
Matematik B. Studentereksamen
Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Matematik A. Studentereksamen
Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå
qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd
Værktøjskasse til analytisk Geometri
Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold
Mike Vandal Auerbach. Differentialregning (2) (1)
Mike Vandal Auerbach Differentialregning f () www.mathematicus.dk Differentialregning. udgave, 208 Disse noter er skrevet til matematikundervisningen på stx A- og B-niveau efter gymnasiereformen 207. Noterne
Løsninger til eksamensopgaver på B-niveau 2011-2012
Løsninger til eksamensopgaver på B-niveau 011-01 18. maj 011: Delprøven UDEN hjælpemidler Opgave 1: 5x 11 19x 17 1117 19x 5x 8 14x x Opgave : T K T K KT T K T K KT KT T Parentesen er udregnet ved hjælp
1 Geometri & trigonometri
1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant
Matematik B. Studentereksamen. Skriftlig prøve (4 timer)
Matematik B Studentereksamen Skriftlig prøve (4 timer) STX093-MAB Fredag den 11. december 2009 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt
Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard
Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...
Værktøjskasse til analytisk Geometri
Værktøjskasse til analytisk Geometri Frank Nasser 0. april 0 c 008-0. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.
Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.54 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve 1: 2
Matematik c - eksamen
Eksamensnummer: 101364 - Fjernkursist side 1 af 13 Matematik c - eksamen Opgave 1) a) Jeg får af vide, at et par har vundet i Lotto og ønsker at sætte 100.000 kr. ind på en opsparingskonto. I Bank A kan
PeterSørensen.dk : Differentiation
PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3
gl-matematik B Studentereksamen
gl-matematik B Studentereksamen gl-1stx121-mat/b-25052012 Fredag den 25. maj 2012 kl. 9.00-13.00 Side 1 af 5 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i
Blandede opgaver x-klasserne Gammel Hellerup Gymnasium
Blandede opgaver -klasserne Gammel Hellerup Gymnasium Maj 09 ; Michael Szymanski ; mz@ghg.dk Indholdsfortegnelse Blandede opgaver... Årsprøve. 09... 9 Årsprøve. 08... Årsprøve. 07... Årsprøve. 06... 5
Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven
2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten