Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple
|
|
- Christina Holmberg
- 5 år siden
- Visninger:
Transkript
1 Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren: 1b - Maskeret andengrandligning Følgende ligningn skal løses ved beregning: Udtrykket løses som en almindelig andengradsligning: (1.2.1) Vi kasserer den negative værdi da det ikke er muligt at tage kvadratroden af dette tal ( får: ). Vi Vi får løsningsmængden: (1.2.2) 1c - Trigonometri Vi har en trekant ABC hvor vi får opgivet følgende:
2 Vi skitserer trekanten i GeoGebra: Vi beregner siden c ved hjælp af den Pythagoræiske sætning: at 5 digits 34 (1.3.1) 5.83 Vinkel A beregnes ved hjælp af cosinus i en retvinklet trekant: (1.3.2) Vinkel B beregnes ved hjælp af vinkelsummen i en trekant: (1.3.3) (1.3.4) 1d - Logaritmefunktion Vi får opgivet funktionen: Vi bestemmer definitionsmængden udfra vores viden om, at der kun må optræde positve tal i logaritmen:
3 Vi får definitionsmængden: Den første afledede bestemmes ved at benytte kædereglen for sammensatte funktioner: 1e - Eksponentialfunktion Vi får opgivet en funktion med følgende regneforskrift, hvor a er en konstant: Vi skal bestemme a således at funktionen graf for en vandret tangent for : Vi bestemmer den første afledede: Da funktionen skal have en vandret tangent for indsætter denne værdi istedet for x: (1.5.1), sætter vi den første afledede lig nul samt Hvis a er lig med har grafen for f altså en vandret tangent i. Nedenstående er det skitseret
4 i GeoGebra: 1f - Logaritmisk ligning Ved beregning skal vi løse nedenstående ligning: Vi bestemmer først grundmængden udfra vores viden om at vi kun må indsætte positive tal i logaritmen: Grundmængden bliver da: Udfra nulreglen ved vi at blot den ene faktor skal være 0 for at udtrykket giver 0:
5 Vi får da løsningsmængden: (1.6.1) 1g - Andengradspolynomium Et andengradspolynomium optræder på formen: Udfra følgende graf skal vi bestemme konstanterne A, B og C: Vi ser skæringspunktet med y-aksen samt de to rødder. Vi får altså: Vi starter med at faktorisere udtrykket: Da vi udfra skæringspunktet med y-aksen har udtrykket, bruger vi dette på vores
6 faktoriserede udtryk: Da vi nu kender værdien for både A og C kan dette indsættes i det oprindelige udtryk sammen med som vi fandt udfra den ene af rødderne: Vi har nu bestemt konstanterne A, B og C til følgende: Hvilket giver os følgende regneforskrift: Opgave 2 En firkant ABCD er givet ved: Vi skitserer trekanten i GeoGebra:
7 2a - Vinkel B beregnes ved hjælp af cosinusrealtionen i trekant ABC: Vinkel B er altså (2.1.1) 2b - Siden CD For at beregne siden CD skal vi først finde ud af hvor stor en del af vinkel A som hører til trekant ACD. Først beregner vi størrelsen af vinkel A i trekant ABC ved hjælp af cosinusrelationen: Da vinkel A er i firkant ABCD kan A beregnes i trekant ACD: (2.2.1) (2.2.2) Da vi nu kender denne vinkel kan siden CD beregnes ved hjælp af cosinusrelationen i trekant ACD: 7.75 (2.2.3) Siden CD er altså c -
8 Vinkel D bestemmes udfra cosinusrelationen i trekant ACD: Vinkel D er altså (2.3.1) 2d - Areal Firkantens areal beregnes som summen af arealet af de to trekant ABC og ACD. Vi ved at arealet af en trekant kan beregnes som: Vi får da: Arealet af firkantet er altså (2.4.1) Opgave 3 Vi får opgivet en funktion med regneforskriften: 3a - Monotoniintervaller Funktionens monotoniintervaller bestemmes ved først at bestemme funktionens differentialkvotient: Vi beregner skæringspunkterne med x-aksen for den første afledede af f: (3.1.1) Hernæst bestemmes fortegnsvariationen for den første afledede, ved at beregne en værdi i hvert interval:
9 0 Fortegnsvariation Vi ser altså at funktionens monotoniforhold må være som følger: 0 Lok. maks. Lok. min. Monotoniforhold Funktionen er altså aftagende i intervallet: Og funktionen er voksende i intervallerne: 3b - Ekstrema Vi ser fra bestemmelse af monotoniforholdene, at funktionen har lokalt maksimum i lokalt minimum i. Funktionsværdierne og dermed koordinatsættet bestemmes udfra dette: og
10 Funktionen har altså lokalt maksimum i Og funktionen har lokalt minimum i 3c - Tangent Ved beregning skal vi finde en ligning for den tangent som går gennem punktet opstiller tangentligningen med den ønskede x-værdi:. Vi Vi beregner funktionsværdien : Hernæst beregner vi hældningskoeffecienten i punktet : Ovenstående indsættes i tangentlignignen:
11 3d - Parallelle tangenter Vi skal undersøge om funktionen har en tangent som er parallel med ovenstående. Vi sætter den første afledede lig hældningskoeffecienten på ovenstående tangent: Udover tangenten i fra ovenstående eksempel har vi også en tangent i. Vi opstiller tangentligningen med den ønskede x-værdi: Vi beregner funktionsværdien for :
12 Dette indsættes sammen med hældningskoeffecienten i tangentligningen: 3e - Skæringspunkter Vi skal beregne skæringspunkterne mellem grafen for f og linjen hinanden:. Vi sætter udtrykkene lig Udfra nulreglen ved vi at hvis den ene faktor er nul er hele udtrykket nul. Vi ser at den ene løsning må være: Den anden faktor regnes som en andengradsligning: Vi har altså x-koordinatorne til de tre skæringspunkter. Da skæringspunkterne alle ligger på linjen, kender vi allerede y-koordinaterne til skæringspunkterne. Vi får:
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:
Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner
Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:
Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med
Løsningsforslag MatB Juni 2013
Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x
Løsning MatB - januar 2013
Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]
11. Funktionsundersøgelse
11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med
Løsningsforslag 27. januar 2011
Løsningsforslag 27. januar 2011 Opgave 1 (5%) Isolér t i udtrykket: 3x + 4 = 2x + t t 3x + 4 = 2x + t t og t 0 t(3x + 4) = 2x + t 3tx + 4t t = 2x t(3x + 4 1) = 2x t = 2x 3x + 3 og G = R\{-1} Opgave 2 (5%)
Løsningsforslag Mat B 10. februar 2012
Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.
Differentialregning 2
Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()
Løsningsforslag MatB Juni 2014
Løsningsforslag MatB Juni 2014 Opgave 1 (5 %) a) Bestem en ligning for den rette linje l, der indeholder punkterne P( 2,4) og Q(4, 1) Løsning: Da de to punkter er givet kan vi beregne hældningen på følgende
Løsningsforslag MatB Jan 2011
Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige
Løsningsforslag MatB Juni 2012
Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion
Løsningsforslag MatB December 2013
Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor
Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning
Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001
Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.
Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f
Øvelse 1 a) Voksende b) Voksende c) Konstant d) Aftagende. Øvelse 2 a) f aftagende i f voksende i b) f aftagende i
1 af 30 Kapitel 6 Udskriv siden Øvelse 1 Voksende Voksende Konstant Aftagende Øvelse 2 Øvelse 3 Hældningen er i alle tilfælde 0, så. Forklar e) Forklar Interval + + 2 af 30 Øvelse 4 i i f er aftagende
Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.
Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående
Løsning til aflevering - uge 12
Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store
Løsninger til eksamensopgaver på A-niveau 2018
Løsninger til eksamensopgaver på A-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler 2 Opgave 1: 2 2 12 0 Man kan løse andengradsligningen med diskriminantmetoden, men man kan også som her forkorte
Differentialregning ( 16-22)
Differentialregning ( 16-22) 16-22. Side 1 Opgaver med rødt nummer er opgaver der går ud over B-niveauet. 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5)
Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4
Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat
Løsninger til eksamensopgaver på A-niveau 2017
Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på
Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari
Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen
GL. MATEMATIK B-NIVEAU
GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver
Løsningsforslag Mat B August 2012
Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave
Matematik A STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik A, STX 18 maj Matematik A, STX 23 maj Matematik A, STX 15 august
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik
1 monotoni & funktionsanalyse
1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Ib Michelsen Vejledende løsning stxb 101 1
Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er
Besvarelse af stx_081_matb 1. Opgave 2. Opgave 1 2. Ib Michelsen, 2z Side B_081. Reducer + + = + + = Værdien af
Ib Michelsen, z Side 1 7-05-01 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 Besvarelse af stx_081_matb 1 Opgave 1 Reducer ( x + h) h( h + x) ( x h) h( h x) + + = x h xh h h x x + + = Værdien
Matematik A, STX. Vejledende eksamensopgaver
Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,
Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )
Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 13/14 Institution Grenaa HTX Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Bo Paivinen Ullersted
Matematik B. Anders Jørgensen
Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,
Matematik A August 2016 Delprøve 1
Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,
Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven
2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten
Stx matematik B december 2007. Delprøven med hjælpemidler
Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem
Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo
SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den
Eksamensspørgsma l Mat B
Eksamensspørgsma l Mat B 1. Lineære funktioner og tangentligningen Gør rede for de lineære funktioner og deres grafiske billeder, herunder betydning og bestemmelse af de konstanter, som indgår i regneforskriften.
PeterSørensen.dk : Differentiation
PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3
MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX
MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX Anders Jørgensen & Mark Kddafi 2016 matematikhfsvar.page.tl 8. august 2016 15. august 2016 Anders Jørgensen & Mark Kddafi MATEMATIK
Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg
Løsninger til eksamensopgaver på B-niveau 2017
Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Louise Jakobsen,
Spørgsmål Nr. 1. Spørgsmål Nr. 2
Spørgsmål Nr. 1 TITEL: Statistik Definition af beskrivende statistik Opdeling af beskrivende statistik i grupperede observationer og ikke grupperede observationer Deskriptorerne typetal og middelværdi
Løsninger til eksamensopgaver på A-niveau 2016
Løsninger til eksamensopgaver på A-niveau 2016 24. maj 2016: Delprøven UDEN hjælpemidler Opgave 1: Da trekanterne er ensvinklede, er forholdene mellem korresponderende linjestykker i de to trekanter det
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Matematik B-niveau 31. maj 2016 Delprøve 1
Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund
Matematik B-niveau STX 7. december 2012 Delprøve 1
Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme
Undervisningsbeskrivelse & Oversigt over rapporter
Undervisningsbeskrivelse & Oversigt over rapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold HF Matematik
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 13/14 Institution Grenaa HTX Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Bo Paivinen Ullersted
Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren
Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave
Mundtlige spørgsmål til 2v + 2b. mat B, sommer Nakskov Gymnasium & Hf.
Mundtlige spørgsmål til 2v + 2b. mat B, sommer 2010. Nakskov Gymnasium & Hf. Eksaminator: Ulla Juul Franck Der er 20 spørgsmål i alt, og bilag til spørgsmål 14 og 15. 1. Andengradspolynomier og parabler.
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:
Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum
10. Differentialregning
10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side
Repetition til eksamen. fra Thisted Gymnasium
Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes
Mindstekrav HTX B-niveau eksempelsamling
Mindstekrav HTX B-niveau eksempelsamling Mindstekrav er indført i matematik for at sikre, at eleverne og aftagerinstitutioner er bekendt med, hvad der som minimum kan hhv. forlanges/forventes af studerende,
Pointen med Differentiation
Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2
MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar
matx.dk Differentialregning Dennis Pipenbring
mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2014/15, eksamen maj-juni 2015 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Mette
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 7Bma1S14
navn: dato: fag: Matematik hold: 2dMa modtaget af: ark nr: 1 af i alt 12 ark
ark nr: af i alt ark Opgave En lineær funktion f opfylder at dens graf går gennem A(3,7) og B(9,5) Vi finder hældningen a af grafen a = y - y 5-7 8 = = = 3 x - x 9-3 6 Forskriften for f kan nu bestemmes
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016/2017, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B (hf-enkeltfag)
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2018 Institution Uddannelse Fag og niveau Lærer(e) Skanderborg-Odder Handelsskole Højvangens Torv
Studentereksamen i Matematik B 2012
Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er
Matematik A-niveau STX 1. juni 2010 Øvelse DELPRØVE 1 & DELPRØVE 2
Matematik A-niveau STX 1. juni 2010 Øvelse DELPRØVE 1 & DELPRØVE 2 -----------------------------------------------------DELPRØVE 1------------------------------------------------------- Opgave 1 - Reduktion
Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler
Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2018 Institution Frederiksberg HF-kursus Uddannelse Fag og niveau Lærer(e) Hold HF Matematik B Kasper
Eksempler på problemløsning med differentialregning
Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3
matx.dk Enkle modeller
matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær
Matematik A-niveau Delprøve 1
Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±
MAT B GSK august 2007 delprøven uden hjælpemidler
Opg MAT B GSK august 007 delprøven uden hjælpemidler Funktionen f har forskriften f() = ( + ) ( + ) ( ) Beregn nulpunkterne for f. Svar : f() = 0 = eller = eller = ; L = { ; ; } Polnomiers faktorisering
UNDERVISNINGSBESKRIVELSE
UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2015-2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab1 Oversigt over gennemførte undervisningsforløb
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter
Ang. skriftlig matematik B på hf
Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet
[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0
MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2017 Institution Uddannelse Fag og niveau Lærer(e) Skanderborg-Odder Handelsskole Højvangens Torv
Løsning til aflevering uge 11
Løsning til aflevering uge 11 100011/nm Opg.1 Beregninger på Foucaults pendul. Først en skitse A B c l a b l d C l c l E h d D 0.m Vandrette udsving a m a) Længden af pendulet kan beregnes ved at isolere
Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!
Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da
Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x =
MAT B GSK august 009 delprøven uden hjælpemidler Opg 1 For en vare er sammenhængen mellem pris og efterspørgsel bestemt ved funktionen d() = + 1 0 1 hvor angiver den efterspurgte mængde og d() angiver
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2017 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Sabrina
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2016til juni 2019 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid i
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Skoleår forår18, eksamen S18 Kolding HF & VUC Hfe Matematik
Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik
Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2017, eksamen maj / juni / 2017 Institution Kolding HF og VUC Uddannelse Fag og niveau Lærer(e) Hold
Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier.
Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister 1. Polynomier. Redegør for andengradspolynomiets graf og udled en formel for koordinatsættet til parablens toppunkt. 2.
Undersøge funktion ved hjælp af graf. For hf-mat-c.
Undersøge funktion ved hjælp af graf. For hf-mat-c. 2018 Karsten Juul Bestemme x og y 1. Bestemme x eller y...1 Andengradspolynomium 2. Forskrift for andengradspolynomium...2 3. Graf for andengradspolynomium...2
Funktioner. 3. del Karsten Juul
Funktioner 3. del 019 Karsten Juul Funktioner 3. del, 019 Karsten Juul 1/9-019 Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes i undervisningen hvis læreren