Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio
|
|
|
- Andrea Petersen
- 9 år siden
- Visninger:
Transkript
1 Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel
2 En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs Y 1 kan tage værderne 0 og 1og Antag Y Y1 + Y2 + + Yn er en sum af Bernoull(p fordelte varable. Da er Y bnomalfordelt b(n,p. uafhængge Eksempel: antal døde ud af 10 ved doss Gennemsnts antal døde: E[Y] np. Gennemsnts andel døde: E[Y/n] p. er b( 10,p
3 Odds Odds for at dø vs. overleve er odds p 1 p Ex: odds2 betyder sandsynlghed p for dø dobbelt så stor som sandsynlghed 1-p for at leve.
4 Odds fortsat Fra odds tl sandsynlghed: odds p odds p 1 p odds + 1 Dvs. odds2 gver p2/3 (og 1-p1/3
5 Logstsk regresson Udgangspunkt bnomalfordelng (det naturlge valg: x antal døde med doss er bnomalfordelt b( 10,p Modellerer log odds (logt af sandsynlghederne: logt(p p Λ ( η log( 1 p p nverslogt( η η a + b doss exp( η 1 + exp( η
6 Logt og nvers logt transformaton logt p p 1 p p exp 1 exp NB: logt strækker ]0,1[ ud tl hele den reelle talakse og nvers logt lgger altd mellem 0 og 1.
7 Dose-respons: 10 nsekter for hver dose Andel døde ud af t. p exp 6,286 1,029 dose 1 exp 6,286 1,029 dose respons a 1 Intercept dose a. The reference category s: 0. Parameter Estmates 95% Confdence Interval for Exp(B B Std. Error Wald df Sg. Exp(B Lower Bound Upper Bound -6,286 1,238 25,767 1,000 1,029,197 27,315 1,000 2,799 1,903 4,118 Hvad er sandsynlghed for at dø, hvs doss er 5,7?
8 Dose-respons: Mere nsektgft Hvert nsekt (100 stk sn dose. p sandsynlghed for at dø.
9 Odds og odds rato odds p 1 p odds j p j 1 p j odds rato odds / odds j p /(1 p exp( a + b doss Dvs. odds rato exp(b (doss doss j
10 Eksempel b 0.69 Doss øges med1: doss doss j 1 Odds rato ( p ( p j /(1 /(1 p p j exp(0.69( doss exp( doss j Dvs : odds for at dø blver dobbelt så stor. Hældnng b: exp(b er forøgelse af odds, når doss øges med 1
11 Probt model Sandsynlgheds tætheden for en standard normal: x 1 x exp Fordelngs funktonen for en standard normal: x x t dt Probt model: p Φ(η og η Φ -1 (p, hvor η c + d doss NB: Ingen explctte formler for Φ og Φ -1!
12 Logstsk og probt Invers probt mere stejl end nvers logstsk men samme form. Parameter for logstsk ca gange parameter for probt: b 1.81 d
13 Latent varabel fortolknng Antag c j er latent (uobserveret varabel for doss - f.eks. tolerance overfor gft og at c normalfordelt. j jte nsekt med er standard Insekt dør ( x j 1 hvs c j < c + d doss og overlever ellers. Da er p P(nsekt dør Φ ( c + d doss Samme fortolknng for logstsk regresson hvs logstsk fordelng stedet for standard normal fordelng.
14 Den logtske og normale fordelng Logstske Normal Begge har mddelværd 0 og varans 1.
15 Fortolknng forhold tl transport c j "energskhed" hos jte person med km tl arbejde. Hvs energskhed c j mndre end ubehag a + bkm ved at gå eller cykle, vælger person at køre bl ( x j 1.
16 SPSS procedurer analyze-regresson-bnary logstc: Bernoull (b(1,p og logstsk (kke b(n,p med n>1 analyze-regresson-multnomal regresson: multnomal og logstsk (herunder Bernoull (kke b(n,p med n>1 output analogt tl general lnear model output. analyze-regresson-probt: b(n,p eller Bernoull og probt eller logstsk. Jeg foretrækker multnomal regresson eller probt (for grupperede data.
17 Eksempel: valg af transportmddel tl arbejde forhold tl alder Undersøge om valg af transportmddel tl/fra arbejde afhænger af alder. Logstsk regresson hvor responsen 'Nej (kører ej bl' er kodet som 0 og 'Ja (kører bl' er kodet som 1.
18 Output fra multnomal regresson: parameter estmater Bl_tl_arbejde a Nej Intercept Alder a. The reference category s: Ja. Parameter Estmates 95% Confdence Interval for Exp(B B Std. Error Wald df Sg. Exp(B Lower Bound Upper Bound -,343,273 1,584 1,208,010,006 2,599 1,107 1,010,998 1,023 NB: reference kategor er 'Ja', dvs v modellerer sandsynlghed for 'Nej', dvs. kke at køre bl.
19 Alder som kategorsk/faktor: krydstabel Bl_tl_arbejde * Alderfaktor Crosstabulaton Bl_tl_ arbejde Total Nej Ja Alderfaktor 1,00 2,00 3,00 4,00 Total Count % wthn Bl_tl_arbejde 20,6% 50,6% 12,1% 16,7% 100,0% % wthn Alderfaktor 79,1% 41,5% 44,3% 93,5% 51,8% % of Total 10,7% 26,2% 6,3% 8,7% 51,8% Count % wthn Bl_tl_arbejde 5,9% 76,6% 16,3% 1,3% 100,0% % wthn Alderfaktor 20,9% 58,5% 55,7% 6,5% 48,2% % of Total 2,8% 36,9% 7,9%,6% 48,2% Count % wthn Bl_tl_arbejde 13,5% 63,1% 14,1% 9,3% 100,0% % wthn Alderfaktor 100,0% 100,0% 100,0% 100,0% 100,0% % of Total 13,5% 63,1% 14,1% 9,3% 100,0% Kategorser kvaltatv varabel SPSS: Transform -> Recode... Krydstabel SPSS: Analyze -> Descrptve Statstcs -> Crosstabs...
20 Parameter estmater fra multnomal logstc med alder som kategorsk Koder nu alder som faktor: 1 svarer tl 25 og under, 2 tl 26-50, 3 tl og 4 tl over 63 og over. Bl_tl_arbejde a Nej Intercept [Alderfaktor1,00] [Alderfaktor2,00] [Alderfaktor3,00] [Alderfaktor4,00] a. The reference category s: Ja. b. Ths parameter s set to zero because t s redundant. Parameter Estmates 95% Confdence Interval for Exp(B B Std. Error Wald df Sg. Exp(B Lower Bound Upper Bound 2,663,597 19,881 1,000-1,331,668 3,966 1,046,264,071,979-3,005,608 24,415 1,000,050,015,163-2,892,644 20,181 1,000,055,016,196 0 b
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test
Opsamlng Smpel/Multpel Lneær Regresson Logstsk Regresson Ikke-parametrske Metoder Ch--anden Test Opbygnng af statstsk model Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen
Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller
Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed
Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?
Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan
Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel
Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet =( 1,, k
Logistisk Regression - fortsat
Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative
Morten Frydenberg Biostatistik version dato:
Morten Frydenberg Bostatstk verson dato: -4- Bostatstk uge mandag Morten Frydenberg, Afdelng for Bostatstk Resume: Hvad har v været gennem ndtl nu Lneær (normal) regresson en kontnuert forklarende varabel
Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger
Vaansanalyse (ANOVA) Repetton, ANOVA Tjek af model antagelse Konfdensntevalle fo mddelvædene Tukey s test fo pavse sammenlgnnge ANOVA - defnton ANOVA (ANalyss Of VAance), også kaldet vaansanalyse e en
Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel
Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Opbygnng af statstsk model Eksploratv data-analyse Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen
Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.
Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes
6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag
Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet
Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder
Regressonsanalyse Epdemolog og Bostatstk Mogens Erlandsen, Insttut for Bostatstk Uge, torsdag (forelæsnng) 1.Smpel lneær regresson (Kaptel 11) systolsk blodtryk og alder. Multpel lneær regresson (Kaptel
Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse
Økonometr Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Kommenteret vejledende besvarelse Resultaterne denne besvarelse er fremkommet ved brug af eksamensnummer 7. Dne
Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.
Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)
Lineær regressionsanalyse8
Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret
Ugeseddel 8. Gruppearbejde:
Ugeseddel 8 Gruppearbejde: 1. Ved at nkludere en dummyvarabel for et bestemt landeområde, svarer tl at konstatere, at dsse lande har nogle unkke karakterstka, som har betydnng for væksten, som kke gør
Generelle lineære modeller
Generelle lineære modeller Regressionsmodeller med én uafhængig intervalskala variabel: Y en eller flere uafhængige variable: X 1,..,X k Den betingede fordeling af Y givet X 1,..,X k antages at være normal
Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1
Økonometr 1 Avancerede Paneldata Metoder I 24.november 2006 F18: Avancerede Paneldata Metoder I 1 Paneldatametoder Sdste gang: Paneldata begreber og to-perode tlfældet (kap 13.3-4) Uobserveret effekt modellen:
Sandsynlighedsregning og statistik med binomialfordelingen
Sandsynlghedsregnng og statstk med bnomalfordelngen Katja Kofod Svan og Olav Lyndrup Januar 09 Indhold Stokastske varable... 3 Mddelværd og sprednng... 6 Bnomalfordelngen... Andre sandsynlghedsfordelnger...
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Bilag 6: Økonometriske
Marts 2015 Blag 6: Økonometrske analyser af energselskabernes omkostnnger tl energsparendsatsen Energstyrelsen Indholdsfortegnelse 1. Paneldataanalyse 3 Specfkaton af anvendte panel regressonsmodeller
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Kvantitative metoder 2
y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Eksamen Bacheloruddannelsen i Medicin med industriel specialisering
Eksamen 2016 Titel på kursus: Uddannelse: Semester: Forsøgsdesign og metoder Bacheloruddannelsen i Medicin med industriel specialisering 6. semester Eksamensdato: 17-02-2015 Tid: kl. 09.00-11.00 Bedømmelsesform
Binomialfordelingen. Erik Vestergaard
Bnomalfordelngen Erk Vestergaard Erk Vestergaard www.matematkfysk.dk Erk Vestergaard,. Blleder: Forsde: Stock.com/gnevre Sde : Stock.com/jaroon Sde : Stock.com/pod Desuden egne fotos og llustratoner. Erk
Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.
Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i
Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation
Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.
Logistisk regression. Statistik Kandidatuddannelsen i Folkesundhedsvidenskab
Logistis regression Statisti Kandidatuddannelsen i Folesundhedsvidensab Multipel logistis regression Antagelser: Binære observationer (Y i, i=,.,n) f.es Ja/Nej Høj/Lav Død/Levende Kodet: / 0 Y i uafhængige
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1
Marco Goli, Ph.D, & Shahamak Rezaei. Den Sociale Højskole København & Roskilde Universitetscenter
Marco Gol, Ph.D, & Shahamak Rezae Den Socale Højskole København & Rosklde Unverstetscenter Folkelg opnon Folkelg opnon Kaptel 1: tdernes morgen Folkelg opnon Folkelg opnon Kaptel 2 : Den ratonelle ndvandrer
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Statistiske Modeller 1: Kontingenstabeller i SAS
Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.
Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008
Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet [email protected] www.biostat.ku.dk/~bxc
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??
Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,
RESEARCH PAPER. Nr. 7, Prisoptimering i logitmodellen under homogen og heterogen forbrugeradfærd. Jørgen Kai Olsen
RESEARCH PAPER Nr. 7, 23 Prsotmerng logtmodellen under homogen og heterogen forbrugeradfærd af Jørgen Ka Olsen INSTITUT FOR AFSÆTNINGSØKONOMI COPENHAGEN BUSINESS SCHOOL SOLBJERG PLADS 3, DK-2 FREDERIKSBERG
Note til Generel Ligevægt
Mkro. år. semester Note tl Generel Lgevægt Varan kap. 9 Generel lgevægt bytteøkonom Modsat partel lgevægt betragter v nu hele økonomen på én gang; v betragter kke længere nogle prser for gvet etc. Den
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Mantel-Haenszel analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Mantel-Haenszel analyser Mantel-Haenszel analyser Sidst lærte vi om stratificerede analyser. I dag kigger vi på et specialtilfælde: både exposure
Beregning af strukturel arbejdsstyrke
VERION: d. 2.1.215 ofe Andersen og Jesper Lnaa Beregnng af strukturel arbedsstyrke Der er betydelg forskel Fnansmnsterets (FM) og Det Økonomske Råds (DØR) vurderng af det aktuelle output gap. Den væsentlgste
Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005
Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006
Dagens program: Øonometr 1 Heterosedastctet 30. otober 006 Effcent estmaton under heterosedastctet (Wooldrdge 8.4): Sdste gang: Kendte vægte - Weghted Least Squares (WLS) Generalzed Least Squares (GLS)
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
Kreditrisiko efter IRBmetoden
Kredtrsko efter IRBmetoden Vacceks formel Arbejdspapr, oktober 2013 1 KRAKAfnans - Fnanskrsekommssonens sekretarat Teknsk arbejdspapr udkast 15. oktober 2013 Indlednng Det absolutte mndstekrav tl et kredtnsttut
Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og
Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)
Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol
Udvklng af en metode tl effektvurderng af Mljøstyrelsens Kemkalenspektons tlsyn og kontrol Orenterng fra Mljøstyrelsen Nr. 10 2010 Indhold 1 FORORD 5 2 EXECUTIVE SUMMARY 7 3 INDLEDNING 11 3.1 AFGRÆNSNING
Statistik Lektion 16 Multipel Lineær Regression
Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
