2 Oversigt II. 2.1 Tessellationer. 2.2 En {3, 7} tessellation
|
|
|
- Camilla Møller
- 9 år siden
- Visninger:
Transkript
1 2 versigt II En fortsættelse af gennemgangen af den elementære hyperbolske plangeometri i Poincaré disken. I denne note viser vi, hvorledes teorien om euklidisk symmetri af regulære hyperbolske polygoner kan udvides til at omfatte tessellationer. Alle tegningerne er lavet i HypGeo, men de farvelagte tegninger er efterbehandlet i Gimp. 2.1 Tessellationer I dette kapitel udvider vi teorien til at omfatte hyperbolske tessellationer, som konstrueres om en centralpolygon. Ved en {n,r} tessellation forstås en overdækning af Poincaré disken, hvor centralpolygonen er en hyperbolsk regulær n-polygon, og hvor hver vinkelspids i tessellationen er omgivet af r hyperbolsk regulære n-polygoner, som er hyperbolsk kongruente med centralpolygonen. I modsætning til i den euklidiske geometri kan man lave en {n,r} tessellation for alle positive tal n og r, blot 1 n + 1 r < 1 2 Vi lægger ud med at gennemgå en tessellation baseret på en centraltrekant. 2.2 En {3, 7} tessellation Herunder er begyndelsen på en {3, 7} tessellation, hvor centraltrekanten er tegnet med blå farve: T S R U Q P Vi har tegnet centraltrekantens symmetrilinjer (rosa), og markeret trekanternes centrummer, P, Q, R,... De syv regulære hyperbolske trekanter danner tilsammen en regulær hyperbolsk syvkant med hyperbolsk centrum i vinkelspidsen for den blå trekant. Syvkanten er euklidisk 1
2 symmetrisk, idet syvkantens akse er en midtnormal. De fire toptrekanter givet ved Q, R, S og T er euklidisk asymmetriske, men er to og to euklidisk kongruente figurer. De tre nederste trekanter er euklidisk symmetriske, og de to yderste givet ved U og P er euklidisk kongruente. Herunder har vi indtegnet akserne (som cyan farvede halvlinjer) til kontrol af asymmetrien: T S R U Q P Da ingen af akserne er symmetrilinje i den tilsvarende trekant, er trekanterne euklidisk asymmetriske. Vi rydder op i tegningen og fortsætter konstruktionen i punktet A : A Syvkanten med centrum i A består af syv euklidisk asymmetriske trekanter, og er også selv asymmetrisk, hvilket kan kontrolleres på næste tegning med akserne indtegnet: 2
3 A Vi har udvidet med de sidste trekanter i laget, og vi har tegnet akserne til de nye trekanter (cyan) og aksen til syvkanten (orange). Ingen af akserne er symmetrilinjer i de tilhørende polygoner (husk, at tegningen kan forstørres i reader en uden tab af nøjagtighed) g sådan kan vi fortsætte... De rosafarvede trekanter er euklidisk symmetriske, alle andre er euklidisk asymmetriske. Læg mærke til at hele figuren er symmetrisk om hver af centraltrekantens midtnormaler. venstående lægger op til de følgende sætninger om trekanterne i { 3,7} tessellationen: Sætning 2.1 Hvis en trekant har centrum på en af centraltrekantens midtnormaler, så er den euklidisk symmetrisk. Sætning 2.2 Hvis en trekant ikke har centrum på en af centraltrekantens midtnormaler, så er den euklidisk asymmetrisk. 2.3 Sætninger om tessellationer Dette afsnit indeholder en oversigt over teorien om tessellationer baseret på teorien om euklidisk symmetri af regulære hyperbolske polygoner. 3
4 I det følgende lader vi T betegne en {n, d} tessellation konstrueret ud fra en regulær hyperbolsk n-polygon P med centrum i rigo. Polygonen P kaldes for tessellationens centralpolygon. Centralpolygonens symmetrilinjer går gennem rigo, og er derfor diametre i Poincaré disken. Tessellationen T er karakteriseret ved, at enhver vinkelspids er omgivet af d polygoner, som alle er hyperbolsk kongruent med centralpolygonen. Tessellationen fremkommer ved at spejle i polygonernes sider. Sætning 2.3 Enhver polygon i T, som har centrum på en af centralpolygonens symmetrilinjer, er euklidisk symmetrisk. Herunder følger et par anvendelser af sætningen: Den følgende tegning viser de to første lag af {5, 4} tessellationen med centralpoygonens symmetrilinjer indtegnet: Det første lag består af 10 euklidisk symmetriske polygoner, og hvert af de følgende lag indeholder også 10 euklidisk symmetriske polygoner, nemlig de polygoner, som har centrum på en af symmetrilinjerne, idet alle andre polygoner er euklidisk asymmetriske jvf. en senere sætning. Den næste tegning viser polygonerne i de to første lag i en {4, 5} tessellation: Det første lag indeholder 4 euklidisk symmetriske firkanter, mens det andet lag indeholder 8, og således vil det skifte mellem 4 og 8 i de følgende lag, idet de polygoner, som ikke har centrum på en af symmetrilinjerne er euklidisk asymmetriske jvf. en senere sætning. 4
5 Vi undersøger i det følgende de polygoner, som ikke har centrum på en af centralpolygonens symmetrilinjer, idet vi betragter hypotesen H : En polygon i T, som ikke har centrum på en af centralpolygonens symmetrilinjer, er euklidisk asymmetrisk. Først et vigtigt Lemma 2.4 Hypotesen H er altid opfyldt i det første lag omkring centralpolygonen. Vi deler nu op efter d lige og ulige, hvor d som bekendt er det antal polygoner, som omgiver hver vinkelspids i tessellationen. Sætning 2.5 Hvis d er et lige tal, så er hypotesen H sand. Vi kan omskrive sætningen til følgende Sætning 2.6 En polygon i en {n, d} tessellation, hvor d er et lige tal, er euklidisk symmetrisk hvis og kun hvis polygonen har centrum på en af centralpolygonens symmetrilinjer. Desværre er det ikke lykkedes at bevise helt samme resultat, hvis d er et ulige tal, men Sætning 2.7 Hvis hypotesen H er opfyldt i de to første lag i tessellationen T, hvor d er et ulige tal, så er den opfyldt i alle lag. Af sætningen følger altså, at hypotesen H gælder i tessellationen {n, d}, hvor d er ulige, hvis det andet lag opfylder hypotesen, idet den altid er opfyldt i det første lag. I praksis er det nok at tjekke det andet lag mellem to af centralpolygonens symmetrilinjer. PS: Det er ikke lykkedes at finde et eksempel, som ikke opfylder hypotesen i de to første lag. Vi afslutter med et eksempel på en tessellation, som ikke indeholder en centralpolygon. Eksemplet viser en skæv tessellation, dvs en tessellation, som udelukkende består af euklidisk asymmetriske hyperbolske polygoner, og den fremkommer ved at forskyde en tessellation på passende måde: Tegningen herunder viser de første to lag. Frembringerpolygonen (blå) for tessellationen fremkommer ved en hyperbolsk translation af centralpolygonen i en { 4,5 } tessellation langs en Poincaré diameter (magenta), som ikke er en symmetrilinje i centralpolygonen: C 5
6 Alle polygoners midtnormaler er tegnet op med grønt. Ingen af midtnormalerne går gennem rigo; altså er ingen af firkanterne euklidisk symmetrisk om en midtnormal. Herunder er alle diagonalerne tegnet ind (med cyan farve; de overtegner siderne): C Ingen diagonaler går gennem rigo; altså er ingen af firkanterne euklidisk symmetrisk om en diagonal. Konklusion: De første to lag i tessellationen består udelukkende af euklidisk asymmetriske firkanter. Det overlades til læseren at overbevise sig om, at det samme vil gælde for alle efterfølgende lag. Der er heller ingen euklidisk symmetri om diameteren. g til sidst en farvelagt JPG-udgave af denne skæve tessellation: Preben M. Henriksen juli
1 Oversigt I. 1.1 Poincaré modellen
1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,
1.1.1 Første trin. Læg mærke til at linjestykket CP ikke er en cirkelbue; det skyldes at det ligger på en diameter, idet = 210
1.1 Konstruktionen Denne side går lidt tættere på den hyperbolske geometri. Vi bruger programmet HypGeo, og forklarer nogle geometriske konstruktioner, som i virkeligheden er de samme, som man kan udføre
Flytninger og mønstre
Flytninger og mønstre KTIVITET ESKRIV MØNSTRE FLYTNINGER OG MØNSTRE 9 I dette kapitel skal du arbejde med flytninger og mønstre i planen. Der findes mønstre overalt omkring os. Det er indenfor kunst og
geometri trin 2 brikkerne til regning & matematik preben bernitt
brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er
Flytninger og mønstre
Flytninger og mønstre KTIVITET ESKRIV MØNSTRE FLYTNINGER OG MØNSTRE 7 I dette kapitel skal du arbejde med flytninger og mønstre i planen. Der findes mønstre overalt omkring os. Det er indenfor kunst og
Tip til 1. runde af Georg Mohr-Konkurrencen. Geometri. Georg Mohr-Konkurrencen
Tip til. runde af Georg Mohr-Konkurrencen Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en teoretisk indføring, men der i stedet fokus på
F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade
F-dag om geometri Fremstilling og beskrivelse af stiliserede blade I foråret fejrede Canada at landet havde eksisteret som nation i 150 år. I den anledning blev der fremstillet et logo, der tog afsæt i
Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.
6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle
Trekanter. Frank Villa. 8. november 2012
Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1
Introduktion til GeoGebra
Introduktion til GeoGebra Om navne Ib Michelsen Herover ses GeoGebra's brugerflade. 1 I øverste linje finder du navnet GeoGebra og ikoner til at minimere vinduet, ændre til fuldskærm og lukke I næste linje
Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri
Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når
Tip til 1. runde af Georg Mohr-Konkurrencen Geometri
Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,
Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)
1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6
Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -
2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...
************************************************************************
Projektet er todelt: Første del har fokus på Euklids system og består af introduktionen, samt I og II. Anden del har fokus på Hilberts system fra omkring år 1900 og består af III sammen med bilagene. Man
dvs. vinkelsummen i enhver trekant er 180E. Figur 11
Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.
Om ensvinklede og ligedannede trekanter
Om ensvinklede og ligedannede trekanter Vi vil her give et bevis for sætningen, der siger at for trekanter er begreberne ensvinklet og ligedannet det samme. Sætningen er langt fra trivial trekanter er
Matematik med LEGO WeDo 4.-6. klasse. Lærervejledning Symmetri og drejning. Formål: Aktivitet
Lærervejledning Symmetri og drejning Eleverne skal bygge karusseller efter et billede. De skal sammenligne en symmetrisk og en asymmetrisk karrusel opfører sig nå der drejer rundt. De skal afgøre om nogle
brikkerne til regning & matematik geometri F+E+D preben bernitt
brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun
KAPITEL 3. Spejling og figurer. Er det symmetrisk? Er det spejlet? Er der figurer i figurerne?
KAPITEL 3 Spejling og figurer Er det symmetrisk? Er det spejlet? Er der figurer i figurerne? Tegn symmetriakser ELEVBOG 2A SIDE 42-45 arbejdsark 102 117 K F I Tegn 4. Spejling symmetriakser ELEVBOG 2A
2.1 Euklidisk konstruktion af nogle regulære polygoner
Geometri og bilhjul Miroslava Sovičová, Štefan Havrlent, Ľubomír Rybanský Constantine the Philosopher University Nitra, Slovakia 1 Introduktion En matematiklærer der vil præsentere eleverne for noget nyt
i matematikundervisningen medianer, vinkelhalveringslinier samt center- og periferivinkler i regulære polygoner IT-færdighedsniveau
i matematikundervisningen medianer, vinkelhalveringslinier samt center- og periferivinkler i regulære polygoner IT-færdighedsniveau Dette E-læringsmodul er udarbejdet af: Jacob Kjær Hansen Tommerup Skole
Symmetri i natur, kunst og matematik
Institut for matematiske fag Aalborg Universitet 1.2.2013 Indholdsoversigt 1. Polygoner, platoniske legemer og deres symmetri 2. Flytninger og symmetrigrupper 3. Arkitektur og symmetri: da Vincis sætning
OM KAPITLET FLYTNINGER OG MØNSTRE. Elevernes egne svar eller Elevernes egne forklaringer. I
OM KPITLET I dette kapitel om flytninger og mønstre skal eleverne undersøge forskellige egenskaber og sammenhænge ved flytningerne: spejling, drejning og parallelforskydning. Eleverne skal tillige analysere
Geogebra Begynder Ku rsus
Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant
Geometri med Geometer II
hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne
fortsætte høj retning mellem mindre over større
cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde t system rod orden nøjagtig præcis
Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.
Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer
Finde midtpunkt. Flisegulv. Lygtepæle
Finde midtpunkt Flisegulv Lygtepæle Antal diagonaler Vinkelsum Vinkelstørrelse Et lille geometrikursus Forudsætninger (aksiomer): Parallelle linjer skærer ikke hinanden uanset hvor meget man forlænger
Geometri med Geometer I
f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller
Interaktiv Whiteboard og geometri
Interaktiv Whiteboard og geometri Nærværende dokumentation af et undervisningsforløb til undervisning i geometri er blevet til som et resultat af initiativet Spredningsprojektet. Spredningsprojektet er
1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.
Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt
1 Trekantens linjer. Indhold
Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter
Eksempel på den aksiomatisk deduktive metode
Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13
Papirfoldning. en matematisk undersøgelse til brug i din undervisning.
Papirfoldning en matematisk undersøgelse til brug i din undervisning. Når man folder og klipper figurer kan man blive irriteret over at skulle vende og dreje saksen. Hvor få klip kan man mon nøjes med?
Geometriske konstruktioner: Ovaler og det gyldne snit
Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer
bruge en formel-samling
Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber
Linjer. Figurer. Format 4. Nr. 14. Navn: Klasse: Dato: Kopiark til elevbog side 17
Linjer Nr. 14 a a Forlæng linjerne med lineal. Mål afstanden mellem de linjer, der sandsynligvis er parallelle. Farv linjer med samme farve, hvis de er parallelle. Find parallelle linjer i tegningerne,
GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)
Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på
Symmetri i natur, kunst og matematik
Symmetri i natur, kunst og matematik Lisbeth Fajstrup og Bedia Akyar Møller Institut for matematiske fag Aalborg Universitet 1. februar 2017 Lisbeth Fajstrup og Bedia Akyar Møller () Symmetri i natur,
Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.
Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler
brikkerne til regning & matematik geometri trin 2 preben bernitt
brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er
FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015
FFM Matematik pop-up eftermiddag CFU, UCC 11. Maj 2015 Formål Deltagerne har: Kendskab til Forenklede Fælles Måls opbygning Kendskab til tankegangen bag den målstyrede undervisning i FFM Kendskab til læringsmål
fortsætte høj retning benævnelse afstand form kort
cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde rundt system rod orden nøjagtig
Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.
Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med
Værktøjskasse til analytisk Geometri
Værktøjskasse til analytisk Geometri Frank Nasser 0. april 0 c 008-0. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Elevark Niveau 2 - Side 1
Elevark Niveau 2 - Side 1 Opgave 2-1 Brug (Polygon-værktøjet) og tegn trekanter, der ligner disse: Brug (Tekstværktøjet) til at skrive et stort R under de retvinklede trekanter Se Tip 1 og 2 Elevark Niveau
GEOMETRI I PLAN OG RUM
LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige
geometri trin 1 brikkerne til regning & matematik preben bernitt
brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er
DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE.
Geogebra. DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE. (dvs. det er ikke alle emner i SYMBOLLINIEN, der beskrives). Navnet GEOGEBRA er en
Svar på opgave 322 (September 2015)
Svar på opgave 3 (September 05) Opgave: En sekskant har sidelængder 7 7. Bestem radius i den omskrevne cirkel hvis sekskanten er indskrivelig. Besvarelse: ny version 6/0-05. metode. Antag at sekskanten
Geometri i plan og rum
INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af
Matematisk opmærksomhed
Tælle og systematisere tal. Tælle i trin på 5 og 10 Kender i nogle tal? Hvor mange forskellige tal kender I? (forskellen på tal og grundtal) Hvad kan I tælle til? Kender I nogle store tal? Kan I tælle
Cosinusrelationen. Frank Nasser. 11. juli 2011
Cosinusrelationen Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:
Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave
Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8
Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt
Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015
Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5
MAteMAtIk FoR LæReRStUDeReNDe
HaNs CHRIsTIaN HaNsEN JOHN schou kristine JEss JEppE skott MAteMAtIk FoR LæReRStUDeReNDe Geometri 1. 6. klasse Hans Christian Hansen, Joh n Schou, Kristine Jess og Jeppe Skott Matematik for lærerstuderende
Analytisk plangeometri 1
1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt
Gratisprogrammet 27. september 2011
Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne
Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:
Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med
Introducerende undervisningsmateriale til Geogebra
Klaus Frederiksen & Christine Hansen Introducerende undervisningsmateriale til Geogebra - Dynamisk geometriundervisning www.bricksite.com/ckgeogebra 01-03-2012 Indhold 1. Intro til programmets udseende...
Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4
Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).
Brugervejledning. Cabri Geometry TI-89 / TI-92 Plus
Cabri Geometry TI-89 / TI-92 Plus Brugervejledning Resumé af geometri...2 Geometri: Grundlæggende viden... 3 Håndtering af filoperationer... 12 Angivelse af programindstillinger... 14 Markering og flytning
Geometri Følgende forkortelser anvendes:
Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien
GeoGebra 3.0.0.0 Quickstart. det grundlæggende
GeoGebra 3.0.0.0 Quickstart det grundlæggende Grete Ridder Ebbesen frit efter GeoGebra Quickstart af Markus Hohenwarter Virum, 28. februar 2009 Introduktion GeoGebra er et gratis og meget brugervenligt
Værktøjskasse til analytisk Geometri
Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold
Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2
Opgave 1 Opgave 2 21 000 m 2 B. 125,66 m 2 C. 1200 m 2 D. 185 540 m 2 Opgave 3 Det betyder, at en centimeter på tegningen svarer til 100 cm i virkeligheden B. 22m 2 C. D. E. Hvis længdeforholdet ændres
ELEVFORUDSÆTNINGER OM KAPITLET PLANGEOMETRI
OM KAPITLET I dette kapitel om plangeometri arbejder eleverne med forskellige egenskaber ved plane figurer. I den første del af kapitlet arbejder eleverne med at finde areal af rektangler, parallelogrammer,
Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden.
Tilhørende: Robert Nielsen, 8b Geometribog Indeholdende de vigtigste og mest basale begreber i den geometriske verden. 1 Polygoner. 1.1 Generelt om polygoner. Et polygon er en figur bestående af mere end
Den pythagoræiske læresætning
Den pythagoræiske læresætning 1. Udfyld skemaet herunder dvs. find den manglende hypotenuse ved a 2 + b 2 = c 2 : 1 20 21 2 12 35 3 28 45 4 56 33 5 119 120 6 168 95 7 52 165 8 207 224 9 315 572 10 627
Tegning. Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn arbejdstegninger
Tegning Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning Målestoksforhold bruges når man skal vise noget større eller mindre end det er i virkeligheden.
Geometri, (E-opgaver 9d)
Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige
1 F Flytningsgeometri F Flytningsgeometri
1 lytningsgeometri lytningsgeometri 2 At undersøge mønstre i kunst, arkitektur, flisebelægninger og dekorationer giver mulighed for en undersøgende tilgang til geometrien i det hele taget. Læreren har
Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse
Inspirationsforløb i faget matematik i 7.- 9. klasse Trekanter et inspirationsforløb om geometri i 8. klasse Indhold Indledning 2 Undervisningsforløbet 3 Mål for forløbet 3 Relationsmodellen 3 Planlægningsfasen
6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed
6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Geometriske begreber: kunne sætte matematiske begreber ind i en matematisk kontekst samt kende den visuelle betydning
Errata pr. 1. sept Rettelser til Ypsilon 1. udgave, 1. oplag
Errata pr. 1. sept. 2009 Rettelser til Ypsilon 1. udgave, 1. oplag Rettelserne herunder er foretaget i 2. oplag af bogen. Desuden forekommer der mindre rettelser i 2. oplag, som ikke er medtaget her, da
Sfærisk Geometri. Ikast Ib Michelsen
Sfærisk Geometri Ikast 2018 Ib Michelsen Ib Michelsen Matematik A: Sfærisk Geometri Sidst ændret: 25-11-2018 Udskrevet: C:\Users\IbM\Dropbox\3uy\SfGe\SG0.odt 12 sider Indholdsfortegnelse Indledning...4
Archimedes Princip. Frank Nasser. 12. april 2011
Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Løsning til øvelse 7.8, side 272: Københavns Politigård
website: link fra, kapitel 7, afsnit 2 Løsning til øvelse 7.8, side 272: Københavns Politigård Bemærk: Benyt fx formelsamlingen til stxa side 10-14 til at finde de relevante formler. (Geogebra starter
Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)
Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...
Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal
Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Link Mål Kompetence mål: Modellering Færdighedsmål Eleven kan vurdere egne og andres modelleringsprocesser Videns mål Eleven har viden om
Usædvanlige opgaver Lærervejledning
Mette Hjelmborg Usædvanlige opgaver Lærervejledning Gyldendal Usædvanlige opgaver, lærervejledning af Mette Hjelmborg 008 Gyldendalske boghandel, Nordisk Forlag A/S, København Forlagsredaktion: Stine Kock,
Kompetencetræning #2 også til prøven. 31. Januar 2019
Kompetencetræning #2 også til prøven 31. Januar 2019 Bordet rundt Har I prøvet noget af? Var der nogle forhindringer i at prøve noget af? Hvis du har prøvet noget af hvor var udfordringerne så for dig
Ligedannede trekanter
Ib Michelsen: Matematik C, Geometri, 1. kapitel 2011 Version 7.1 22-08-11 Rettet: tempel.png inkorporeret / minioverskrift rettet D:\Appserv260\www\2011\ligedannedeTrekanter2.odt Arven fra Grækenland Arven
Primtal - hvor mange, hvordan og hvorfor?
Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret
KonteXt +5, Kernebog
1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:
Programmering og geometri i scratch
side 1 Programmering og geometri i scratch scratch.mit.edu Steen Petersen spe05 side 2 Introduktion til programmering i Scratch Opret dig som bruger på scratch.mit.edu. Det er gratis, og det giver dig
Geometriske eksperimenter
I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler
Flottere. En uteknisk bog om at tage bedre billeder. Jan Kjær
Fotos Flottere En uteknisk bog om at tage bedre billeder Jan Kjær 1 2 3 Flottere Fotos Copyright 2012 Jan Kjær 2. udgave - Ebog ISBN 978-87-993946-3-0 www.jankjaer.dk Tak for lån af billeder til: Fam.
Jeg er den største. Vagn Lundsgaard Hansen. Annoncering af en konkurrence
Normat 2/1998 71 Jeg er den største Vagn Lundsgaard Hansen Institut for Matematik Danmarks Tekniske Universitet Bygning 303 DK 2800 Lyngby [email protected] Optimalitetsbetragtninger optræder i næsten
Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.
Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.
Projekt 3.12 Vikingeborgenes geometriske konstruktion
Projekt 3.12 Vikingeborgenes geometriske konstruktion Indhold Ringborgenes konstruktion... 3 Grundplanerne... 3 Trelleborg... 4 1. del af konstruktionen:... 4 2.del af konstruktionen... 4 3. del af konstruktionen:...
Eksperimentel matematikundervisning. Den eksperimentelle matematik som didaktisk princip for tilrettelæggelse af undervisningen
Eksperimentel matematikundervisning Den eksperimentelle matematik som didaktisk princip for tilrettelæggelse af undervisningen Matematikkens ansigter Ligesom den græske gud Morpheus, der i kunstneren Lionel
Opgave 1 -Tages kvadrat
Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker
Uddrag af: Else Møller Nielsen MATEMATIK EN GRUNDBOG FOR LÆRERSTUDERENDE. Forlaget Biofolia 2007. 3 Geometri
Uddrag af: Else Møller Nielsen MATEMATIK EN GRUNDBOG FOR LÆRERSTUDERENDE Forlaget Biofolia 007 3 Geometri 53369_matematik_kap3net_5k.indd 0--006 3:03:34 53369_matematik_kap3net_5k.indd 0--006 3:03:34 Eksperiment,
Årsplan for matematik 8. klasse 18/19
Årsplan for matematik 8. klasse 18/19 Emne Mål Handleplan Sæt i Repetition af grundlæggende 32,33 matematikfærdi matematik flere gheder Arbejde med færdighedsregning matematikfærdighedssæt 34,35,36,37,38
5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve
5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer
