Sandsynlighedsregning og statistisk
|
|
|
- Simon Asmussen
- 9 år siden
- Visninger:
Transkript
1 Figur : J. C. F. Guss Sdsylighedsregig og sttistisk Peter Hremoës Niels Brock 6. pril
2 Idledig Dette hæfte er lvet som supplemet til. udgve f boge Mt B. Der er lgt vægt på t give e bedre forståelse for de metoder der beyttes i deskriptiv sttistik på Mt C iveu. Edvidere er der lgt vægt på t teorie for kotiuerte fordeliger k ses som e vedelse f B- og A-iveuets differetil- og itegrlregig. Itegrler over ubegræsede itervller I det itegrlregig vi stiftede bekedtskb med i Mt A-boge blev lle bestemte itegrler tget over begræsedede itervller. M k imidlertid ofte også tge itegrler over ubegræsede itervller. Eksempel Ld t > være et reelt tl. D et t x dx = = - x - t ]t = t. Vi ser t t er e voksede fuktio og t t derfor dx =. x - for t. Vi skriver Defiitio Ld f være e kotiuert fuktio. Hvis b f x dx hr e græseværdi for b gåede mod uedelig, så beteges dee græseværdi f x dx. Tilsvrede defieres b - f x dx som de evetuelle græseværdi f b f x dx for gåede mod -. Hvis b f x dx er defieret og hr e græsevær for - b gåede mod uedelig, så beteges dee græseværdi med f x dx. - 3 Kotiuerte fordeliger Defiitio 3 Ld X være e stokstisk vribel. D er fordeligsfuktioe F for X defieret ved F x = P X x. Fordeligsfuktioe svrer til de sumkurver vi hr teget i deskriptiv sttistik. Tilfældige tl k geereres ved t tste MATH] 7:Probbility 4:rd Returerer et tilfældigt helt tl hvis e størsteværdi gives eller et ligefordelt decimltl fr hvis itet rgumet itstes. Sytx: rd rdstørste tl 6:rdNorm Returerer et tl tilfældige ormlfordelte tl. Sytx: rdnormtl tilfældige tl, middelværdi, spredig 6.3 TI-spire I beregigsdele trykkes på meukppe. Her k bldt det vælges: 5: Sdsylighed 5: Fordeliger : Norml Pdf Et vidue kommer frem, hvor m idtster x-værdi, middelværdi og σ spredig. Et yt vidue kommer frem med givelse f værdie f tæthedsfuktioe. 5: Sdsylighed \blcktrigleright 5: Fordeliger \blcktrigleright : Norml Cdf Et vidue kommer frem, hvor m idtster Nedre græse og Øvre græse itervledepukter, smt middelværdi og σ spredig. Uedelig k idtstes ved t hete teget fr liste f specilteg. Et yt vidue kommer frem med givelse f sdsylighede for t e ormlfordelt vribel med de give prmetre ligger i itervllet. 5: Sdsylighed \blcktrigleright 5: Fordeliger \blcktrigleright 3: Ivers orml Et vidue kommer frem, hvor m idtster Arel sdsylighed, middelværdi og σ spredig. Et yt vidue kommer frem med givelse f de tilsvrede frktil. 5: Sdsylighed \blcktrigleright 4: Tilfældig \blcktrigleright : Tl Returerer kommdoe rd som fugerer som på TI-89. 5: Sdsylighed \blcktrigleright 4: Tilfældig \blcktrigleright : Heltl Returerer kommdoe rdit som fugerer som på TI-89. 5: Sdsylighed \blcktrigleright 4: Tilfældig \blcktrigleright 4: Norml Returerer kommdoe rdnorm som fugerer som på TI-89.
3 ormlcdfx, middelværdi, spredig ormlormlcdf edre græse, øvre græse, middelværdi, spredig 3: ivnorm Returerer frktile svrede til et et tl mellem og. Sytx: ivnormsdsylighed ivnormsdsylighed, middelværdi, spredig Der er følgede kommdoer til t geerere tilfældige tl. Tst MATH > PRB : rd Returere et ligefordelt tl mellem i ; ] Sytx: rd rdnorm Returerer et tilfældige ormlfordelte tl. Sytx: rdnormmiddelværdi, spredig, tl tilfældige tl rdit Returerer et tilfældigt helt tl. Sytks: rditmidste tl, største tl 6. TI-89/Voyge M k klde kommdoer svrede til kommdoere i TI-83+/TI-84+ ved hete dem fr ktloget eller skrive heholdsvis: tistt.ormpdf tistt.ormcdf tistt.ivnorm Altertivt k m strte pplictioe list/stt og vælge F5 Distr :Shde :Shde Norml Et vidue kommer frem, hvor m idtster Upper vlue og Lower vlue itervledepuktere, middelværdi og σ spredig. E grf bliver vist med e mrkerig f det rel uder kurve m hr givet. :Iverse \blcktrigleright :Iverse Norml... Et vidue kommer frem, hvor m idtster Are sdsylighed, middelværdi og σ spredig. Et yt vidue kommer frem med givelse f de tilsvrede frktil. 3:Norml Pdf... Et vidue kommer frem, hvor m idtster x, middelværdi og σ spredig. Et yt vidue kommer frem med givelse f værdie f tæthedsfuktioe. 4:Norml Cdf... Et vidue kommer frem, hvor m idtster Upper vlue og Lower vlue itervledepuktere, middelværdi og σ spredig. I stedet for og k m bruge - 99 og 99. Et yt vidue kommer frem med givelse f sdsylighede for t e ormlfordelt vribel med de give prmetre ligger i itervllet. 9 Eksempel 4 E stokstisk vribel X siges t være ekspoetilfordelt med middelværdi λ dersom des fordeligsfuktio er givet ved { for x, F x = e -x/λ for x >. E såd ekspoetilfordelig giver f.eks. e god beskrivelse for vetetide for et rdioktivt hefld f et tom. Vi lægger mærke til t fordeligsfuktioe er e voksede fuktio og t lim F x =, x lim F x =. x Hvis vi keder fordeligsfuktioe for e stokstisk vribel, k vi berege sdsylighede for t de stokstiske vribel ligger i et vilkårligt itervl idet der gælder t P < X b = F b F. Defiitio 5 Hvis fordeligsfuktioe F for e stokstisk vribel X er e kotiuert fuktio, så siges X t være e kotiuert vribel. Hvis F er differetibel, så kldes fuktioe f x = F x for de stokstiske vribels tæthedsfuktio. Tæthedsfuktioe svrer til de pide- og søjledigrmmer vi hr teget i deskriptiv sttistik. Eksempel 6 Tæthedsfuktioe for e ekspoetilfordelig er givet ved fx f x = F x { for x, = λ e x/λ for x >. Hvis f er tæthed for e stokstisk vribel med for delig F, så er F stmfuktio til f og der gælder t F t = t 4 f x dx. 6 8
4 Edvidere gælder der t P < X b = F b F = b f x dx. Sdsylighede for t < X b svrer derfor til relet uder grfe for f mellem og b. For t e fuktio f k være e tæthedsfuktio skl der gælde, t f x og t f x dx =. De fleste kotiuerte fordeliger er defieret ud fr deres tæthedsfuktio. Eksempel 7 Ved e ligefordelig i itervllet ; b] forstå e fordelig med tæthed { for x / ; b], f x = b for x ; b]. Vi checker t der ret fktisk er tle om e sdsylighedsfordelig ved t udrege b b dx = x b ]b =. Når vi teger søjledigrmmet for grupperede dt, tger vi fktisk t dt er ligefordelt i hvert delitervl. Ligesom for diskrete vrible k m berege middelværdi og vris for kotiuert fordeliger. Dette sker ved t ersttte summer med itegrler. Defiitio 8 Ld X være e stokstisk vribel med tæthedsfuktio f. D defieres middelværdie f X ved E X] = x f x dx. Hvis de stokstiske vribel X hr middelværdi, så er vrise f X defieret ved Spredige er givet ved V r X = x f x dx. σ X = V r X /. Eksempel 9 Ekspoetilfouktioe med tæthed e x/ for x hr middelværdi x f x dx = = + x dx + x e x/ x e x/ dx. dx Bevis Vi vil tge t ormlfordelige hr middelværdi og vris σ. D gælder X i X ] X E X ] X + X X X ] ] E X ] + E X E X X ]. Vi beytter u t E ] X = σ og E X = σ / smt t X = X i til t få ] ] X] E Xi] σ + σ ] E X X = E i = = E = ] E X ] + E X E X X ] = σ + σ E X Xi = σ + σ E XXi] = σ + σ E X ] + E i= = σ + σ σ = = σ. 6 Normlfordeliger og tilfældige tl på lommeregere 6. TI-83+/84+ Meue for ormlfordeliger k fides uder DISTR d VARS. Bemærk t middelværdi og spredig hr defultværdier og svrede til e stdrdormlfordelig. : ormlpdf Returerer sdsylighedstæthede i et givet pukt. Sytx: ormlpdfx ormlpdf x, middelværdi, spredig : ormlcdf Returerer værdie f fordeligsfuktioe i et givet pukt. M k vælge både t give e edre og e øvre græse. I stedet for - og k m bruge 99 og 99 Sytx: ormlcdfx 3 8
5 og E ] X] = E X i = E X i ] = =. Her lves substitutio t = x/, hvilket ved brug f prtiel itegrtio giver x e x/ dx = = = t e t dt t t ] + = t] =. e t dt t dt Vi k udrege vrise f geemsittet. Atg t de stokstiske vribel hr middelværdi. Så gælder t V r X i = V r X i = V r X i = σ = σ. Derfor er geemsittets spredig σ/ /. Det k vises t stikprøves geemsit er det estimt som hr de midste vris. Derfor vil geemsittet være vores foretruke estimt for middelværdie. Som estimt f e ormlfordeligs vris kue m tge stikprøves vris Xi X, me det viser sig t dette er et skævt estimt, som er systemtisk for lille. Hvis stikprøvestørrelse f.eks. er =, så vil X = X og så bliver Xi X = X X =. Sætig 6 Et cetrlt estimt f vrise f e ormlfordelig er givet ved for. Xi X For t berege vrise lves ige substitutioe t = x/, hvilket giver x e x/ dx = t e t dt = t e t dt. Det sidste itegrl bereges ved t lve prtiel itegrtio gge: t e t dt = t t] = + = = t e t dt t t ] + e t dt = + t] = + = 4. Derfor er vrise 4 og spredige er. t t dt t dt Øvelse Bereg middelværdi, vris og spredig f e ligefordelig. Eksempel E stoktisk vribel med sdsylighedstæthed xe x for x siges t hve e Gmmfordelt. fx
6 Vis t dette er e sdsylighedstæthed. b Bestem middelværdie f dee Gmmfordelig. c Bestem vrise og spredige f dee Gmmfordelig. Det k vises t e x dx = π /. Derfor er φ x = e x π / e tæthedsfuktio. De tilsvrede fordelig kldes e stdrd-ormlfordelig. Det k vises t de hr middelværdi og vris. Fordeligsfuktioe for stdrd ormlfordelige beteges Φ. D det ikke er muligt t opskrive et beregigsudtryk for Φ, k værdier f Φ ku bereges ved umerisk itegrtio. Hvis tæthedsfuktioe i stedet er e x σ π / σ så er der tle om e ormlfordelig med middelværdi og spredig σ. D X er ufhægig f X er X ufhægig f X og der gælder t Derfor er E X X = E X E X V r X + X = E 5 Estimtio = E X E E X E = =. X + E = V r X + V r X. X Atg f vi om ogle dt e stikprøve ved t de er ormlfordelte med spredig me vi ikke keder ormlfordeliges middelværdi. Opgve er ud fr dt t give et bud på værdie f ormlfordeliges middelværdi. y y.3 Defiitio 3 Et estimt er e fuktio, der til e vilkårlig stikprøve kytter et reelt tl. Et estimt er med dre ord e stokstisk vribel defieret ud fr e stikprøve. 4 Middelværdi og vris Ude bevis æver vi t hvis X og X er to stokstiske vrible så gælder der t E X + X = E X + E X. Hvis edvidere X og X er ufhægige så gælder E X X = E X E X. Sætig Ld X og X være ufhægige stokstiske vrible. D gælder t V r X + X = V r X + V r X. Bevis Ld og betege middelværdiere f X og X. D er middelværdie f X + X lig +. Derfor gælder V r X + X = E X + X +.5 x 5 Om et estimt er godt eller skidt er e de sg. Hvis vi f.eks. skl estimere middelværdie f e ormlfordelig, k vi bruge stikprøves medi. Hvis stikprøve ellers er stor, vil medie ligge tæt på middelværdie, så medie er e udemærket estimtor for middelværdie. I stedet for medie kue m tge de største værdi i stikprøve. Dee vil oplgt give et dårligt estimt f middelværdie, og jo større stikprøve er jo dårligere vil estimtet være. Defiitio 4 Et estimt siges t være cetrlt dersom middelværdie f estimtet er de sde værdi. Hvis et estimt ikke er cetrlt, siges det t være skævt. Medie er et cetrlt estimt f middelværdie, mes mksimum er et skævt estmt, idet mksimum i middel giver e for høj værdi. Sætig 5 Stikprøves geemsit giver et cetrlt estimt f ormlfordeliges middelværdi. Bevis Ld X, X,..., X betege e stikprøve. D er X = Xi = E = E = E X + X X + X + X X X + E X + E X X. 5 6
Matematik A. Højere handelseksamen. Formelsamling
Mtemtik A Højere hdelseksme Formelsmlig Mtemtik A Højere hdelseksme Formelsmlig Forfttere: Jytte Meli og Ole Dlsgrd April 09 ISBN: 978-87-603-339-5 (web udgve) Dee udgve f Mtemtisk formelsmlig htx A-iveu
Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}
Opgve ) f : [, b] R er e begræset fuktio for hvilke er edelig for ethvert < ε < b. Vi skl vise t f er itegrbel og t A ε = { [ + ε, b] } d =. Vi bemærker først t f er itegrbel på [, b] hvis og ku hvis de
Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.
Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises
Matematikkens mysterier - på et højt niveau. 1. Integralregning
Mtemtikkes mysterier - på et højt iveu f Keeth Hse. Itegrlregig Hvd er relet f de skrverede puktmægde? . Itegrlregig Idhold. Stmfuktioer og det uestemte itegrl. Regeregler for det uestemte itegrl 7 Prtiel
Kap. 1: Integralregning byggende på stamfunktioner.
- - Kp. : Itegrlregig yggede på stmfuktioer... Specielle egesker ved fuktioer. Defiitio... E fuktio f siges t være egræset i et itervl I, hvis f er defieret i itervllet, og hvis der fides to tl k og K,
Kap 1. Procent og Rentesregning
Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.
MATEMATISK FORMELSAMLING
MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig
Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal
Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.
Differentiation af potensfunktioner
Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser
Den flerdimensionale normalfordeling
De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y
Matematisk formelsamling. stx A-niveau
Mtemtisk formelsmlig st A-iveu mj 08 Dee udgve f Mtemtisk formelsmlig st A-iveu er udgivet f Udervisigsmiisteriet og gjort tilgægelig på uvm.dk. Formelsmlige er udrejdet i et smrejde mellem Mtemtiklærerforeige
Sandsynlighedsregning og statistisk
Sadsylighedsregig og statistisk J. C. F. Gauss 777 855) Peter Haremoës Niels Brock 2. april 23 Idledig Dette hæfte er lavet som supplemet til 2. udgave af boge Mat B. Der er lagt vægt på at give e bedre
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet
Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d
Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -
Lidt Om Fibonacci tal
Lidt om Fioi tl Lidt Om Fioi tl Idhold. Defiitio f Fioi tllee.... Kivl... 3. Telefokæder....3 4. E formel for Fioi tllee...4 Ole Witt-Hse 008 Lidt om Fioi tl. Defiitio f Fioi tllee Fioi tllee er opkldt
Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit
Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige
Kommentarer til VARIABLE
Kommetrer til Fglige mål Kpitlet lægger op til, t elevere lærer vribelbegrebet t kede som et effektivt værktøj til t skbe sig overblik over komplekse problemstilliger. k udpege kostter og vrible med tilhørede
FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier
FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...
Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi
Grudlæggede mtemtiske begreber del Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi x-klssere Gmmel Hellerup Gymsium Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige tl... 9 De hele
Potens regression med TI-Nspire
Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter
Program. Middelværdi af Y = t(x ) Transformationssætningen
Program Statistik og Sadsylighedsregig 2 Trasformatio af kotiuerte fordeliger på R, flerdimesioale kotiuerte fordeliger, mere om ormalfordelige Helle Sørese Uge 7, osdag I formiddag: Opfølgig på trasformatiossætige
hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i
Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,
Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.
STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,
Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit
Grudlæggede mtemtiske begreber del Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige tl...
Hvordan Leibniz opfandt integralregningen
Hvord Leiiz opdt itegrlregige 0 Krste Juul EglÄdere Isc Newto (6-) opdt i 66 itegrlregige. Tskere Gottried Wilhelm Leiiz (66-6) opdt i 6 itegrlregige. Ige dem oetliggjorde deres opidelse med det smme.
1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2
Idhold 1 Pukt- og itervalestimatio 2 1.1 Puktestimatorer: Cetralitet(bias) og efficies.................... 2 2 Kofidesiterval 3 2.1 Kofidesiterval for adel................................ 4 2.2 Kofidesiterval
Matematisk modellering og numeriske metoder. Lektion 17
Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil
DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet
DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig
Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter
Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag
Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion
Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi
Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags.
Praktisk ifo Liste med rettelser og meigsforstyrrede trykfejl i DS på Absalo. Statistisk aalyse af e ekelt stikprøve: kedt eller ukedt varias Sadsylighedsregig og Statistik (SaSt) Helle Sørese Projekt
Integralregning. 2. del. 2006 Karsten Juul
Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion
Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)
Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler
Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner
Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig
DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet
DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.
Vejledende opgavebesvarelser
Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.
Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.
Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige
Vejledende besvarelser til opgaver i kapitel 15
Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry
Estimation ved momentmetoden. Estimation af middelværdiparameter
Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller
MOGENS ODDERSHEDE LARSEN. Fourieranalyse
MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere
Rettevejledning til Økonomisk Kandidateksamen 2004II, Økonometri 1
Rettevejledig til Økoomisk Kdidteksme 2004II, Økoometri Vurderigsgrudlget er selve opgvebesvrelse og bilget, iklusive det fleverede SAS progrm. Mterilet som er fleveret på diskette/cd bedømmes som såd
Introduktion til uligheder
Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og
StudyGuide til Matematik B.
StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag
Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden.
Efterbehndlingsrk C Dæmonen Nedenfor er vist to grfer for bevægelsen i Dæmonen. Den første grf viser hvor mnge gnge du vejer mere eller mindre end din normle vægt. Den nden grf viser højden. Spørgsmål
Udtrykkelige mængder og Cantorrækker
Udtrykkelige mægder og Catorrækker Expressible sets ad Cator series Matematisk speciale Simo Bruo Aderse 20303870 Vejleder: Simo Kristese Istitut for Matematik Aarhus Uiversitet 208 Abstract This thesis
Maja Tarp AARHUS UNIVERSITET
AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjyllad Studet år 005 fra Droiglud Gymasium Efter gymasiet: Militæret Australie Startede på matematik
Formelsamling for matematik niveau B og A på højere handelseksamen
Frmelsmlg fr mtemtk veu B g A på højere hdelseksme Udervsgsmsteret Erhvervssklefdelge 997 Frmelsmlg fr mtemtk veu B g A på højere hdelseksme Udgvet f Udervsgsmsteret, Erhvervssklefdelge 997. udgve,. plg.
Fejlforplantning. Landmålingens fejlteori - Lektion 9 - Repetition - Fejlforplantning. Kovariansmatrix. Kovariansmatrix
Fejlforplntning Lndmålingens fejlteori Lektion 9 Repetition - Fejlforplntning Ksper K Berthelsen - kk@mthudk http://peoplemthudk/ kk/undervisning/lf11 Institut for Mtemtiske Fg Alorg Universitet Lndmåling
STATISTISKE GRUNDBEGREBER
MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske
Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017
Meigsmåliger KLADDE Thomas Heide-Jørgese, Rosborg Gymasium & HF, 2017 Idhold 1 Meigsmåliger 2 1.1 Idledig................................. 2 1.2 Hvorda skal usikkerhede forstås?................... 3 1.3
x-klasserne Gammel Hellerup Gymnasium
SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK
Supplement til Kreyszig
Supplemet til Kreyszig Forelæsigsoter til Matematik F Idholdsfortegelse side 1. Numerisk itegratio. Fejlvurderig af trapez og Simpso algoritmere 1. Dekompoerig af brøker (Laplace trasformatio) 3. Permutatioer
Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse
Avedt Statistik Lektio 3 Pukt- og itervalestimater Kofidesitervaller Valg af stikprøvestørrelse Pukt- og itervalestimater: Motivatio Motiverede eksempel: I e udersøgelse er adele af rygere 0.27. Det aslås
Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning
Hvad er matematik? Projekter: Kaitel 9 Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Sætig : Regeregler
Introduktion til uligheder
Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og det kvadratiske geemsit. Først skal vi ved fælles
Motivation. En tegning
Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget
Matematik B-A. Trigonometri og Geometri. Niels Junge
Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke
... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner
POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt
