Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}
|
|
|
- Aksel Bjerregaard
- 9 år siden
- Visninger:
Transkript
1 Opgve ) f : [, b] R er e begræset fuktio for hvilke er edelig for ethvert < ε < b. Vi skl vise t f er itegrbel og t A ε = { [ + ε, b] } d =. Vi bemærker først t f er itegrbel på [, b] hvis og ku hvis de er itegrbel på lle delitervller f [, b]. Vi vil betrgtes itegrbilitet på itervllere [, + ε] og [ + ε, b]. På itervllet [ + ε, b] er ku forskellige fr ul i edeligt mge pukter, så giver opgve D fr ugeseddel os t de på det itervl er itegrbel og t itegrlet er. D f er begræset k vi på itervllet [, + ε] opskrive over- og udersummere for f hørede til iddelige Π = {, + ε} Ø(Π) = sup{ [, + ε]}( + ε ) N(Π) = if{ [, + ε]}( + ε ). Der gælder ud fr Drbou defiitioe f et itegrl t N(Π) +ε d Ø(Π) Vi ser u t for ε går Ø(Π) og N(Π). Vi hr derfor t f er itegrbel på [, + ε] og t itegrlet +ε d =. Vi k u evluere det fulde itegrl ved hjælp f idskudssætige. d = +ε d + +ε d = + =. g : [, ] R er givet ved { cos(π) hvis = g() =, hvor N hvis [, ]\{ N}. Vi ser t g() k tge værdier i itervllet [, ] d cos(t) ku tget værdier i dette itervl. Altså er g() begræset. 2
2 Arkimedes pricip giver os deræst t for et givet ε > fides et N N således t < ε for lle > N. Dette medfører t der for ethvert ε > ku er et edeligt tl turlige tl således t ε <, ltså er g() ku forskellig fr i et edeligt tl pukter på itervllet [ε, ]. Vi k derfor opskrive e mægede B ε som er log til A ε givet ved B ε = { [ε, ] g() } Vi ser u t vi k beytte resulttet fr opgve ) til t kokludere t g er itegrbel og t Opgve 2 g()d =. ) Vi tger t fuktioe f : [, b] R er ulige, ltså t Vi skl vise t hvis f er itegrbel er = f( ) for lle [, ] d = Hvis f er itegrbel er de også itegrbel på delitervllere [, ] og [, ], disse vil vi betrgte disse hver for sig. Hvis f er itegrble giver korollr t vi k skrive itegrlet ved brug t e vilkårlig Riem-sum hvor iddeliges størrelse går mod. På itervllet [, ] vælger vi de ækvidistte iddelig Π og et dertil hørede udvlg U givet ved Vi opsrkriver Riem-summe Π = { =,, 2,...,, = } U = {c i c i = i, i =, 2,..., } R(Π, U ) = = f(c i )( i i ) i= ( ( f ) ( + f ) ( + + f 2 ) ( + f )) hvor vi hr brugt t i i = order vi u leddee i modst rækkefølge ædrer vi ikke summes værdi. Vi bruger u t f er ulige til t få R(Π, U ) = i= ( f i ) = i= ( ) i f. 3
3 Tilsvrede for itervllet [, ] vælger vi de ækvidistte iddelig Π + og et tilhørede udvlg U + givet ved Π + = {y =,, 2,...,, = y } U + = {c + i c + i = y i, i =, 2,..., } Vi opsrkriver Riem-summe og bemærker t itervlbredde er R(Π +, U + ) = f(c + i )(y i y i ) = i= f i= ( ) i = R(Π, U ) Vi er u færdige idet t hvis f er itegrbel giver idskudssætige t itegrlet er givet ved d = d + = lim (R(Π, U ) R(Π, U )) = d = lim (R(Π, U ) + R(Π +, U + )) Fuktioe g : [, ] R er givet og fuktioe h : [, ] R er givet ved h() = g( ) [, ]. Vi skl vise t hvis g er itegrbel er h også itegrbel og h()d = g()d Vi opskriver, per defiitio 8.5., Riem-summe for h for vilkårlig iddelig og udvlg Π og U hvor Π for R(Π, U ) = h(c i )( i i ) = i= g( c i )( i i ) i= Spejler vi u både iddelig og udvlg i y-kse får vi e iddelig og et udvlg Π og U givet ved Π = { i i = i i =,, 2,..., } U = {c i c i = c + i} Vi k u beytte dette til t omskrive R(Π, U ) R(Π, U ) = = g( c i )( i i ) = g(c + i)( i + + i) i= i= g(c j)( j j ) = R(Π, U ) j= 4
4 hvor vi hr skiftet summtios ideks til j = + i. Er g itegrbel gælder desude t lim R(Π, U ) = lim g(c i)( i i ) = g()d Vi k u se t hvis g er itegrbel er h itegrbel og Opgve 3 i= h()d = f : [, [ R er e positiv, kotiuert fuktio ) vi skl gøre rede for t for > gælder t f(t 2 )dt = 2 g()d f(s) 2 s ds Vi bruger sætig med g(t) = t 2 og de dertil hørede omvedte fuktio h(t) = t således t h (t) = 2. Vi ser så med det smme t ligige er sd d f er oplyst som t kotiuert, t 2 er både differetibel stregt mooto på itervllet [, ] for > og 2 t er kotiuert på itervllet [, ] for >. Vi skl vise t hvis itegrlet er koverget er også itegrlet d koverget. D f er e positiv fuktio gælder > /2 for lle >. Idet både og /2 er positive kotiuerte fuktioer gælder ifølge sætig 9.5. t hvis er koverget er også itegrlet d 2 d koverget. At dette itegrl er koverget betyder per defiitio 9.5. t græseværdie lim b 2 d 5
5 eksisterer og vi klder græseværdie 2 d. Dee græseværdi k vi per opgve 3 ) skrive som lim b 2 d = lim b b D de to græser er lig hide må der ødvedigvis gælde t itegrlet er koverget. c) Vi skl give et eksempel på e positiv kotiuert fuktio g : [, [ R således t g()d er diverget, me g( 2 )d er koverget. Vi ved fr sætig t itegrlet p d er koverget for p > og diverget for p. Vi vælger defor g() = således t g( 2 ) =. Sætig giver os så t g()d er diverget, me g( 2 )d er 2 koverget. 6
Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.
Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises
Kap. 1: Integralregning byggende på stamfunktioner.
- - Kp. : Itegrlregig yggede på stmfuktioer... Specielle egesker ved fuktioer. Defiitio... E fuktio f siges t være egræset i et itervl I, hvis f er defieret i itervllet, og hvis der fides to tl k og K,
Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal
Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.
Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d
Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -
Sandsynlighedsregning og statistisk
Figur : J. C. F. Guss 777 855 Sdsylighedsregig og sttistisk Peter Hremoës Niels Brock 6. pril Idledig Dette hæfte er lvet som supplemet til. udgve f boge Mt B. Der er lgt vægt på t give e bedre forståelse
Kap 1. Procent og Rentesregning
Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.
Matematikkens mysterier - på et højt niveau. 1. Integralregning
Mtemtikkes mysterier - på et højt iveu f Keeth Hse. Itegrlregig Hvd er relet f de skrverede puktmægde? . Itegrlregig Idhold. Stmfuktioer og det uestemte itegrl. Regeregler for det uestemte itegrl 7 Prtiel
Lidt Om Fibonacci tal
Lidt om Fioi tl Lidt Om Fioi tl Idhold. Defiitio f Fioi tllee.... Kivl... 3. Telefokæder....3 4. E formel for Fioi tllee...4 Ole Witt-Hse 008 Lidt om Fioi tl. Defiitio f Fioi tllee Fioi tllee er opkldt
Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit
Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige
... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner
POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt
Differentiation af potensfunktioner
Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser
Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi
Grudlæggede mtemtiske begreber del Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi x-klssere Gmmel Hellerup Gymsium Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige tl... 9 De hele
Talfølger og -rækker
Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber
Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit
Grudlæggede mtemtiske begreber del Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige tl...
Integralregning. 2. del. 2006 Karsten Juul
Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion
Program. Middelværdi af Y = t(x ) Transformationssætningen
Program Statistik og Sadsylighedsregig 2 Trasformatio af kotiuerte fordeliger på R, flerdimesioale kotiuerte fordeliger, mere om ormalfordelige Helle Sørese Uge 7, osdag I formiddag: Opfølgig på trasformatiossætige
DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet
DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig
De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.
De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z
Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)
Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler
Projekt 1.3 Brydningsloven
Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme
FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier
FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...
1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).
Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter
MATEMATISK FORMELSAMLING
MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig
Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8.
Anlyse Øvelser Rsmus Sylvester Bryder. og 5. oktober 3 Supplerende opgve Ld C([, b], C) betegne rummet f lle kontinuerte funktioner f : [, b] C, hvor < b, og definér et indre produkt på C([, b], C) ved
Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner
Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig
Noget om Riemann integralet. Noter til Matematik 2
Noget om Riemnn integrlet. Noter til Mtemtik 2 Arne Jensen Afdeling for Mtemtik og Dtlogi Institut for Elektroniske Systemer Alborg Universitetscenter Fredrik Bjers Vej 7 9220 Alborg Ø 4. pril 1991 Revideret
TAL OG BOGSTAVREGNING
TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,
Trigonometri. Matematik A niveau
Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den
Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9
Ligninger 1 3 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 2 c d e f 6 æg + 5 høns. 1 æle + 13 pærer. 5 myg + 1 flue. 6x + 5y + 13 3x + 5y 3 4 Gælder i nogle tilfælde. Gælder ltid. c Gælder
Formelsamling til Fourieranalyse 10. udgave
Formelsmling til Fouriernlyse. udgve Kristin Jerslev og Steven Hyden 3. oktober 9 Her følger en formelsmling lvet til kurset Fouriernlyse på Arhus Universitet. Bemærk venligst, t smlingen indeholder sætninger
Matematisk modellering og numeriske metoder. Lektion 17
Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil
Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter
Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag
Kvadratisk 0-1 programmering. David Pisinger
Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal
Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier
Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til
Matematik B-A. Trigonometri og Geometri. Niels Junge
Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke
Kommentarer til VARIABLE
Kommetrer til Fglige mål Kpitlet lægger op til, t elevere lærer vribelbegrebet t kede som et effektivt værktøj til t skbe sig overblik over komplekse problemstilliger. k udpege kostter og vrible med tilhørede
Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul
Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.
Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1
Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt
MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)
Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger
Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.
Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer
Regneregler for brøker og potenser
Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit
gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper
gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution
Sandsynlighedsteori 1.2
Forelæsigsoter til Sadsylighedsteori.2 Sved Erik Graverse Jauar 2006 Istitut for Matematiske Fag Det Naturvideskabelige Fakultet Aarhus Uiversitet. Mometproblemet. I dette afsit beteger X e stokastisk
ANALYSE 1, 2014, Uge 3
ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.
Den flerdimensionale normalfordeling
De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y
Eksponentielle Sammenhænge
Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....
Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum
Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3
Matematik A. Højere handelseksamen. Formelsamling
Mtemtik A Højere hdelseksme Formelsmlig Mtemtik A Højere hdelseksme Formelsmlig Forfttere: Jytte Meli og Ole Dlsgrd April 09 ISBN: 978-87-603-339-5 (web udgve) Dee udgve f Mtemtisk formelsmlig htx A-iveu
( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN
Projekt 7.7 Simpsons formel Simpson vr søn f en selvlært væver, og skulle egentlig selv hve været en væver, men en solformørkelse vkte hns interesse for mtemtik og nturvidensk og mod lle odds lykkedes
Løsningsformel til Tredjegradsligningen
Løsgsformel tl Tredjegrdslgge Ole Wtt-Hse 8 966 Løsgsformel for tredjegrdslgge olyomer f tredje grd Formålet er t forsøge t fde røddere et tredjegrdsolyomm:. Hor koeffcetere er reelle tl og er forskellg
Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.
Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige
Om Riemann-integralet. Noter til Matematik 1
Om Riemnn-integrlet. Noter til Mtemtik 1 Jon Johnsen Institut for Mtemtiske Fg, Alborg Universitet Fredrik Bjers Vej 7G, 9220 Ålborg Ø 3. december 2001 1 Indledning Integrlregning går tilbge til Newtons
MOGENS ODDERSHEDE LARSEN. Fourieranalyse
MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere
BEVISER TIL SÆTNINGER I BOGEN
MTEMK Mtemtik o hh C-iveu BEVISER TIL SÆTNINGER I BOGEN Dette e e smlig ove lle e sætige og evise e e i oge. Det e met som suppleee mteile isæ til e eleve, e skl hve mtemtik på B- elle -iveu. ee i ku metget
3. Vilkårlige trekanter
3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke
Simple udtryk og ligninger
Simple udtryk og ligninger for gymnsiet og hf 0 Krsten Juul Indhold Rækkefølge f + og... Smle led f smme type... Gnge ind i prentes. del... Rækkefølge f og smt f + og... Gnge ind i prentes. del... Hæve
Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2 og 3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum
Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2
Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen
Forelæsigsoter til Stokastiske Processer E5 Sved-Erik Graverse Revideret af Ja Pederse Kapitel 12 og Appedix B og G af Ja Pederse 16. august 25 Forord Nærværede otesæt skal bruges i forbidelse med kurset
INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0
INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til
Elementær Matematik. Polynomier
Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere
Kort om Potenssammenhænge
Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning
Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen
Rettevejledig til HJEMMEOPGAVE Makro, 2. årsprøve, foråret 2007 Peter Birch Sørese Opgave... Udsaget er forkert. De omtalte skatteomlægig må atages at øge beskæftigelse p.gr.a. e positiv substitutioseffekt
Introduktion til uligheder
Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og
Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =
Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen (
Lektion 7s Funktioner - supplerende eksempler
Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side
