Kvadratisk 0-1 programmering. David Pisinger

Størrelse: px
Starte visningen fra side:

Download "Kvadratisk 0-1 programmering. David Pisinger"

Transkript

1 Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal kater over sittet} F.eks. har følgede istas af MAX-CUT de optimale løsig S = {3,5,6}, T = {,2,4,7} med løsigsværdi 9. V 7 V V 5 V 2 V 6 V 4 V 3 Det tilhørede afgørlighedsproblem MAX-CUT-DECISION ka formuleres som følger: Lad = V være atal kuder i G. Lad de biære variable x i for i =,...,, være x i = hvis kude i S, og x i = hvis kude i T. Lad edvidere kostatere e i j = hvis kat (i, j) E, og e i j = ellers. Sidst, agiver k e edre græse for atallet af kater over sittet (S, T). { } MAX-CUT-DECISION = < G,k > : der fides(x,...,x ) {,} så e i j x i ( x j ) k i V j V Det er velkedt at maximerig af e objektfuktio f over domæet X givet som problemet max x X f(x) ka omskrives til et ækvivalet problem der miimerer objektfuktioe mi x X f(x) Opgave Ka dee ækvivales beyttes til at løse MAX-CUT ved hjælp af MIN-CUT (f.eks. ved at skifte forteg på alle katvægte)? Argumeter for dit svar.

2 Kvadratisk - programmerig Betragt det kvadratiske - optimerigsproblem QP: d i j x i x j () i N j N subject to x j {,}, j N defieret på mægde N = {,...,}, og med d i j R for i, j N. Ude tab af geeralitet ka ma atage at (d i j ) matrice er symmetrisk. Følgede eksempel viser e istas med = 4 variable givet ved (d i j ) matrice j i De optimale løsig er at vælge x = x 3 = x 4 = hvilket giver e løsigsværdi på 8. Opgave 2 Omformuler QP til et afgørlighedsproblem QP-DECISION. Opgave 3 Vis at QP-DECISION ligger i klasse N P. Opgave 4 Vis at QP-DECISION er N P -fuldstædig ved reduktio fra MAX-CUT-DECISION. Nemme istaser af kvadratisk - programmerig Selv om QP-DECISION er N P -fuldstædigt betyder det som bekedt ikke at alle istaser er svære at løse. Betragt følgede klasse af istaser for QP: d i j R + for alle i, j N, i j d ii R for alle i N dvs. alle elemeter udefor diagoale i matrice (d i j ) skal være ikke-egative. Opgave 5 Vis at istaser af QP som overholder disse to krav ka løses i polyomiel tid som følger: a) Kostruer e istas (V,E,c) af MAXIMUM-FLOW ved at sætte V = N {s,t} og E = {s} N N N N {t}. Kapacitete af katere sættes til: c si = max{, j N d i j }, c i j = d i j, c ii =, c it = max{, j N d i j } i N i, j N,i j i N i N Argumeter for at dette er e gyldig istas af MAXIMUM-FLOW problemet. 2

3 b) Atag at de optimale strømig f fudet med MAXIMUM-FLOW har strømigsværdie f, og at det tilhørede miimale sit er S,T. Lad x i = hvis i S og lad x i = hvis i T. Opskriv værdie af et miimalt sit udtrykt ved disse beslutigsvariable. c) Vis at c si c it = j N c i j + d ii for alle i N. d) Vis at løsigsværdie til QP ka fides som i N c si f. e) Agiv køretide for oveståede algoritme. Et eksempel på oveståede trasformatio med datasættet fra forrige side er: s 7 6 V 4 V V 2 5 t V 3 Da (d i j ) matrice er symmetrisk har de grå kater parvist samme kapacitet. De maksimale strømigsværdi i grafe er f = 5, og det tilhørede miimale sit er S = {s,,3,4} og T = {t,2}. Opgave 6 Implemeter e algoritme, som ka løse de oveståede emme istaser af QP problemet. Brug algoritme til at løse istasere på hjemmeside. Rapporter de optimale løsigsværdi for hvert af problemere. Kvadratisk kapsack problemet Kvadratisk kapsack problemet har adskillige avedelser. Betragt f.eks. et teleselskab som skal e- tablere et atal radiomaster rudt omkrig i ladet. De mest iteressate byer udvælges, og der geemføres e øje aalyse af hver radiomasts fordele og ulemper. E radiomast j koster et givet beløb w j at etablere, og teleselskabet har et budget på c. Ehver radiomast vil i sig selv give et vist afkast p j j mes ma får afkastet p i j + p ji for telefoi mellem to byer i og j. 3

4 Idet vi idfører beslutigsvariable x j {,} til at agive om e radiomast bygges eller ej, ka vi formulere problemet som følgede kvadratiske kapsack problem (QKP): subject to j= i= j= p i j x i x j w j x j c (2) x j {,}, j =,...,. hvor objektfuktioe agiver at profitte skal maximeres, mes kapsack begræsige betyder at etablerigs-budgettet på c ikke må overskrides. Det atages at alle værdier af p i j og w j er ikkeegative heltal. Afgørlighedsproblemet svarede til QKP er N P -fuldstædigt, hvilket ka vises ved reduktio fra KNAPSACK (diagoalelemetere i QKP sættes til profittere i KNAPSACK, mes alle elemeter udefor diagoale sættes til ul). Følgede eksempel viser e istas af QKP for syv byer. i j p i j w j = 7, c = 2. De optimale løsig er at bygge radiomaster i byere, 2, 5, 6 hvilket giver e profit på 83. Øvre græseværdi Opgave 7 Hvis ma Lagrage-relaxerer kapsack begræsige i (2) fremkommer problemet QKP(λ) givet ved ) j= i= x j {,}, For hvilke værdier af λ er (3) e relaxerig af (2)? Beteg med L de lovlige mægde af λ-værdier. p i j x i x j λ ( w j x j c j= j =,...,. Opgave 8 Vis at for et givet λ L ka det Lagrage-relaxerede problem (3) skrives på forme (3) ( d i j x i x j )+k (4) i N j N subject to x j {,}, j =,..., hvor k er e kostat. Vis edvidere at dette problem ka løses i polyomiel tid. 4

5 Det vides at QKP(λ) er e koveks fuktio af λ, der ser ud som følger: QKP(λ) λ Det Lagrage duale problem går ud på at fide de værdi af λ som resulterer i de strammeste græseværdi. Dvs. vi søger QKP(λ) (5) mi λ L Opgave 9 Agiv e edre og øvre græse for hvor stor λ ka blive i oveståede udtryk. Udtrykket λ < er ikke et tilfredsstillede svar. Opgave Beskriv e effektiv algoritme som løser problemet (5). Opgave Implemeter algoritme til løsig af (5) og afprøv de på istasere fra hjemmeside. Brach-ad-boud algoritme Vi vil u kostruere e rekursiv brach-ad-boud algoritme til løsig af QKP problemet (2). I hvert skridt forgreer vi på de sidste beslutigsvariabel x således at det tilbageværede problem herefter har størrelse. Iitielt sættes x i = for i =,..., og z =. Herefter kaldes algoritme quadkap(, c, ); De rekursive del af algoritme ka skitseres som: quadkap(p, c, ) if c < the retur if P > z the z P; x i x i for i =,..., if = the retur fid e øvre græseværdi U for problemet defieret på (p i j ), i, j =,...,, og med kapacitet c ifu + P > z the x ; modificer (p i j ) matrice; quadkap(p+ p,c w, ) x ; retabler (p i j ) matrice; quadkap(p,c, ) Her agiver atallet af frie variable (dvs. variable som der edu ikke er forgreet på), c agiver de tilbageværede kapacitet, mes P agiver profitte af de allerede valgte radiomaster. 5

6 Ved modificatio af (p i j ) matrice sætter vi p ii p ii + p i + p i for hvert i =,...,. Dette betyder, at hvis radiomast i på et seere tidspukt bliver valgt, vil ma automatisk idkassere profitte af al kommuikatio mellem byere i og. Når matrice skal retableres subtraherer vi atter disse bidrag ved at sætte for hvert i =,...,. p ii p ii p i p i Opgave 2 Implemeter e fuldstædig versio af quadkap som beytter græseværdie (5). Opgave 3 Kør algoritme på istasere fra hjemmeside og agiv køretid, atal brach-ad-boud kuder, græseværdi i rodkude, samt optimal løsigsværdi. Noter Det ka i opgave atages at MAX-CUT-DECISION er N P -fuldstædig. N P -fuldstædighed af MAX-CUT-DECISION bliver vist ved forelæsigere som følger (se plachere): 3CNF-SAT ka reduceres i polyomiel tid til 3CNF-NAE-SAT. Sidstævte problem ka ige reduceres i polyomiel tid til MAX-CUT-DECISION. Til implemeterigs-opgavere beyttes et rammeprogram skrevet i C++. Rammeprogrammet ka idlæse istaser fra hjemmeside og rummer e simpel implemeterig af EDMONDS-KARP algoritme til løsig af MAXIMUM-FLOW problemet. Rammeprogrammet fides på kursets hjemmeside samme med alle istaser. De beyttede datatilfælde er e bladig af virkelige data og tilfældigt geererede data som agivet i følgede tabel: Beskrivelse Radiotelefoi Compiler desig Geometrisk p-dispersio Radom 25% desitet Radom % desitet Klike i e graf filave tele7 comp3 comp45 comp47 geo geo2 geo3 geo4 rad.25 rad2.25 rad3.25 rad4.25 rad. rad2. rad3. rad4. clique clique2 clique3 clique4 Desitete af et datatilfælde agiver hvor mage procet af matrices elemeter der er forskellige fra ul. Compiler desig problemere er foreslået af Helmberg, Redl, Weismatel. 6

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem DATV: Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2004 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og

Læs mere

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2003 Dette er de ade obligatoriske projektopgave på kurset Itroduktio til optimerig og operatiosaalyse.

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler

Læs mere

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Branch-and-bound. Indhold. David Pisinger. Videregående algoritmik, DIKU ( )

Branch-and-bound. Indhold. David Pisinger. Videregående algoritmik, DIKU ( ) Brach-ad-boud David Pisiger Videregåede algoritmik, DIK (005-06) 6 Kvalitet af græseværdifuktioe 3 6. Eksempler på domias....................... 3 7 Kritiske og Semikritiske delproblemer 34 8 Kuste at

Læs mere

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) :

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) : Uge 37 opgaver Opgave Svar : a) Starter med at defiere sup (M) og if (M) : Kigge u på side 3 i kompedie og aveder aksiom (.3) Kotiuitetsaksiomet A = x i x 2 < 2 Note til mig selv : Har søgt på ordet (iequalities)

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Den grådige metode 2

Den grådige metode 2 Algoritmedesig 1 De grådige metode De grådige metode Et problem løses ved at foretage e række beslutiger Beslutigere træffes e ad gage i e eller ade rækkefølge Hver beslutig er baseret på et grådighedskriterium

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Videregående Algoritmik. David Pisinger, DIKU. Reeksamen, April 2005

Videregående Algoritmik. David Pisinger, DIKU. Reeksamen, April 2005 Vderegåede Algortmk Davd Psger, DIKU Reeksame, Aprl 5 Bsecto problemet Gvet e uvægtet graf G = (V, E) samt et heltal k. E bsecto af grafe G er e opdelg af kudere V to lge store mægder S og T. MAX-BISECTION

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968)

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968) Algoritmedesig med iteretavedelser ved Keld Helsgau Aalyse af algoritmer Iput Algoritme Output E algoritme er e trivis metode til løsig af et problem i edelig tid 1 2 Algoritmebegrebet D. E. Kuth (1968)

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Baggrundsnote til sandsynlighedsregning

Baggrundsnote til sandsynlighedsregning Baggrudsote til sadsylighedsregig Kombiatorik. Multiplikatiospricippet E mægde beståede af forskellige elemeter kaldes her e -mægde. Elemetere i e m-mægde og elemetere i e -mægde ka parres på i alt m forskellige

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

De Platoniske legemer De fem regulære polyeder

De Platoniske legemer De fem regulære polyeder De Platoiske legemer De fem regulære polyeder Ole Witt-Hase jauar 7 Idhold. Polygoer.... Nogle topologiske betragtiger.... Eulers polyedersætig.... Typer af et på e kugleflade.... Toplasvikle i e regulær

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation. De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Den hurtige Fouriertransformation. Jean Baptiste Joseph Fourier ( )

Den hurtige Fouriertransformation. Jean Baptiste Joseph Fourier ( ) De hurtige Fouriertrasformatio Jea Baptiste Joseph Fourier (768-83) Polyomier Polyomium: p + 2 3 4 ( x) = 5 + 2x + 8x + 3x 4x Geerelt: p(x) = eller! " i= a i x i p(x) = a + a x + a 2 x 2 +!+ a! x! 2 Evaluerig

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2 Idhold 1 Pukt- og itervalestimatio 2 1.1 Puktestimatorer: Cetralitet(bias) og efficies.................... 2 2 Kofidesiterval 3 2.1 Kofidesiterval for adel................................ 4 2.2 Kofidesiterval

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal FUNKTIONER del Fuktiosbegrebet Lieære fuktioer Ekspoetialfuktioer Logaritmefuktioer Retesregig Idekstal -klassere Gammel Hellerup Gymasium November 08 ; Michael Szymaski ; mz@ghg.dk Idholdsfortegelse FUNKTIONSBEGREBET...

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden.

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden. Vadtrasportmodel Formål For beregig af vadtrasporte i sadkasse er der lavet e boksmodel. Formålet med boksmodelle er at beskrive vadtrasporte i sadkasse. Herover er formålet at bestemme de hydrauliske

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

a b cos. n=1 er positiv på N. Vi kan nu benytte sammenligningskriteriet (sætning ) og sammenligne 2a sin ( )

a b cos. n=1 er positiv på N. Vi kan nu benytte sammenligningskriteriet (sætning ) og sammenligne 2a sin ( ) Opgve Vi skl bestemme de tlpr (, for hvilke række b cos = er koverget. Først beytter vi divergeskriteriet (sætig 2..4) til t kræve t leddee må gå mod ul for gåede mod uedelig. Dette giver os t = b cos()

Læs mere

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Meigsmåliger KLADDE Thomas Heide-Jørgese, Rosborg Gymasium & HF, 2017 Idhold 1 Meigsmåliger 2 1.1 Idledig................................. 2 1.2 Hvorda skal usikkerhede forstås?................... 3 1.3

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og det kvadratiske geemsit. Først skal vi ved fælles

Læs mere

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning Hvad er matematik? Projekter: Kaitel 9 Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Sætig : Regeregler

Læs mere

Matematik A. Højere handelseksamen. Tirsdag den 26. maj 2015 kl hhx151-mat/a

Matematik A. Højere handelseksamen. Tirsdag den 26. maj 2015 kl hhx151-mat/a Matematik A Højere hadelseksame hhx151-mat/a-26052015 Tirsdag de 26. maj 2015 kl. 9.00-14.00 Matematik A Prøve består af to delprøver. Delprøve ude hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Bachelorprojekt for BSc-graden i matematik

Bachelorprojekt for BSc-graden i matematik D E T N A T U R V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Bachelorprojekt for BSc-grade i matematik Mikkel Abrahamse & Sue Precht Reeh Ekstremal grafteori Vejleder:

Læs mere

Den hurtige Fouriertransformation

Den hurtige Fouriertransformation Polyomier De hurtige Fouriertrasformatio Polyomium: Geerelt: p + 2 3 4 ( x) = 5 + 2x + 8x + 3x 4x p(x) =! " eller x i p(x) = a + a x + a 2 x 2 +!+ a! x! Jea Baptiste Joseph Fourier (768-83) 2 Evaluerig

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN Projekt 0.4 Modulo-regig, restklassegruppere sætig ( p 0, ) og Fermats lille Vi aveder moduloregig og restklasser mage gage om dage, emlig år vi taler om tid, om hvad klokke er, om hvor lag tid der er

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

M Å L T E O R I S A N D S Y N L I G H E D S T E O R I 1. 1 F O R E L Æ S N I N G S N O T E R S V E N D E R I K G R A V E R S E N O G

M Å L T E O R I S A N D S Y N L I G H E D S T E O R I 1. 1 F O R E L Æ S N I N G S N O T E R S V E N D E R I K G R A V E R S E N O G F O R E L Æ S N I N G S N O T E R T I L M Å L T E O R I O G S A N D S Y N L I G H E D S T E O R I 1. 1 S V E N D E R I K G R A V E R S E N A U G U S T 2 0 0 5 I N S T I T U T F O R M A T E M A T I S K

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid 6 april Løsning af N P -hårde problemer Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid Oversigt Grænseværdier (repetition) Branch-and-bound algoritmens komponenter Eksempler

Læs mere

cos(t), v(t) = , w(t) = e t, z(t) = e t.

cos(t), v(t) = , w(t) = e t, z(t) = e t. Aalyse Øvelser Rasmus Sylvester Bryder. og. oktober 3 Bevis for Cotiuity lemma Theorem. Geemgås af Michael Staal-Olse. Bevis for Lemma.8 Dee har vi faktisk allerede vist; se Opgave 9.5 fra Uge. Det er

Læs mere

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel og imagiærdel samt i... 8 Subtraktio,

Læs mere

Induktionsbevis og sum af række side 1/7

Induktionsbevis og sum af række side 1/7 Iduktosbevs og sum af række sde /7 Skrver ma,,,...,,..., =, 2, 3,... 2 3 taler ma om e talfølge, eller blot e følge. Adre eksempler på følger er, -,, -,, -,..., (-) +,..., =, 2, 3,..., 2, 3, 4,...,,...,

Læs mere

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert. Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises

Læs mere

Bestemmelse af vandføring i Østerå

Bestemmelse af vandføring i Østerå Bestemmelse af vadførig i Østerå Geerelt varierer vadstade og vadførige i daske vadløb over året. Normalt er vadførige lille om sommere for derpå at øge om efteråret. Om vitere ses ormalt de højeste vadføriger

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Februar 09 ; Michael Symaski ; m@ghg.dk Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel

Læs mere

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n))

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n)) DM19 1. Iformatio-theoretic lower bouds kap. 8 + oter. Ma ka begræse de teoretiske græse for atallet af sammeligiger der er påkrævet for at sortere e liste af tal. Dette gøres ved at repræsetere sorterig-algoritme

Læs mere

16. december. Resume sidste gang

16. december. Resume sidste gang 16. december Resume sidste gang Abstrakt problem, konkret instans, afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor

Læs mere

Maja Tarp AARHUS UNIVERSITET

Maja Tarp AARHUS UNIVERSITET AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjyllad Studet år 005 fra Droiglud Gymasium Efter gymasiet: Militæret Australie Startede på matematik

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0} Opgve ) f : [, b] R er e begræset fuktio for hvilke er edelig for ethvert < ε < b. Vi skl vise t f er itegrbel og t A ε = { [ + ε, b] } d =. Vi bemærker først t f er itegrbel på [, b] hvis og ku hvis de

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

Denne kaldes også potensmængden over Ω og betegnes ofte 2 Ω. Notationen beror på, at man via relationen

Denne kaldes også potensmængden over Ω og betegnes ofte 2 Ω. Notationen beror på, at man via relationen Idledig. De modere sadsylighedsteori, hvis aksiomatiske basis blev formuleret af russere A.N. Kolmogorov i 1933 i boge Grudbegriffe der Wahrscheilichkeitrechug, er bygget op omkrig et tripel ofte beteget

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Matematisk Modellering 1 Hjælpeark

Matematisk Modellering 1 Hjælpeark Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN

Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN Projekt 3.2 Alægsøkoomie i Storebæltsforbidelse Dette projekt hadler, hvorda økoomie var skruet samme, da ma byggede storebæltsforbidelse. Store alægsprojekter er æste altid helt eller delvist låefiasieret.

Læs mere

Lokalplan-, delområde- og byggefeltregler. Plandata.dk

Lokalplan-, delområde- og byggefeltregler. Plandata.dk Lokalpla-, delområde- og byggefeltregler Pladata.dk Eksporteret de 30. april 2018 Idholdsfortegelse 1 Lokalpla... 3 2 Delområder og byggefelt... 9 2 1 Lokalpla plaid Alle Nej Plaid skal altid være udfyldt

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

Deskriptiv teori: momenter

Deskriptiv teori: momenter Kapitel 13 Deskriptiv teori: mometer Vi vil i dette og det følgede kapitel idføre e række begreber der bruges til at beskrive sadsylighedsmål på (R, B). Samtlige begreber udspriger i e eller ade forstad

Læs mere

Begreber og definitioner

Begreber og definitioner Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster

Læs mere

Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen

Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen Forelæsigsoter til Stokastiske Processer E5 Sved-Erik Graverse Revideret af Ja Pederse Kapitel 12 og Appedix B og G af Ja Pederse 16. august 25 Forord Nærværede otesæt skal bruges i forbidelse med kurset

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Vejledning til at udfylde skema: Ændring i budgettet: Beskrivelsen fra budgetændringen. Her tilføjes SBSYS sagsnummer.

Vejledning til at udfylde skema: Ændring i budgettet: Beskrivelsen fra budgetændringen. Her tilføjes SBSYS sagsnummer. Sagsr. 00.01.00-A00-63-14 Dato 9-6-2015 Sagsbehadler Aette Wedt Opfølgig på budget 2015 Sudheds- og psykiatriudvalget Nedeståede oversigt viser de pukter på Sudheds- og psykiatriudvalget, som der formelt

Læs mere

1. De karakteristiske egenskaber ved de tre mest almindelige talsystemer, og... 2

1. De karakteristiske egenskaber ved de tre mest almindelige talsystemer, og... 2 Projekt 0.3 Galois-legemere GF p - et værktøj til fejlrettede QR-koder Idhold. De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og.... De kommutative, associative og distributive lov

Læs mere

Udtrykkelige mængder og Cantorrækker

Udtrykkelige mængder og Cantorrækker Udtrykkelige mægder og Catorrækker Expressible sets ad Cator series Matematisk speciale Simo Bruo Aderse 20303870 Vejleder: Simo Kristese Istitut for Matematik Aarhus Uiversitet 208 Abstract This thesis

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

Sandsynlighedsteori 1.2

Sandsynlighedsteori 1.2 Forelæsigsoter til Sadsylighedsteori.2 Sved Erik Graverse Jauar 2006 Istitut for Matematiske Fag Det Naturvideskabelige Fakultet Aarhus Uiversitet. Mometproblemet. I dette afsit beteger X e stokastisk

Læs mere

Intelligent planlægning, styring og gennemførelse af din produktion. Reducér virksomhedens omkostninger skab øget konkurrencekraft!

Intelligent planlægning, styring og gennemførelse af din produktion. Reducér virksomhedens omkostninger skab øget konkurrencekraft! Itelliget plalægig, styrig og geemførelse af di produktio Reducér virksomhedes omkostiger skab øget kokurrecekraft! Add-o moduler til alle produktiosvirksomheder med MS Dyamics NAV Maufacturig Målet er

Læs mere

Til - donationsansvarlige nøglepersoner og afdelings- og afsnitsledelser

Til - donationsansvarlige nøglepersoner og afdelings- og afsnitsledelser Til - doatiosasvarlige øglepersoer og afdeligs- og afsitsledelser Såda læser og bruger I jeres kvartalsrapport Orgadoatiosdatabase blev etableret som e atioal kliisk kvalitetsdatabase 1. april 2010. Data

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Eksempel 10.1 En autoregressiv proces af orden 1 (ofte blot kaldet en AR(1)- proces) pårhar et opdateringsskema (10.1) med funktionen. for y R.

Eksempel 10.1 En autoregressiv proces af orden 1 (ofte blot kaldet en AR(1)- proces) pårhar et opdateringsskema (10.1) med funktionen. for y R. Kapitel 0 Markovkæder Vi vil i det følgede studere processer Y 0, Y, Y 2,... med værdier irgivet på forme Y = f (Y +ǫ for =, 2,... (0. Her erǫ,ǫ 2,... e følge af iid støjvariable med middelværdi 0, alle

Læs mere