Begrebet machine learning, som på dansk vel mest passende kan gengives med automatisk

Størrelse: px
Starte visningen fra side:

Download "Begrebet machine learning, som på dansk vel mest passende kan gengives med automatisk"

Transkript

1 Machine learning automatisk læring med computere Af Mads Nielsen, DIKU Begrebet machine learning, som på dansk vel mest passende kan gengives med automatisk læring, er baseret på det særlige område inden for datalogisk forskning, der hedder algoritmer kombineret med statistisk analyse. Det går ud på at lade computeren lære at genkende mønstre ud fra eksempler og data og vel at mærke lære mere end eksemplerne selv: På basis af data kan computeren også lære at generalisere til nye eksempler og træffe såkaldt intelligente beslutninger. Et illustrerende eksempel I 1994 var jeg på vej med bussen til DIKU til en ph.d.-skole, som handlede om læring ved hjælp af minimum description length-princippet, sad en vel 5-årig dreng på sædet foran mig i bussen. Han sagde til sin mormor: Se, der er en bus med flag på! Et øjeblik efter kom næste bus: Se, mormor, alle busser har flag på i dag! Han generaliserede ud fra to eksempler til en regel. Gennem machine learning forsøger computeren at gøre det samme: at finde den hypotese, der passer bedst til de erfarede data og samtidig har størst mulig chance for at passe til fremtidige data. Med udviklingen af computeres lager- og beregningskapacitet og også som følge af metodernes udvikling over de sidste årtier er machine learning blevet et konkurrencedygtigt alternativ til at opfinde den dybe tallerken selv. Som eksempler på services, der anvender machine learning, kan nævnes Googles søgemaskine, stemmegenkendelse i telefonsvarere, kunstige modspillere i computerspil, forudsigelse af aktiekurser og programmer til visuel genkendelse af ansigter (prøv fx Polar Rose der automatisk genkender personer i dine fotografier), men også mere prosaiske eksempler som centrifugeringsprogrammer i vaskemaskiner. Senest har Volvo kørt rundt i København for at arbejde med deres machine learning-algoritme til automatisk genkendelse af fodgængere i bybilledet. Teknikken er lanceret i 2010 med det formål at få bilen til at bremse automatisk for at undgå kollision. Kunstig intelligens vs. machine learning Kunstig intelligens er et begreb, der længe har spøgt i litteraturen, og som offentligheden har stiftet bekendtskab med i bl.a. Arthur C. Clarkes Rumrejsen år 2001 fra 1968 (filmatiseret af Stanley Kubrick) og Brian Aldiss AI fra 2001 filmatiseret af Steven Spielberg. Machine learning kan opfattes som en del af dette begreb. I faglitteraturen er begreberne dog typisk adskilte: Hvor kunstig intelligens i højere grad beskæftiger sig med at finde løsninger til komplekse, men fuldt ud specificerede problemer, beskæftiger machine learning sig med at udlede regler fra data. Et godt eksempel er de populære sudokuer, hvor man med brug af kunstig intelligens ville indkode de kendte regler og lave et program, der finder en løsning til at udfylde spillepladen med tal. 92 DATALOGISK INSTITUT

2 Machine learning-tilgangen kræver ikke, at man kender reglerne for sudoku, men derimod at man ser nogle løsningseksempler. Computeren vil derefter forsøge at regne reglerne ud og samtidig lave et program, der kan anvende reglerne til at finde nye løsninger. Denne tilgang kaldes også inferens eller ræsonnement. Kunstig intelligens anvender deduktiv inferens, dvs. slutter sig frem til løsningen ved brug af udelukkelsesmetoden (Sherlock Holmesmetoden), mens machine learning benytter induktiv inferens, dvs. en form for sandsynliggørelse gennem sammenligning med lignende eksempler. Sidstnævnte er, hvad matematikerne kalder et dårligt stillet problem (Hadamard) et problem uden en entydig løsning. Drengen i bussen ville kunne finde mange forskellige regler for, hvilke busser der har flag, og hvilke der ikke har flag. Vel at mærke regler, der alle er i overensstemmelse med hans observationer af, at de to første busser har flag. Han valgte reglen Alle busser har flag på i dag, men kunne lige vel have valgt reglen Alle busser på Christianshavns Torv har flag på eller for den sags skyld en mere kompliceret regel som Når jeg tæller busser og giver dem fortløbende numre, har alle primtalsbusser et flag på. Alle tre regler svarer fuldt ud til observationerne, og vi må udvikle et princip til at vælge den regel, der har størst chance for at stemme overens med fremtidige observationer. At vælge dette princip og komme frem til algoritmer på baggrund af princippet er kunsten og videnskaben i machine learning. Minimum description length-princippet Fra en lidt mere filosofisk vinkel kan minimum description length (MDL)-princippet nævnes. Det bygger på Occams razor: Den simpleste af lige gode hypoteser er at foretrække. Dette er formaliseret i MDL, hvor man forsøger at indkode data så kompakt som muligt med mange konkurrerende komprimeringsmetoder. Den metode, der så bruger færrest mulige bit til at indkode data, anses som den bedste. Forbindelsen til statistisk machine learning kommer gennem Shannons informationsteori, hvor sandsynlighedsfordelingers entropi er den teoretiske nedre grænse for, hvor mange bit der skal bruges til at indkode instanser trukket fra fordelingen. Der er på denne måde etableret mange forbindelser mellem bayesiansk tankegang og MDL. Tages MDL-filosofien alvorligt i sin yderste konsekvens, drejer machine learning sig således om at komprimere data mest muligt. Den nederste grænse for komprimeringen kendes også som Kolmogorov-kompleksiteten af data: længden af det korteste computerprogram, der udskriver data. Desværre er det vist, at Kolmogorov-kompleksiteten ikke generelt er beregnelig. Vi kan kun på vores togt efter gode komprimeringer håbe at finde et kort program. Vi kan aldrig garantere, at vi har fundet det korteste. Boris Ryabko har for en stor klasse af data vist, at i gennemsnit vil den ekstra kodelængde, vi får, fordi vi ikke bruger uendelig lang beregningstid, være omvendt proportional med den anvendte beregningstid. Derved har han formaliseret det berømte citat af Blaise Pascal: If I had had more time, I would have written you a shorter letter. KØBENHAVNS UNIVERSITET 93

3 At estimere med statistisk modellering (Bernoulli-processen) Når vi ønsker at finde den regel, der har størst chance for at generalisere korrekt, bevæger vi os hurtigt ind i sandsynlighedsregning og statistik, når det nu er chancer, vi taler om. Her vil vi gå gennem Bernoulli-processen som et kanonisk eksempel på mekanismerne i et modelvalg: Vi har en mønt til at slå plat eller krone med, men mønten er muligvis skæv, hvorfor plat og krone ikke giver samme sandsynlighed (se figur 1). Vi kaster nu mønten gentagne gange og vil forsøge at udregne sandsynligheden for krone i fremtidige kast. Denne proces er det første simple eksempel, men allerede her kan det blive komplekst at finde en god løsning. Den umiddelbare tilgangsvinkel vil være ud fra vores træningskast at udregne den fremtidige sandsynlighed for krone som: Θ = antal krone / antal kast = antal krone / (antal krone + antal plat) Dette er maximum likelihood-estimatet af sandsynligheden Θ: Af alle mulige valg af Θ er dette valget, hvor sandsynligheden for det udfald (antal krone og plat), vi har opnået, er størst. Vi beskriver dette som: Θ ml = arg max Θ p(d Θ) Det vil sige, at maximum likelihood-estimatet af Θ (som tilhører intervallet fra og med 0 til og med 1) findes som det Θ, der maksimerer sandsynligheden for data, D (i dette tilfælde antal krone og plat), når værdien af sandsynligheden for krone, Θ, antages kendt. Abstraktionen er altså, at vi gætter løsningen, ser, hvor sandsynlige data er, og så gætter igen og igen, indtil vi har fundet det gæt af løsningen, hvor data er mest sandsynlige. Maximum likelihood-estimering er standardmetoden for statistisk analyse, men lider i ovennævnte anvendelse af en mangel: Hvis vi kun har kastet mønten en enkelt gang, altså forsøger at lære møntens karakteristika ud fra et enkelt kast, vil Θ blive 0 eller 1, afhængigt af om vi tilfældigvis har fået krone eller plat i første forsøg. Det virker urimeligt, at vi dermed laver en model, som siger, at alle fremtidige kast bliver som det første: Vi bliver ved med at slå krone hver eneste gang. Specielt hvis vi faktisk har haft mønten i hånden og synes, at den minder om en almindelig, fair mønt. Denne forhåndsviden er ikke med i likelihood-estimatet. I stedet for at analysere p(d Θ), sandsynligheden for data D, når Θ er kendt, kunne vi analysere p(θ D), sandsynligheden for Θ, når D er kendt. Det virker mere rimeligt at finde sandsynligheden for en model Θ baseret på data. Dette kan gøres ved hjælp af Bayes formel for a posteriori-sandsynligheden for Θ: p(θ D) = p(d Θ) p(θ) / p(d) Her udregnes sandsynligheden for modellen Θ baseret på likelihoodet p(d Θ), forhåndssandsynligheden (eller a priorisandsynligheden) p(θ) og evidensen p(d). Evidensen p(d) afhænger ikke af Θ og fungerer som en konstant, der sørger for normalisering af p(θ D), så sandsynlighedsvolumen er 1 summeret over alle værdier af Θ. A priori-sandsynligheden p(θ) indkoder vores forhåndsantagelser om Θ. Dette er vores væsentligste værktøj, når vi ønsker estimater, der generaliserer bedre end maximum likelihood-estimatet. Krone Plat Plat Krone Krone Plat } P(Krone) = Θ Figur 1: Bernoulli-processen. En mønt kastes gentagne gange, og vi ønsker at estimere sandsynligheden for udfaldet krone i fremtidige kast. 94 DATALOGISK INSTITUT

4 Ud fra a posteriori-fordelingen p(θ D) ønsker vi at vælge et enkelt bedste Θ, som vi kalder Θ*. Dette bedste valg kan foretages efter mange principper, men ofte vil vi vælge den løsning, der minimerer den forventede kvadratfejl. Θ* = arg min Θ ( Θ Θ )2 p(θ D) dθ = E(Θ) Det svarer til a posteriori-middelværdien af Θ. Nu kan vi lege med, hvilken a priori-fordeling p(θ) vi vil antage. Klassisk vil man vælge en ligefordeling på intervallet [0;1]. Dette er en såkaldt ikke-informativ prior, da vi antager en fordeling, der bestemmer så lidt som muligt. Laplace udregnede under antagelse af ligefordelingen, at: Θ* = (antal krone + 1) / (antal krone + antal plat + 2) Løsningen her svarer til, at vi, før vi startede Bernoulliprocessen, allerede havde kastet mønten to gange og fået én plat og én krone og derefter benyttede maximum likelihoodestimatoren. Ovenfor minimerede vi kvadratfejlen og ankom derved til middelværdien som Bayes-estimat. Dette er et fornuftigt men dog vilkårligt valg. Generelt vil man kunne erstatte kvadratfejlen med en anden tabsfunktion og derved ændre sin estimator. Et specielt valg er at antage tabsfunktionen, hvor kun det rigtige valg giver lavt tab, og alle andre valg gives et ens og højere tab. For kontinuerte parametre modelleres dette ved minus Diracdelta-fordelingen. Man får så en Bayes-estimator, der minimerer tabsfunktionen, der er identisk med den, der maksimerer a posteriori-fordelingen. Denne kaldes maksimum-a posterioriestimatet, eller normalt i kort form MAP-estimatet. I kort opsummering: Normalt laves induktiv inferens som maximum likelihood-estimat, men Bayes formel giver mulighed for at tage højde for forhåndsviden og bestemme a posteriorifordelingen. Derudover vil valget af en tabsfunktion gøre det muligt at beregne det forventede tab for alle parameterværdier og vælge den med mindst forventet tab. Nu da vi har nået målet med et Bayes-estimat, vil vi undersøge dette nærmere: Formlen giver også mulighed for at indsætte resultatet af 0 kast og få Θ* = ½ som løsning. Dette er middelværdien af vores a priori-fordeling. Uden data er dette naturligt vores bedste bud. Man kan ændre forhåndsantagelserne til en anden fordeling. Hvis man antager en beta-fordeling af Θ, kan Bayes-estimatet udregnes som: Θ* = (antal krone + R) / (antal krone + antal plat + 2R) hvor R er en parameter i beta-fordelingen. Her kan man som en finurlighed tage grænsen, hvor R sænkes mod 0. I dette tilfælde bliver Bayes-estimatet identisk med maximum likelihoodestimatet. Den a priori-fordeling, der giver dette Bayes-estimat, er speciel, da det er den fordeling, der betyder, at vi tror helt på, hvad vi opdager i fremtiden. Det er fordelingen, som Jaynes kalder state of total confusion. KØBENHAVNS UNIVERSITET 95

5 Machine learning Lad os nu kigge en smule mere formelt på, hvad machine learning er. Vi starter processen med et datasæt S med N instanser, som vi skal lære fra, også kaldet træningssættet: S = { s 1, s 2,, s N } Hver instans består af data (x) med tilhørende label (y: s i = (x i, y i )). I eksemplet i tekstboksen med Bernoulli-processen var data, i dette tilfælde nummeret på kastet med mønten, ikke af større betydning, hvorimod udfaldet (label), plat/krone, var vigtigt. I andre tilfælde er data af stor betydning. Et eksempel kan være ansigtsgenkendelse. Her er billedet data (x), og identiteten på personen label (y). Når labels er kendte i træningssættet, taler vi om supervised learning. Når labels ikke forefindes, er vi i den vanskeligere situation, der kaldes unsupervised learning. Alt, hvad vi kan gøre her, er at finde naturlige grupperinger af data og selv opfinde en label til disse grupperinger. I supervised learning forsøger vi at finde en model, der afbilder data til labels: m: x -> y. Modellen skal gerne afbilde så korrekt som muligt både for træningssættet og for hidtil usete instanser, så den også generaliserer godt. Modellen vælges som én blandt mange modeller i hypoteserummet H = {m 1, m 2, m 3, }. Ligesom vi i forbindelse med Bernoulli-processen valgte maximum likelihood, kan vi her vælge den model, der har det laveste antal fejl på træningssættet. Denne strategi kalder vi empirisk fejlminimering. Vi kan nu også vælge en tabsfunktion, hvor forskellige fejltyper vægtes forskelligt. Med tabsfunktionen inkluderet kalder vi det for empirisk risikominimering. Machine learning-algoritmer, der implementerer empirisk risikominimering, har mange gode egenskaber. Man kan vise, at man finder den bedste model i hypoteserummet, hvis træningssættet er stort nok. I dette tilfælde siger man, at algoritmen er konsistent. Endvidere kan man vise, at algoritmen generaliserer. Generalisering er den vigtige egenskab til sikring af, at hidtil usete data også får rette label, så godt det nu kan lade sig gøre i hypoteserummet. At minimere risikoen på træningssættet til en meget lille risiko betyder blot, at man har en meget fleksibel modelklasse i sit hypoteserum. At opnå en meget lav risiko på hidtil usete data, dvs. data, som ikke er indgået i at udvælge modellen i hypoteserummet, er gavnligt, så algoritmen faktisk kan rubricere nye data. Med empirisk risikominimering generaliserer man i matematisk forstand, men desværre kun når træningssættet bliver stort nok. Ved Bernoulli-processen klarer maximum likelihood-estimatet sig også godt, når der er data nok at lære fra. Derimod klarer det sig dårligere på usete data, hvis det kun har ganske få kast at lære fra. Derfor erstattede vi maximum likelihood-estimatet med Bayes-estimatet. Den tilsvarende regel ved små træningssæt benyttes også i machine learning. Kunsten er ud fra et begrænset træningssæt at opnå så god generalisering som muligt Hvis hypoteserummet er meget stort, kan man potentielt finde en hypotese, der generaliserer 96 DATALOGISK INSTITUT

6 meget godt. Desværre vil der også være mange hypoteser, der tilfældigvis har en lille fejl på træningssættet, men ikke generaliserer godt (se figur 2). Figur 2: Består hypoteserummet kun af lige linjer, kan man adskille de røde og blå bolde på hver sin side af linjen. Hvis man vælger et hypoteserum med meget større kapacitet, kan man stadig adskille blå og røde bolde, endda med større margin. Spørgsmålet er blot, hvad der sker, når nye bolde dukker op. Det er svært at tro, at den bugtede kurve tilfældigvis vil generalisere vel. Error rater (%) Generalisation High model complexity Generelt taler man om hypoteserummets kapacitet. Jo større hypoteserum med mere fleksibel modelklasse, jo større kapacitet. Når kapaciteten bliver større, vil træningsfejlen altid blive mindre for fornuftige algoritmer. Derimod vil generaliseringsfejlen ikke nødvendigvis blive mindre, da den model, der minimerer den empiriske risiko, blot tilfældigvis passer til de sete data men ikke til de hidtil usete, se figur 3. Optimal Train a Error rater (%) Generalisation Optimal Data set size Low model complexity Train b Data set size Error rater (%) Figur 3: Træningsfejl versus generaliseringsfejl. (a) Udviklingen af trænings- og generaliseringsfejl som funktion af størrelsen af træningssættet for en fleksibel modelklasse. (b) Udviklingen af fejl for en mindre fleksibel modelklasse. (c) Generaliseringsfejlen for de to modelklasser afbildet mod hinanden. c Generalisation large model Generalisation small model Generalisation error Data set size KØBENHAVNS UNIVERSITET 97

7 En måde at karakterisere kapaciteten af en modelklasse på er ved VC-dimensionen (Vapnik- Chervonenkis-dimensionen). Intuitivt angives antallet af frihedsgrader i modelklassen. Mere formelt udregnes dette som antallet af datapunkter, som altid vil kunne adskilles i to klasser uanset deres position. Kunsten i machine learning er at vælge en modelkapacitet, der gør, at den forventede generalisering bliver så god som muligt. Der findes et utal af algoritmer til at indkode vores forhåndsviden, således at generaliseringen er så god som muligt, også ved en begrænset størrelse af træningssættet. En klassisk løsning til machine learning-problemer er neurale netværk. Inspireret af Minsky og Paperts perceptron laves et netværk af celler, der hver summerer deres input og lader summen blive slået op i en ikke-lineær funktion, og resultatet er så input til endnu en neuron. Typisk er neurale netværk organiseret i lag med beregningerne gående fremad lag for lag (se figur 4). De blev meget populære, da back-propagation-algoritmen viste sig forholdsvis effektivt at kunne indstille vægtene, så netværket samlet minimerede træningsfejlen. Mange resultater fra og generelle metoder til machine learning er blevet udviklet i forbindelse med neurale netværk, også metoder til at indstille kapaciteten til bedst mulig generaliseringsevne. Et eksempel med et morsomt navn er optimal brain damage, der forsøger at estimere, hvilke neuroner der skal slettes for at gøre generaliseringen bedre. Figur 4: Neuralt netværk med et skjult lag. Data fødes ind i de røde input-neuroner. Herfra sendes de videre til de blå beregningsneuroner i det skjulte lag. Resultater herfra sendes videre til output-neuronen, der har samme funktionalitet som de skjulte neuroner: n vægtet summering af input og opslag i en ikke-lineær funktion. Siden de neurale netværk er mange andre algoritmer blevet opfundet. Her kan blandt andet nævnes Support Vector Machines (SVM). De forsøger at udvælge de datapunkter, der skal støtte løsningen, således at marginen mellem de to forskellige labels bliver så stor som muligt. Dette er et eksempel på en algoritme, der maksimerer marginen. Vapnik har vist, at optimering af marginen medfører generalisering i matematisk betydning. SVM er har dog også vist deres store potentiale til at løse praktiske problemer og er en af de mest populære algoritmer. 98 DATALOGISK INSTITUT

8 En anden type algoritme er de såkaldte boosting-algoritmer. Tricket her er at have en hel lille hær af meget simple klassifikationer. Herefter anvendes de enten som flertalsafstemninger eller i en anden struktur. Meget populær er AdaBoost, der automatisk arrangerer de simple klassifikationer i en træstruktur, så træningsfejlen bliver så lille som muligt. Herefter kan principper til at forsøge at minimere generaliseringsfejlen også anvendes. Et generelt trick til at estimere generaliseringsevnen er at dele data op i et træningssæt og et testsæt. Træningssættet anvendes til at vælge den bedste hypotese, og testsættet benyttes herefter til at estimere generaliseringsevnen. Dette trick kan gøres mange gange med tilfældige opdelinger i test- og træningssæt. Denne procedure kaldes bootstrapping og har udviklet sig som en hel disciplin for sig selv i forbindelse med udviklingen af statistiske test. Det mest populære eksempel på bootstrapping i machine learning er nok random forest-algoritmen. På samme måde som AdaBoost opbygger et beslutningstræ, kan man opdele data i trænings- og testsæt. Herved kan man teste på generaliseringen af træet under dets opbygning og stoppe opbygningen, når træets generaliseringevne ikke længere forbedres. Nu kan en ny opdeling i trænings- og testsæt tilfældigt trækkes, og derved kan et nyt træ, som er optimalt for denne splitning af data, opbygges. Processen fortsættes, indtil man har træer nok til, at man synes, man har en hel skov. Klassifikationen består så i, at træerne stemmer, og flertallet bestemmer. Fordelen ved denne algoritme er, at man automatisk styrer kapaciteten af modellen. Random forest er uhyre populære i bioinformatik, hvor det efterhånden er en standardmetode til at analysere gener for association til for eksempel sygdomme. Machine learning bruges bl.a. til at diagnosticere sygdomme Et af de mere omtalte projekter i den seneste tid er Learning Imaging Biomarkers et projekt, der meget kort fortalt går ud på at anvende billedanalyse og machine learning til tidlig diagnosticering af en lang række sygdomme, herunder bl.a. brystkræft. Metoden går ud på at kigge efter markører eller indikatorer, altså særlige mønstre i brystvævet, der er typiske for personer, der senere viser sig at få brystkræft. Her har machine learning vist sig uhyre anvendelig, fordi man kan få computeren til at gennemregne et uendeligt antal eksempler af billeder og mønstre og herudfra skabe nogle generaliseringer om, hvorvidt der er forskelle i udseendet på vævstyperne hos hhv. personer, der får, og personer, der ikke får brystkræft. Normalt er brystvævet hos kvinder stribet fra brystvorten og ind mod kroppen. Den nye forskning viser, at kvinder, hvis bryster viser tegn på, at striberne går på tværs, har forøget risiko for at udvikle brystkræft. Det stribede mønster kan bruges som indikation, uafhængigt af andre faktorer, som kan læses ud af et mammografibillede. Der er brugt en ny slags algoritme til billedanalysen, som kan genkende hundredvis af forskellige mønstre. Derefter er softwaren blevet optrænet ved anvendelse af machine learning-tilgangen med mammografier fra 500 hollandske kvinder, hvor 250 på trods af en negativ diagnose senere udviklede brystkræft. KØBENHAVNS UNIVERSITET 99

9 Algoritmerne er inspireret af processer i hjernen, nemlig dem der foregår i de første niveauer af den visuelle cortex, som er det yderste lag af hjernen. Computeren kan se kvantitativt på talmaterialet, og det betyder, at den kan foretage en meget præcis mønstergenkendelse og dermed skelne kvantitativt mellem sunde mammografier og mammografier fra kvinder, som er i risikogruppen for at udvikle kræft. Det er samme type statistisk mønstergenkendelse, som kendes fra fx neurale netværk. I praksis fungerer diagnosticeringen ved, at et program analyserer et mammografibillede ved at genkende, om punkter i mammografiet er en del af en tynd eller en tyk linje, en forhøjning eller en kant. Analysen korreleres med statistiske data om, hvilke kvinder der rent faktisk har fået brystkræft. Med computerens hjælp når man således frem til en hypotese om, hvilke vævsmønstre der øger risikoen for brystkræft. Metoden anvendes også til diagnosticering af en række andre sygdomme, fx knogleskørhed, slidgigt, åreforkalkning og rygerlunger (KOL). Optræningen af den anvendte software foregår på en supercomputer med meget stor regnekapacitet (læs også Brian Vinters artikel om supercomputere). Hvor det måske ville tage flere år at få en almindelig pc til at gennemløbe de millioner af billeder og afprøve de millionvis af hypoteser under optræningen, der er nødvendige for at nå frem til et pålideligt resultat, kan en beregningssession gennemføres på få dage takket være den høje kapacitet, som forskningscomputere er udstyret med. Projektet har således brugt af de pc-noder, som supercomputer-klyngen på H.C. Ørsted Instituttet er opbygget af. Når først softwaren er optrænet, kan den også bruges på en almindelig pc. Forskningsprojektet, der i skrivende stund fortsat er i gang, er et resultat af et intensivt samarbejde mellem KU og Nordic Bioscience Imaging A/S. Det gennemføres på escience-centret, der er etableret som en tværfaglig enhed med basis på H.C. Ørsted Instituttet på Det Naturvidenskabelige Fakultet på KU. Eksempler på anvendelse af machine learning til fortolkning af sundhedsdata kan ses i figur DATALOGISK INSTITUT

10 AC NCD MACD RISK LOW MEDIUM HIGH Density Medio Medio Structure Organized Unorganized Type Network Blobs Rice Low High Medial Section 0 (a) Cartilage Homogeneity (b) Cartilage Volume (c) Cartilage Thickness Figur 5: Første eksempel er analysen af forkalkninger i hovedpulsåren. Det viser sig, at ikke kun mængden af forkalkninger men også deres fordeling, form og størrelse spiller ind på den enkelte patients prognose. Andet eksempel viser en analyse af mammografier. Her kan man se, at den desorganiserede struktur er en indikation af brystkræft. Tredje eksempel viser genkendelsen af meget tidlige symptomer på knogleskørhed ud fra ryggens form, og endelig viser det sidste eksempel diagnose af slidgigt ud fra MR-skanninger af knæet. I alle tilfælde er machine learning anvendt til den visuelle analyse, der er vanskelig for mennesker at gennemføre kvantitativt. KØBENHAVNS UNIVERSITET 101

11 Scanningbillede af lunger. Lungen til højre er delvis angrebet 102 DATALOGISK INSTITUT

12 Afrunding Machine learning i kombination med supercomputerens kapacitet og moderne billedanalyseværktøjer er en af moderne computerforsknings meget lovende metoder, der finder anvendelse på en lang række områder. At lade computeren finde den bedste hypotese på løsningen af et problem vil ofte både være tidsbesparende og fejlminimerende men naturligvis er man nødt til at alliere sig med erfarne forskere på det pågældende område for at sikre sig, at man ikke stoler blindt på computerens intelligente forslag, men at der er mennesker bagved, der kan validere hypoteserne. Der er således ikke tegn i sol og måne på, at vi kommer til at opleve forsøg fra computerens side på at overtage magten over menneskene ligesom computeren Hal i Rumrejsen år Ikke kun inden for medicinsk forskning, men også på mange andre områder vinder machine learning indpas som metode til at automatisere og forkorte processer og styrke pålideligheden af beregninger. Det gælder fx på slagterier, hvor kødudskærings- og bearbejdningsprocesserne kan effektiviseres væsentligt, inden for klima- eller vejrmodeller eller inden for maskinoversættelse og tekstbehandling for blot at nævne få eksempler. Læs mere Hertz, J., Krogh, A. & Palmer, R.G. (1991). Introduction to the Theory of Neural Computation. Westview Press. Shannon, C.E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, 27, s , , juli, oktober. Cortes, C. & Vapnik, V. (1995). Support Vector Networks. Journal of Machine Learning, 20(3), s MADS NIELSEN Mads Nielsen er kandidat i datalogi fra 1992 og ph.d. fra 1995, i begge tilfælde fra DIKU. Som led i sit ph.d.-studium var han et år tilknyttet INRIA-universitetet i Sophia Antipolis i Frankrig. Herudover har han været ansat som postdoc ved Image Sciences Institute, Utrecht Universitet, Holland. I 1996 blev han tilknyttet DIKU som postdoc parallelt med sin ansættelse i 3D-Lab under den daværende Tandlægehøjskolen (i dag SUND v. Københavns Universitet), hvor han var adjunkt i I april 1999 blev han den første lektor ved det nyetablerede IT-Universitetet i København, og i juni 2002 blev han professor og leder af Image Analysis Group samme sted. I 2007 skiftede Mads tilbage til DIKU, hvor han i dag er professor og leder af Billedgruppen. Fra en lang liste af publikationer kan fremhæves Regularization, Scale-Space, and Edge Detection Filters (1997), Classification in Medical Image Analysis Using Adaptive Metric KNN (2010) og Distribution, Size, Shape, Growth Potential and Extent of Abdominal Aortic Calcified Deposits Predict Mortality in Postmenopausal Women som repræsentative eksempler på forskning i anvendt matematik, datalogi og medicin. Mads Nielsen leder en række aktuelle forskningsprojekter på disse felter. KØBENHAVNS UNIVERSITET 103

13 Den digitale revolution fortællinger fra datalogiens verden Bogen er udgivet af Datalogisk Institut, Københavns Universitet (DIKU) i anledning af instituttets 40 års jubilæum med bidrag fra forskere tilknyttet instituttet. Redaktion: Tariq Andersen, phd-studerende, Jørgen Bansler, professor, Hasse Clausen, lektor, Inge Hviid Jensen, kommunikationsmedarbejder og Martin Zachariasen, institutleder. Forsidemotiv: Foto af skulptur af Alan Turing, basegreen lokaliseret på flickr.om/photos/basegreen Oplag: 1000 eks. Grafisk design og produktion: Westring + Welling A/S ISBN: Datalogisk Institut Citater er tilladt under creative commons. 2 DATALOGISK INSTITUT

Den digitale verden er i dag en del af de fleste menneskers dagligdag. Når mennesker bruger

Den digitale verden er i dag en del af de fleste menneskers dagligdag. Når mennesker bruger Menneskers omgang med den digitale teknik Af redaktionen Den digitale verden er i dag en del af de fleste menneskers dagligdag. Når mennesker bruger deres mobiltelefon, ser tv, søger oplysninger på Wikipedia,

Læs mere

Computeren repræsenterer en teknologi, som er tæt knyttet til den naturvidenskabelige tilgang.

Computeren repræsenterer en teknologi, som er tæt knyttet til den naturvidenskabelige tilgang. Den tekniske platform Af redaktionen Computeren repræsenterer en teknologi, som er tæt knyttet til den naturvidenskabelige tilgang. Teknologisk udvikling går således hånd i hånd med videnskabelig udvikling.

Læs mere

Gennem de sidste par årtier er en digital revolution fejet ind over vores tidligere så analoge samfund.

Gennem de sidste par årtier er en digital revolution fejet ind over vores tidligere så analoge samfund. Den digitale verden et barn af oplysningstiden Af redaktionen Gennem de sidste par årtier er en digital revolution fejet ind over vores tidligere så analoge samfund. Den elektroniske computer er blevet

Læs mere

Studieretningsprojekter i machine learning

Studieretningsprojekter i machine learning i machine learning 1 Introduktion Machine learning (ml) er et område indenfor kunstig intelligens, der beskæftiger sig med at konstruere programmer, der kan kan lære fra data. Tanken er at give en computer

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Roskilde Tekniske Gymnasium. Eksamensprojekt. Programmering C niveau

Roskilde Tekniske Gymnasium. Eksamensprojekt. Programmering C niveau Roskilde Tekniske Gymnasium Eksamensprojekt Programmering C niveau Andreas Sode 09-05-2014 Indhold Eksamensprojekt Programmering C niveau... 2 Forord... 2 Indledning... 2 Problemformulering... 2 Krav til

Læs mere

Projektevaluering. Caretech Innovation. Optimized Brain reading (C-63)

Projektevaluering. Caretech Innovation. Optimized Brain reading (C-63) 1 Projektevaluering Caretech Innovation Optimized Brain reading (C-63) Deltagere/partnere: Brainreader Institut for datalogi, Aarhus Universitet Caretech Innovation Dato: 3. oktober 2012 Version: c-63

Læs mere

Data-analyse og datalogi

Data-analyse og datalogi Det Naturvidenskabelige Fakultet Data-analyse og datalogi Studiepraktik 2014 Kristoffer Stensbo-Smidt Datalogisk Institut 23. oktober 2014 Dias 1/15 Hvorfor bruge tid på dataanalyse?! Alle virksomheder

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Computerassisteret fysioterapi og fysisk træning

Computerassisteret fysioterapi og fysisk træning D E P A R T M E N T O F C O M P U T E R S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N Computerassisteret fysioterapi og fysisk træning Kim Steenstrup Pedersen Image Group Datalogisk Institut,

Læs mere

Computer Vision: Fysisk rehabilitering i eget hjem

Computer Vision: Fysisk rehabilitering i eget hjem D E P A R T M E N T O F C O M P U T E R S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N Computer Vision: Fysisk rehabilitering i eget hjem Kim Steenstrup Pedersen Datalogisk Institut, Københavns

Læs mere

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Programmering, algoritmik og matematik en nødvendig sammenblanding?

Programmering, algoritmik og matematik en nødvendig sammenblanding? Programmering, algoritmik og matematik en nødvendig sammenblanding? Oplæg til IDA møde, 29. november 2004 Martin Zachariasen DIKU 1 Egen baggrund B.Sc. i datalogi 1989; Kandidat i datalogi 1995; Ph.D.

Læs mere

Vi deler ikke bare viden fordi det er en god ide heller ikke i vidensamfundet

Vi deler ikke bare viden fordi det er en god ide heller ikke i vidensamfundet Vi deler ikke bare viden fordi det er en god ide Vi deler ikke bare viden fordi det er en god ide heller ikke i vidensamfundet af adjunkt Karina Skovvang Christensen, ksc@pnbukh.com, Aarhus Universitet

Læs mere

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard Mandags Chancen En optimal spilstrategi Erik Vestergaard Spilleregler denne note skal vi studere en optimal spilstrategi i det spil, som i fjernsynet går under navnet Mandags Chancen. Spillets regler er

Læs mere

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393.

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Broer, skak og netværk Side 1 af 6 Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Eksempler på praktiske anvendelser af matematik og nogle uløste problemer Indledning Figur

Læs mere

Metoder og erkendelsesteori

Metoder og erkendelsesteori Metoder og erkendelsesteori Af Ole Bjerg Inden for folkesundhedsvidenskabelig forskning finder vi to forskellige metodiske tilgange: det kvantitative og det kvalitative. Ser vi på disse, kan vi konstatere

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Rejsekort A/S idekonkurence Glemt check ud

Rejsekort A/S idekonkurence Glemt check ud Rejsekort A/S idekonkurence Glemt check ud 9. marts 2015 1 Indhold 1 Introduktion 4 1.1 Problembeskrivelse........................ 4 1.2 Rapportens opbygning...................... 4 2 Ordliste 5 3 Løsning

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Regneark hvorfor nu det?

Regneark hvorfor nu det? Regneark hvorfor nu det? Af seminarielektor, cand. pæd. Arne Mogensen Et åbent program et værktøj... 2 Sådan ser det ud... 3 Type 1 Beregning... 3 Type 2 Præsentation... 4 Type 3 Gæt... 5 Type 4 Eksperiment...

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

Matematik og spil. Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014

Matematik og spil. Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014 Enhedens navn Matematik og spil Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014 På disse slides skal spil læses som væddemål. Hvorfor

Læs mere

Medicotekniker-uddannelsen 25-01-2012. Vejen til Dit billede af verden

Medicotekniker-uddannelsen 25-01-2012. Vejen til Dit billede af verden Vejen til Dit billede af verden 1 Vi kommunikerer bedre med nogle mennesker end andre. Det skyldes vores forskellige måder at sanse og opleve verden på. Vi sorterer vores sanseindtryk fra den ydre verden.

Læs mere

Manual til regneark anvendt i bogen. René Vitting 2014

Manual til regneark anvendt i bogen. René Vitting 2014 Manual til regneark anvendt i bogen René Vitting 2014 Introduktion. Dette er en manual til de regneark, som du har downloadet sammen med bogen Ind i Gambling. Manualen beskriver, hvordan hvert regneark

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

Hastigheden på en computers centrale regneenhed, CPU en, har altid været en vigtig

Hastigheden på en computers centrale regneenhed, CPU en, har altid været en vigtig Supercomputere mange bække små... Af Brian Vinter, DIKU Hastigheden på en computers centrale regneenhed, CPU en, har altid været en vigtig konkurrenceparameter for leverandørerne. Med hurtigere computere

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Elevmateriale. Forløb Statistik

Elevmateriale. Forløb Statistik Elevmateriale Forløb Statistik Første lektion: I første lektion skal eleverne reflektere over, hvordan man sammenligner datasæt. Hvordan afgør man, hvor høj man er i 5. klasse? I andre dele af matematikken

Læs mere

Matematik i AT (til elever)

Matematik i AT (til elever) 1 Matematik i AT (til elever) Matematik i AT (til elever) INDHOLD 1. MATEMATIK I AT 2 2. METODER I MATEMATIK OG MATEMATIKKENS VIDENSKABSTEORI 2 3. AFSLUTTENDE AT-EKSAMEN 3 4. SYNOPSIS MED MATEMATIK 4 5.

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

EXCEL 2011 TIL MAC GODT I GANG MED PETER JENSEN GUIDE VISUEL

EXCEL 2011 TIL MAC GODT I GANG MED PETER JENSEN GUIDE VISUEL PETER JENSEN EXCEL 2011 TIL MAC GODT I GANG MED EXCEL 2011 TIL MAC VISUEL GUIDE 59 guides der får dig videre med Excel En instruktion på hver side - nemt og overskueligt Opslagsværk med letforståelig gennemgang

Læs mere

Forecasting - MED SIKKER GRUND UNDER FØDDERNE

Forecasting - MED SIKKER GRUND UNDER FØDDERNE Demand Planner 2 MICROSOFT BUSINESS SOLUTIONS MICROSOFT BUSINESS SOLUTIONS 3 Forecasting - MED SIKKER GRUND UNDER FØDDERNE Kan du forudsige kundernes efterspørgsel, får du bedre mulighed for at styre virksomheden

Læs mere

Programmering C Eksamensprojekt. Lavet af Suayb Köse & Nikolaj Egholk Jakobsen

Programmering C Eksamensprojekt. Lavet af Suayb Köse & Nikolaj Egholk Jakobsen Programmering C Eksamensprojekt Lavet af Suayb Köse & Nikolaj Egholk Jakobsen Indledning Analyse Læring er en svær størrelse. Der er hele tiden fokus fra politikerne på, hvordan de danske skoleelever kan

Læs mere

Social Media Rapport for VIRKSOMHED A/S af Bach & McKenzie

Social Media Rapport for VIRKSOMHED A/S af Bach & McKenzie Social Media Rapport for VIRKSOMHED A/S af Bach & McKenzie Dato: 22-08-2014 Copyright af Bach & McKenzie 2014 Introduktion Indholdsfortegnelse 03 Hovedtal Kære VIRKSOMHED A/S Tillykke med jeres nye Social

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

2 Risikoaversion og nytteteori

2 Risikoaversion og nytteteori 2 Risikoaversion og nytteteori 2.1 Typer af risikoholdninger: Normalt foretages alle investeringskalkuler under forudsætningen om fuld sikkerhed om de fremtidige betalingsstrømme. I virkelighedens verden

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

Korpusbaseret lemmaselektion og opdatering

Korpusbaseret lemmaselektion og opdatering Korpusbaseret lemmaselektion og opdatering Jørg Asmussen Afdeling for Digitale Ordbøger og Tekstkorpora Det Danske Sprog- og Litteraturselskab www.dsl.dk Program 1. Introduktion til DSL 2. Introduktion

Læs mere

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Horsens Kommune! Endelave Overfarten! Tonnage optimering! 02 maj 2014!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Horsens Kommune! Endelave Overfarten! Tonnage optimering! 02 maj 2014! Horsens Kommune Endelave Overfarten Tonnage optimering 02 maj 2014 A/S JØRGEN PETERSEN - RÅDGIVENDE SKIBSINGENIØRER - 8700 HORSENS INDHOLDSFORTEGNELSE Baggrund... 1 Konklusion... 2 Beskrivelse af metode...

Læs mere

Kvinder trækker læsset i hjemmet mænd prioriterer jobbet

Kvinder trækker læsset i hjemmet mænd prioriterer jobbet Morten Bue Rath og Martin Hornstrup Januar 2010 Kvinder trækker læsset i hjemmet mænd prioriterer jobbet Betragter man den samlede ugentlige på arbejdsmarkedet og i hjemmet, arbejder mænd og kvinder stort

Læs mere

MAMMOGRAFI. Screening for brystkræft

MAMMOGRAFI. Screening for brystkræft MAMMOGRAFI Screening for brystkræft Invitation til mammografi Du inviteres hermed til en mammografi (røntgenundersøgelse af dine bryster). Alle kvinder i alderen 50-69 år får tilbudt mammografi hvert andet

Læs mere

Kombinatorik og Sandsynlighedsregning

Kombinatorik og Sandsynlighedsregning Kombinatorik Teori del 1 Kombinatorik er en metode til at tælle muligheder på. Man kan f.eks. inden for valg til en bestyrelse eller et fodboldhold, kodning af en lås, valg af pinkode eller telefonnummer,

Læs mere

Projekt - Visual Basic for Applications N på stribe

Projekt - Visual Basic for Applications N på stribe Projekt - Visual Basic for Applications N på stribe Mikkel Kaas og Troels Henriksen - 03x 3. november 2005 1 Introduktion Spillet tager udgangspunkt i det gamle kendte 4 på stribe, dog med den ændring,

Læs mere

- Medlemsundersøgelse, Danske Fysioterapeuter, Juni 2010. Danske Fysioterapeuter. Kvalitet i træning

- Medlemsundersøgelse, Danske Fysioterapeuter, Juni 2010. Danske Fysioterapeuter. Kvalitet i træning Danske Fysioterapeuter Kvalitet i træning Undersøgelse blandt Danske Fysioterapeuters paneldeltagere 2010 Udarbejdet af Scharling Research for Danske Fysioterapeuter juni 2010 Scharling.dk Side 1 af 84

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

1. Baggrund og problemstilling

1. Baggrund og problemstilling 1. Baggrund og problemstilling 1.1 Baggrund Opgavestiller og fremtidig bruger af systemet er klinikken Tandlæge Annelise Bom 1. Opgaven udspringer af et ønske om at forbedre aftalestyringen. Nøgleordene

Læs mere

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU)

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) Kaos og fraktaler i dynamiske systemer Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) UNF Matematik Camp 2010 Oversigt tre simple eksempler på klassiske fraktaler deterministiske

Læs mere

Mathias Turac 01-12-2008

Mathias Turac 01-12-2008 ROSKILDE TEKNISKE GYMNASIUM Eksponentiel Tværfagligt tema Matematik og informationsteknologi Mathias Turac 01-12-2008 Indhold 1.Opgaveanalyse... 3 1.1.indledning... 3 1.2.De konkrete krav til opgaven...

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Læreres erfaringer med it i undervisningen

Læreres erfaringer med it i undervisningen Læreres erfaringer med it i undervisningen Formål Denne rapport er baseret på spørgsmål til læserpanelet om deres erfaringer med brugen af it i undervisningen. Undersøgelsen har desuden indeholdt spørgsmål

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

Årsplan for matematik i 1.-2. kl.

Årsplan for matematik i 1.-2. kl. Årsplan for matematik i 1.-2. kl. Lærer Martin Jensen Mål for undervisningen Målet for undervisningen er, at eleverne tilegner sig matematiske kompetencer og arbejdsmetoder jævnfør Fælles Mål. Eleverne

Læs mere

Komplekse tal og Kaos

Komplekse tal og Kaos Komplekse tal og Kaos Jon Sporring Datalogisk Institut ved Københavns Universitet Universitetsparken 1, 2100 København Ø August, 2006 1 Forord Denne opgave er tiltænkt gymnasiestuderende med matematik

Læs mere

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005 Hierarkiske generaliserede lineære modeller Lee og Nelder, Biometrika (21) 88, pp 987-16 Dagens program: Mandag den 2. maj Hierarkiske generaliserede lineære modeller - Afslutning Hierarkisk generaliseret

Læs mere

Psykologiske undersøgelsesmetoder

Psykologiske undersøgelsesmetoder Benny Karpatschof Psykologiske undersøgelsesmetoder Frydenlund Psykologiske undersøgelsesmetoder Frydenlund og forfatterne, 2007 1. udgave, 1. oplag, 2007 ISBN 978-87-7118-207-1 Grafisk tilrettelægning:

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Benny Lund: Angreb mod zoneforsvar C-kursus Redigeret af Jesper Nielsen den 23-07-95. Angreb mod zoneforsvar

Benny Lund: Angreb mod zoneforsvar C-kursus Redigeret af Jesper Nielsen den 23-07-95. Angreb mod zoneforsvar Benny Lund: Angreb mod zoneforsvar C-kursus Redigeret af Jesper Nielsen den 23-07-95 Angreb mod zoneforsvar Hvorfor skal man som coach beskæftige sig med angreb mod forskellige former for zone forsvar.

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

Erhvervsastrologi fjernundervisning/overbygning

Erhvervsastrologi fjernundervisning/overbygning Kurset er baseret på undervisning i erhvervsastrologi som selvstuderende og indeholder 6 moduler: Modul 1: Modul 2: Modul 3: Modul 4: Modul 5: Modul 6: Strukturanalyse Strategiplanlægning Entrepreneurship

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

IT/Regneark Microsoft Excel 2010 Grundforløb

IT/Regneark Microsoft Excel 2010 Grundforløb Januar 2014 Indhold Opbygning af et regneark... 3 Kolonner, rækker... 3 Celler... 3 Indtastning af tekst og tal... 4 Tekst... 4 Tal... 4 Værdier... 4 Opbygning af formler... 5 Indtastning af formler...

Læs mere

GPS stiller meget præcise krav til valg af målemetode

GPS stiller meget præcise krav til valg af målemetode GPS stiller meget præcise krav til valg af målemetode 1 Måleteknisk er vi på flere måder i en ny og ændret situation. Det er forhold, som påvirker betydningen af valget af målemetoder. - Der er en stadig

Læs mere

Om at konvertere PDF - den gode, den dårlige og den forfærdelige metode

Om at konvertere PDF - den gode, den dårlige og den forfærdelige metode Dokumentation Om at konvertere PDF - den gode, den dårlige og den forfærdelige metode Forfatter Leonard Rosenthal PDF Standards Architect, Adobe Inc. Oversættelse Søren Frederiksen / Søren Winsløw DDPFF

Læs mere

SPAM-mails. ERFA & Søren Noah s A4-Ark 2010. Køber varer via spam-mails. Læser spam-mails. Modtager over 40 spam-mails pr. dag. Modtager spam hver dag

SPAM-mails. ERFA & Søren Noah s A4-Ark 2010. Køber varer via spam-mails. Læser spam-mails. Modtager over 40 spam-mails pr. dag. Modtager spam hver dag SPAM-mails Køber varer via spam-mails Læser spam-mails Modtager over 40 spam-mails pr. dag Modtager spam hver dag 0 10 20 30 40 50 60 70 80 90 ERFA & Søren Noah s A4-Ark 2010 Datapræsentation: lav flotte

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Ny karakterskala nye mål?

Ny karakterskala nye mål? Ny karakterskala nye mål? Workshop Camilla Rump Lene Møller Madsen Mål for workshoppen Efter workshoppen skal deltagerne kunne Lave en operationel mål- og kriteriebeskrivelse af 12-tallet og 2-tallet for

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Forelæsninger om it i det færøske sundhedsvæsen. Program.

Forelæsninger om it i det færøske sundhedsvæsen. Program. Forelæsninger om it i det færøske sundhedsvæsen. Program. 19:30 Velkomst og præsentation 19:40. Oplæg v/lektor 20:15 **** Spørgsmål 20:25 Kaffepause 20:50 Effektmåling. Oplæg v/ Lektor Povl Erik Rostgaard

Læs mere

DE BEAR TECHNOLOGY. o Processer, metoder & værktøjer. e-mail: info@dbtechnology.dk WWW.DBTECHNOLOGY.DK

DE BEAR TECHNOLOGY. o Processer, metoder & værktøjer. e-mail: info@dbtechnology.dk WWW.DBTECHNOLOGY.DK Mission Critical o Projekt Information management o Processer, metoder & værktøjer. Side 1 of 11 Projekt information Projekt information management inkluderer alle de processer, som er nødvendige for at

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Jim Jensen Ergoterapeut Masteruddannelse i Rehabilitering Syddansk Universitet 2010. Baggrund Master opgave Perspektivering

Jim Jensen Ergoterapeut Masteruddannelse i Rehabilitering Syddansk Universitet 2010. Baggrund Master opgave Perspektivering Jim Jensen Ergoterapeut Masteruddannelse i Rehabilitering Syddansk Universitet 2010 Baggrund Master opgave Perspektivering Arbejdserfaring Reaktionen fra patienter i aktiviteter, som de tidligere havde

Læs mere

REGNINPUT HVAD KAN VI REGNE MED?

REGNINPUT HVAD KAN VI REGNE MED? REGNINPUT HVAD KAN VI REGNE MED? EVA TEMAMØDE 21. MAJ 2015, NYBORG: DET URBANE VANDKREDSLØB SØREN THORNDAHL, AALBORG UNIVERSITET Indhold Dimensionering af regnvandsledninger Niveau 1 jf. SVK Skrift 27

Læs mere

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L RÆSONNEMENT & 1BE V I S F I N N H. K R I S T I A N S E N GNING 2 EGNEARK KUGLE 5 MÅLING SIMULATIONER 3 G Y L D E N D A L MÅLSCORE I HÅNDBOLD Faglige mål: Håndtere simple modeller til beskrivelse af sammenhænge

Læs mere