Matematiklærernes dag Modellering
|
|
|
- Ingelise Lorentzen
- 10 år siden
- Visninger:
Transkript
1 Matematiklærernes dag Modellering
2 Modellering
3 Matematiklærernes dag Matematisk modellering
4 I kursusbeskrivelsen Når man bruger matematik til at beskrive og forstå virkeligheden og regne på problemer fra virkeligheden, er det matematisk modellering.
5 Workshoppen giver både et bud på og en diskussion om, hvad er en god modelleringsopgave samt eksempler på, hvordan en undervisning kan tilrettelægges, så den giver eleverne mulighed for at oversætte forhold fra hverdagen til matematikken.
6 Dagens cocktail
7 Den ene ingrediens Fra virkeligheden til matematik - og tilbage igen - 2 modeller - Begrundelser - Fælles Mål MatematikMorgener
8 Den anden ingrediens Det med workshoppen - Hvor lang tid holder en tube tandpasta? - Hvor hurtigt kører en cursor? - Hvorfor er en liter ikke en liter? - Hvor langt stødte Joachim B. Olsen? - Hvor meget vand kan der være i en dam?
9 DET HANDLER OM AT BRUGE MATEMATIK I VIRKELIGHEDEN
10 Jeg skal være i Hjørring i dag klokken 8:30
11 8:30 1:34 = 6:56?
12 Morten Blomhøj Matematisk modellering er en systematisk tilgang til at beskrive, forstå, gennemføre og kritisere anvendelser af matematik.
13 Hvad er en matematisk model? v snit s t Matematisk model
14 En simpel model af modelleringsprocessen Den fysiske verden Matematikkens verden Virkeligt problem Matematisering Matematisk problem? Matematisk analyse Virkelig løsning Fortolkning Matematiske resultater
15 Hvad er en matematisk modelleringsproces? Virkelighed (f) Validering (a) Problemformulering Handling/erkendelse Undersøgelsesdomæne (e) Fortolkning og evaluering (b) Systematisering Modelresultater System (d) Matematisk analyse (c) Matematisering Matematisk system (Blomhøj & Hoff Kjeldsen, 2006)
16 Figuren skal forstås som et redskab til at analysere forekommende og mulige modelleringsprocesser og til at afdække, hvilke erkendelsesmæssige processer, der principielt indgår i en matematisk modelleringsproces. Det sidste er specielt vigtigt ved tilrettelæggelse af undervisning i matematisk modellering. Figuren er altså ikke tænkt som en opskrift, man kan gå frem efter i en modelleringsproces. (Morten Blomhøj)
17 Hvorfor matematisk modellering i skolen? Matematisk modellering som middel til læring af matematik. Matematisk modellering kan skabe forbindelse mellem elevernes erfaringer og indholdet i matematikundervisningen, og bidrage til at vise matematik som middel til at beskrive, forstå, manipulere og forme vores opfattelse af verden. Arbejdet med modellering kan herved motivere til matematiklæring og give konkret erfaringsmæssig grundlag for læreprocessen.
18
19 Hvorfor matematisk modellering i skolen? Matematiske modeller af varierende kompleksitet spiller en afgørende rolle i samfundets funktion og udvikling. Kompetence til at forstå og kritisere matematiske modeller og deres anvendelse som grundlag for beslutningstagen er derfor af betydning for fastholdelse og udvikling demokrati.
20 Matematisk nulløsning?
21 Arbejde med modeller og modellering indgår centralt i Fælles Mål 2009.
22
23 Matematiske kompetencer - ifølge KOM En matematisk kompetence er en indsigtsfuld parathed til at handle hensigtsmæssigt i situationer, som rummer en bestemt slags matematisk udfordring
24
25 Matematiske kompetencer At kunne spørge og svare i, med og om matematik At omgås sprog og redskaber i matematik Tankegangskompetence Problembehandlings-kompetence Modelleringskompetence Ræsonnementskompetence Repræsentationskompetence Symbolbehandlings-kompetence Kommunikationskompetence Hjælpemiddelkompetence
26 Matematiske kompetencer - modelleringskompetence Slutmål: udføre matematisk modellering og afkode, tolke, analysere og vurdere matematiske modeller Trinmål 3. klasse: opstille, behandle og afkode enkle modeller, der gengiver træk fra virkeligheden, bl.a. vha. regneudtryk, tegning og diagrammer Trinmål 6. klasse: opstille, behandle, afkode og analysere enkle modeller, der gengiver træk fra virkeligheden, bl.a. vha. tegning, diagrammer og tal Trinmål 9. klasse: opstille, behandle, afkode, analysere og forholde sig kritisk til modeller, der gengiver træk fra virkeligheden, bl.a. vha. tal, tegning, diagrammer, ligninger, funktioner og formler
27 3. klasse - opstille, behandle og afkode enkle modeller, der gengiver træk fra virkeligheden, bl.a. vha. regneudtryk, tegninger og diagrammer.
28 6. klasse - opstille, behandle, afkode og analysere enkle modeller, der gengiver træk fra virkeligheden, bl.a. ved hjælp af regneudtryk, tegninger, diagrammer.
29 9. klasse - opstille, behandle, afkode, analysere og forholde sig kritisk til modeller, der gengiver træk fra virkeligheden, bl.a. ved hjælp af regneudtryk, tegning, diagrammer, ligninger, funktioner og formler.
30 Hvad er et godt problem og hvor kommer de fra? Problemerne skal (helst) rumme plads og udfordringer til elevernes selvstændige arbejde med (dele af) modelleringsprocessen være genkendelige og forståelige være autentiske og gerne have autentiske data være åben overfor kritik give mulighed for interessante resultater være eksemplariske for væsentlige træk ved matematiske modeller eller modellering støtte læring af relevante begreber og metoder.
31 Matematik Morgener - nu med Morten & Mikael, som de Matematiske Modeller... Vækkeuret ringer! Din hånd rammer uret, som falder på gulvet. Du får fat i det og slukker det med et suk... Du vender dig om på den anden side og prøver at forestille dig, at det er blevet lørdag. Men så mærker du den lysten. Lysten til at komme i gang fordi der står Matematik morgener på skemaet. Muntre Matematik Morgener med Morten & Mikael, tænker du. Klokken 8:00 skal du være sammen med alle de andre. En ny og spændende dag står forventningsfuld og venter på at blive taget i brug af netop dig!
32 Så tager du dine matematikbriller på, rejser dig fra din varme seng og går ud på badeværelset. Tjekker måske lige el-måleren undervejs? På bade værelset smiler spejlet til dig, mens du søvndrukkent ser efter, om du er sluppet for bumser i løbet af natten. Du børster tænder og forestiller dig måske, hvor sjovt det ville være at se, hvor lang en stribe du kunne lave, hvis du trykkede al tandpastaen ud... Du lader det varme vand pjaske ned over din krop i flere minutter hov, hvor meget vand gik der egentlig til det?
33 Der er også matematik i: Klokken; vejret; værelset; morgenmaden; rejseplanen; cykelturen; blandt andet.. Opgaven: Lav nøjagtige optegnelser over det du ser med dine matematikbriller fra du vågner til, du møder på skolen. Din notater skal så bearbejdes matematisk, og dine resultater og overvejelser skal formidles på et stykke A3-papir i et indbydende lay-out. Du har 4 moduler til det hele.
34 Med matematikbriller
35 Vandforbrug (l) Vandforbrug som funktion af badetid l per min. 3 l koldt Tid (min.) y = 6x + 3. x er minutter jeg er i bad, og y er hvor mange liter vand jeg bruger. På 10 min. bruger jeg 63 l.
36 Temperatur (oc) Mads model for kakaoens temperatur Tid (min.)
37 Pris (kr.) Kvantum 99: 99 kr./måned. 124 min. gratis derefter 0,8 kr/min. Kvantum 199: 199 kr./måned. 248 min. gratis derefter 0,8 kr/min. Sonofon Taletid (min.) K99 K199
38
39
40
41
42
43 Workshop 1
44 I seks grupper (a) Problemformulering: Hvor lang tid holder en tube tandpasta? Gå gennem modellens faser fra (a) til (f)
45 Hvad er en matematisk modelleringsproces? Virkelighed (f) Validering (a) Problemformulering Handling/erkendelse Undersøgelsesdomæne (e) Fortolkning og evaluering (b) Systematisering Modelresultater System (d) Matematisk analyse (c) Matematisering Matematisk system
46
47
48 Fart og tempo x 3
49 Hvor hurtigt kører en cursor?
50 Fart & Tempo Find noget, der bevæger sig Mål afstand og tid Beregn hastighed Beskriv undersøgelsen Beskriv genstanden, der bevægede sig Overskrift Hæng op
51 Lutter liter - mælkemysteriet 7 x 7 er ikke er ikke 20 Ikke 50 x ikke 20 er ikke 1000!?
52 Et eksempel
53
54 Emballager i litervis..
55 Iscenesættelse som pædagogisk metode muliggør samspil mellem elevernes erfaringer, undervisningens indhold og matematisk modellering skaber en ramme om undervisningen, der giver plads til alle elever lægger op til, at eleverne bruger deres eget sprog til at give mening til den matematik, de arbejder med giver mulighed for og mening til konkrete faglige undersøgelser indsamling og bearbejdning af data giver grundlag for, at eleverne kan tage styringen over deres egen virksomheden giver indsigt i elevernes læreprocesser.
56
57
58
59
60 Hvor langt stødte Joachim B. Olsen?
61
62
En matematikundervisning der udfordrer alle elever.
En matematikundervisning der udfordrer alle elever. Ugekursus: CFU i Hjørring fra den 15. til den 19. november 2010 Fokus tirsdag: Kompetencer [email protected] Hjørring tirsdag Kompetencer 1
Kunne det tænkes? Ole Skovsmose og Morten Blomhøj (red.) - om matematiklæring
Ole Skovsmose og Morten Blomhøj (red.) Kunne det tænkes? - om matematiklæring Ole Skovsmose og Morten Blomhøj (red.) Kunne det tænkes? - om matematiklæring Helle Alrø Morten Blomhøj Henning Bødtkjer Iben
UCC - Matematikdag - 08.04.14
I hold på 3-4 (a) Problemformulering: Hvor lang tid holder en tube tandpasta? Gå gennem modellens faser fra (a) til (f) Hvad er en matematisk modelleringsproces? Virkelighed (f) Validering (a) Problemformulering
UCC - Matematikdag - 08.04.14
UCSJ Målstyret + 21 PD - UCC - 25.02.14 www.mikaelskaanstroem.dk Der var engang. Skovshoved Skole Hvad svarer du på elevspørgsmålet: Hvad skal jeg gøre for at få en højere karakter i mundtlig matematik?
Dangerous small numbers
Fredag 4. november Dangerous small numbers 2000 10:15 11:15 break 11:25 11:45 Teaching & exited focus. Galophest Stophane Klaphat Sophia Allowed to be a nerd Palindromer = spegiltölur Otto, Anna, Bob,
Årsplan for 5. klasse, matematik
Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det
Evaluering af matematik undervisning
Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om
Matematik. Matematiske kompetencer
Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer
Mundtlig matematik. - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces..
Mundtlig matematik - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces.. Hjørring 7. sep. 2012 Line Engsig matematikvejleder på Skovshoved Skole og Mikael
Matematik. Matematiske kompetencer
Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers
Årsplan for matematik 2012-13
Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder
Årsplan for 7. klasse, matematik
Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet
Hvad er en god matematiklærer? - ifølge matematikdidaktisk forskning - fokus på et kompetenceperspektiv
Disposition Hvad er en god matematiklærer? - ifølge matematikdidaktisk forskning - fokus på et kompetenceperspektiv Morten Blomhøj, IMFUFA, NSM Roskilde Universitet Holmboesymposiet, 19. maj 2008, Oslo
Årsplan for matematik
Årsplan for matematik 2016-17 Uge Tema/emne Metode/mål 33 Brøker + talforståelse Matematiske arbejdsmåder(metode) 34 Brøker + procent 35 Excel 35 GeoGebra/Geometri 36 Geometri 37 Emneuge 38 Geometri 39
Hvad er en god matematiklærer? - ifølge matematikdidaktisk forskning - fokus på et kompetenceperspektiv
Hvad er en god matematiklærer? - ifølge matematikdidaktisk forskning - fokus på et kompetenceperspektiv Morten Blomhøj, IMFUFA, NSM Roskilde Universitet Holmboesymposiet, 19. maj 2008, Oslo Disposition
3. klasse 6. klasse 9. klasse
Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning
Trinmål Matematik. Børnehaveklasse Efter 3. klasse Fagligt bånd. Matematiske kompetencer. Problemløsning. Regnesymboler. Talforståelse Mængder
Trinmål Matematik Børnehaveklasse Efter 3. klasse Fagligt bånd Evaluering Matematiske kompetencer Talforståelse Mængder Regnesymboler Problemløsning have kendskab til tal og tælleremser opbygge talforståelse
Matematik samlet evaluering for Ahi Internationale Skole
efter 3.klasse. e efter 6.klasse. e Skole efter 9.klasse. e indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence formulere sig skriftligt og mundtligt
Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende
Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,
Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5
Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af
Årsplan matematik, RE 2018/2019
Uge Område Ugeinfo. / Indhold er 33 Tal & Størrelser Introuge - Kun Undervisning fredag 34 Tal & Størrelser Introuge - ikke undervisning fredag Decimaltal & Brøker 35 Tal & Størrelser Procentregning 36
Mundtlighed i matematikundervisningen
Mundtlighed i matematikundervisningen 1 Mundtlighed Annette Lilholt Side 2 Udsagn! Det er nemt at give karakter i færdighedsregning. Mine elever får generelt højere standpunktskarakter i færdighedsregning
Matematik Morgener. Morten Blomhøj, Mikael Skånstrøm
Morten Blomhøj, Mikael Skånstrøm Matematik Morgener et udviklingsarbejde Vi arbejder på et ønske om at udvikle en praksis, hvor eleverne kan blive optaget af at bruge matematik til at beskrive og forstå
Andreas Nielsen Kalbyrisskolen 2009
Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence
Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik
Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå
Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.
Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,
MATEMATIK. Formål for faget
MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede
Fag- og indholdsplan 9. kl.:
Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og
Selam Friskole Fagplan for Matematik
Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt
Matematik. Matematiske kompetencer
Matematiske kompetencer stille spørgsmål, som er karakteristiske for matematik og have blik for hvilke typer af svar, som kan forventes(tankegangskompetence) erkende, formulere, afgrænse og løse matematiske
Hvorfor lære matematik? Hvad er matematik?
Hvad er matematik? Matematik er det fag der beskæftiger sig med følgende tre spørgsmål: Hvorfor lære matematik? Fire begrundelsesargumenter: Nytte Dannelse Hvor mange? Hvor stor? Hvilken form? Individ
ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence)
Matematiske kompetencer indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence) løse matematiske problemer knyttet til en kontekst, der giver mulighed
Fælles Mål 2009. Matematik. Faghæfte 12
Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget
Fælles Mål Matematik. Faghæfte 12
Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget
10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik
10.klasse Naturfaglige fag: Matematik, Fysik/kemi Matematik Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at
Års- og aktivitetsplan i matematik hold 4 2014/2015
Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget
Matematik Morgener - et udviklingsarbejde. Af: Morten Blomhøj og Mikael Skånstrøm
Matematik Morgener - et udviklingsarbejde Af: Morten Blomhøj og Mikael Skånstrøm Vi arbejder på et ønske om at udvikle en praksis, hvor eleverne kan blive optaget af at bruge matematik til at beskrive
Årsplan for 5. klasse, matematik
Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget
Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen
Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.
UCC - Matematiklærerens dag 28.04.15.
UCC - Matematiklærerens dag 28.04.15. 1 UCSJ FFM + 21+Ude-demoer UCC - Matematiklærerens dag 28.04.15. 2 www.mikaelskaanstroem.dk Og det er jer.! UCSJ 10. klasse 25. August 2014 3 UCC - Matematiklærerens
Undervisningsplan for faget matematik. Ørestad Friskole
Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2
Emne Tema Materiale r - - - - - aktiviteter
Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse
Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET
I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.
ÅRSPLAN M A T E M A T I K
ÅRSPLAN M A T E M A T I K 2013/2014 Klasse: 3.u Lærer: Bjørn Bech 3.u får 5 matematiktimer om ugen: MANDAG TIRSDAG ONSDAG TORSDAG FREDAG Lektion 1 Lektion 2 Lektion 3 Matematik Matematik Lektion 4 Matematik
MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål
MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig
Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet.
Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet. Kapitlet indledes med fokus på løn og skat og lægger op til,
2 Udfoldning af kompetencebegrebet
Elevplan 2 Udfoldning af kompetencebegrebet Kompetencebegrebet anvendes i dag i mange forskellige sammenhænge og med forskellig betydning. I denne publikation som i bekendtgørelse og vejledning til matematik
Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:
Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses
Årsplan for matematik i 3. klasse
www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: [email protected] Årsplan for matematik i 3. klasse Mål Eleverne bliver i stand til at forstå og anvende matematik
Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34
Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie
MATEMATIK. Formål for faget
Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv
Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder.
Dette tema lægger forskellige vinkler på temaet biografen. Udgangspunktet er således ikke et bestemt matematisk område, men et stykke virkelighed, der bl.a. kan beskrives ved hjælp af matematik. I dette
Fagplan for matematik
Fagplan for matematik Formål Undervisningen i matematik skal give eleverne lyst til, forståelse for og teoretisk baggrund for at analysere, vurdere, kontrollere og argumentere, når de i deres dagligdag
Mundtlig gruppeprøve i matematik. 17-09-2012 [email protected] Mobil: 2041 0721 Side 1
Mundtlig gruppeprøve i matematik 2012 [email protected] Mobil: 2041 0721 Side 1 Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve Eller kun delvist kan prøve
Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC
Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Komrapporten Kompetencer og matematiklæring. Ideer og inspiration til udvikling af matematikundervisningen
Opgave Du skal undersøge, hvad der gælder for andre størrelser af rektangler i en taltavlen.
Problembehandlingskompetence handler om at kunne opstille og løse matematiske problemer. Et matematisk problem er i denne forbindelse et problem, som ikke kan løses med rutineprægede færdigheder, men kræver
I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:
INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en
Eleverne skal lære at:
PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge
PRØV! mundtlig til undervisningen og prøvesituationen
PRØV! mundtlig til undervisningen og prøvesituationen - Teoretisk grundlag for prøverne - Liste med links - Portalen: PRØV!Mundtlig matematik Niveau 1 vedrører viden om objekter, definitioner, tekniske
Årsplan for Matematik 8. klasse 2011/2012
Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand
Matematisk modellering i naturvidenskab (5 ECTS) Kursusplan
Matematisk modellering i naturvidenskab (5 ECTS) Kursusplan Nat.bas., Roskilde Universitet Forår 2015 Kursusansvarlig: Peter Limkilde ([email protected]). Underviser: Peter Limkilde. Tidspunkt:
Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.
Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig
Matematikken og naturens kræfter
INTRO Omdrejningspunktet for dette tema er matematikkens anvendelse som beskrivelsesmiddel i forbindelse med fysiske love. Temaet er inddelt i følgende fire emner: Pendulure Frit fald Bremselængder og
Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer
Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver
Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne
Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer
Matematik og it i indskolingen
Matematik og it i indskolingen Hvordan kan it være med til at styrke de yngste elevers matematiske kompetencer? Oplægget indeholder praksiseksempler på undervisningsforløb og elevproduktioner, hvor der
Matematik og målfastsættelse
Matematik og målfastsættelse Målfastsættelse, feedforward og evaluering i matematik, oplæg og drøftelse 1 Problemløsning s e k s + s e k s t o l v 2 Punkter Målfastsættelse af undervisning i matematik
Matematik i marts. nu i april
Matematik i marts nu i april Dagens fødselar 2 127 1 1857 1876 Diofantiske ligninger En løsning for N>1: N = 24 og M = 70 François Édouard Anatole Lucas (4 April 1842 3 October 1891) 2, 1, 3, 4, 7, 11,
Matematik. Matematiske kompetencer
Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers
Funktioner og ligninger
Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive
Modellering med Lego education kran (9686)
Modellering med Lego education kran (9686) - Et undervisningsforløb i Lego education med udgangspunkt i matematiske emner og kompetencer Af: Ralf Jøker Dohn Henrik Dagsberg Kranen - et modelleringsprojekt
Modellering med Målskytten
Modellering med Målskytten - Et undervisningsforløb i WeDo med udgangspunkt i matematiske emner og kompetencer Af Ralf Jøker Dohn Henrik Dagsberg Målskytten - et modelleringsprojekt i matematik ved hjælp
CAS som grundvilkår. Matematik på hf. Marts 2015 Bodil Bruun, fagkonsulent i matematik stx/hf
CAS som grundvilkår Matematik på hf Marts 2015 Bodil Bruun, fagkonsulent i matematik stx/hf At spørge og svare i, med, om matematik At omgås sprog og redskaber i matematik De 8 kompetencer = 2 + 6 kompetencer
Undervisningsplan for matematik
Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt
Hvad siger statistikken?
Eleverne har tidligere (fx i Kolorit 7, matematik grundbog) arbejdet med især beskrivende statistik (deskriptiv statistik). I dette kapitel fokuseres i højere grad på, hvordan datamateriale kan tolkes
Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik
Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.
Årsplan for matematik i 1. klasse 2010-11
Årsplan for matematik i 1. klasse 2010-11 Vanløse den 6. juli 2010 af Musa Kronholt Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden
Faglige delmål og slutmål i faget Matematik. Trin 1
Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,
Matematik - undervisningsplan
I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes
Mål for forløb På tur i vildmarken
Natur/teknologi 5.-6. klasse samt 3. - 4. klasse Mål for forløb Undersøgelse Undersøgelser i naturfag Eleven kan gennemføre enkle systematiske undersøgelser. variabler i en undersøgelse. Natur og miljø
Scenariet kan benyttes ud fra flere forskellige fokusområder. I udarbejdelsen af scenariet har forfatterne særligt haft følgende mål i tankerne:
Lærervejledningen giver supplerende oplysninger og forslag til scenariet. En generel lærervejledning fortæller om de gennemgående træk ved alle scenarier samt om intentionerne i Matematikkens Univers.
Matematik på Viby Friskole
Matematik på Viby Friskole Formålet for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig
LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15
LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin
Emmas og Frederiks nye værelser - maling eller tapet?
Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik
Årsplan matematik 5 kl 2015/16
Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark
Årsplan matematik 7 kl 2015/16
Årsplan matematik 7 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark
Vejledning til matematik A htx Maj 2018
Vejledning til matematik A htx Maj 2018 Censorkorpset skriftlig matematik, htx Denne skrivelse skal tjene til almindelig orientering og vejledning for censorerne om forhold vedrørende skriftlig eksamen,
MatematiKan og Fælles Mål
MatematiKan og Fælles Mål MatematiKan er et digitalt værktøj til matematik. Det hører til gruppen af interaktive CAS værktøjer. Denne type digitale værktøjer er kendetegnet ved, at de har en delvis blank
Matematik 2. klasse Årsplan. Årets emner med delmål
Matematik 2. klasse Årsplan Årets emner med delmål Regn (side 1 14 + kopisider) opnå større fortrolighed med plus og minus anvende plus og minus til antalsbestemmelse anvende forskellige metoder til løsning
Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:
Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,
Årsplan matematik 6.klasse - skoleår 13/14- Ida Skov Andersen Med ret til ændringer og justeringer
BASIS: Klassen består af 22 elever og der er afsat 5 ugentlige timer til faget. Grundbog: Vi vil arbejde ud fra Matematrix 6, arbejds- og grundbog, tilhørende kopisider + CD-rom, REMA og andre relevante
Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB
It i Fælles mål 2009- Matematik
It i Fælles mål 2009- Matematik Markeringer af hvor it er nævnt. Markeringen er ikke udtømmende og endelig. Flemming Holt, PITT Aalborg Kommune Fælles Mål 2009 - Matematik Faghæfte 12 Formål for faget
Årsplan matematik 3.klasse - skoleår 14/15- Ida Skov Andersen
BASIS: Klassen består af 25 elever og der er afsat 5 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 3A og 3B, de tilhørende kopisider (123-mappen) + CD-rom, Rema samt evt. ekstraopgaver. Derudover
Odense, den 4. marts 2013 Heidi Kristiansen. 04-03-2013 Heidi Kristiansen - Folkeskolens afsluttende prøver i matematik
Odense, den 4. marts 2013 Heidi Kristiansen Oplæg til mundtlig gruppeprøve, der gør det muligt at evaluere kompetencer hvordan??? indeholde tydelige problemstillinger rene eller anvendte matematiske problemer,
Nyt i faget Matematik
Almen voksenuddannelse Nyt i faget Matematik Juli 2012 Indhold Bekendtgørelsesændringer Ændringer af undervisningsvejledningen Den nye opgavetype ved den skriftlige prøve efter D Ændringer af rettevejledningen
