Peter Harremoës Matematik A med hjælpemidler 15. december 2016 = 25 = x = = 10 2 =

Størrelse: px
Starte visningen fra side:

Download "Peter Harremoës Matematik A med hjælpemidler 15. december 2016 = 25 = x = = 10 2 ="

Transkript

1

2 Opgave 6 a) Se bilag 2! Opgave 7 a) Omsætningen er givet ved R (x) = p (x) x = 500 x 1 /2 x = 500 x 1 /2 b) Den afsætning, som giver det største dækningsbidrag, bestemmes ved at løse ligningen R (x) = C (x) x 1 /2 = 25 x 1 /2 = ( ) 2 1 x = = 10 2 = Ved en afsætning på 100 stk. opnås det største dækningsbidrag. Den tilsvarende pris er p (100) = = 50 eller 50 kroner pr. stk. Opgave 8 a) Data fra filen fastfood er talt op og resultatet fremgår af nedenstående tabel. b) Vi opstiller følgende nulhypotese. H 0 : Den foretrukne type fastfood afhænger ikke af køn. Da p-værdien i en χ 2 -test for uafhængighed er omtrent 0 og dermed under signifikansniveauet på 5 % forkaster vi H 0 og konkluderer at der er en sammenhæng mellem køn og hvilken type fastfood, der foretrækkes. side 1 af 6

3 c) Kvinder, som foretrækker sushi kan estimeres til at være 38.3 % af alle kvinder. Et 95 % konfidensinterval for andelen bestemmes til [34.5; 42.1] procent. Formuleringen af opgaven er dog ikke helt entydig. Opgave 9 a) Ligevægtsmængden bestemmes ved at løse ligningen. d (x) = s (x) 0.038x + 65 = 0.032x x = 35 x = = 500. Ligevægtsprisen er s (500) = = 46. Ligevægtspunktet er derfor (p, q) = (500, 46). b) Forbrugeroverskuddet beregnes som arealet af trekanten, som er 1 2 (65 46) 500 = 4750 kroner. c) En afgift på 7 kr. gør at grafen for s ny er forskudt opefter i forhold til grafen for s. Derfor vil ligevægtspunktet flytte sig skråt op mod venstre, hvorved både højde og grundlinje for den skraverede trekant bliver mindre. Afgiften vil derfor mindske forbrugeroverskuddet. side 2 af 6

4 Opgave 10 a) Datafilen regional indeholder oplysninger om BNP i 1000 kr. pr. indbygger i forskellige landsdele. I 1994 var gennemsnittet 181.2, medianen var 166 og standardafvigelsen var I 2014 var gennemsnittet 319.9, medianen var 295 og standardafvigelsen var b) Sammenhængen mellem BNP i 1000 kr. pr. indbygger i 1994 er plottet mod den gennemsnitlige årlige vækst. Den bedste lineære model for sammenhængen er V (x) = x c) Konfidensintervallet for hældningskoefficienten er [ ; ]. d) Generelt er der sket en ganske stor forøgelse af BNP i perioden fra 1994 til Vi kan afvise at der ikke er nogen sammenhæng mellem BNP i 1994 og den årlige vækst. Der er således en tendens til at områder med højt BNP også har større vækst men sammenhængen er ganske svag hvilket afspejler sig i værdien R 2 = Der er derfor grund til at diskutere anvendeligheden af den lineære model. side 3 af 6

5 Opgave 11 a) Forskriften for de variable enhedsomkostninger er b) V E (x, y) = C A (x) x + C B (y) y = 0.005x3 0.5x x x y3 0.5y y y = 0.005x 2 0.5x y 2 0.5y = 0.005x 2 0.5x y 2 0.5y Niveaukurven N (1000) samt begrænsningerne er indtegnet i et koordinatsystem. c) Af figuren ses at det frie minimumssted ligger uden for polygonområdet og at minimumsstedet må ligge på linjen y = 0.5x Vi vil derfor minimere funktionen Den afledte er g (x) = 0.005x 2 0.5x ( 0.5x + 350) ( 0.5x + 350) g (x) = 0.01x ( 0.5x + 350) ( 0.5) 0.5 ( 0.5) = 0.01x (0.5x 350) = 0.01x x 3.50 = 0.015x 3.75 Ligningen g (x) = 0 har derfor løsning x = = 250. Den tilsvarende værdi af y beregnes som y = = 225. Der skal derfor produceres 250 A og 225 B for at minimere de samlede variable enhedsomkostninger. side 4 af 6

6 Opgave 12 A a) Idet f (x) = 1 3 x3 2x 2 3x + 18 er f (x) = x 2 4x 3 så f (0) = 18 og f (0) = 3. Derfor har tangenten t ligning y = 3 (x 0) + 18 eller y = 3x Tangenten skæring med x-aksen findes ved at løse ligningen 3x + 18 = 0, hvilket giver x = 6. Ved at indsætte i beregningsforskriften for f checkes at (6, 0) er et nulpunkt for f. b) Skæringspunktet (3.0) er fundet ved hjælp af GeoGebra. Arealet af M kan bestemmes ved 3 0 (t (x) f (x)) dx t (x) dx = = = )) 3 x3 2x 2 3x + 18 dx + ( 13 ) [ x3 + 2x 2 dx + 3 ] 6 2 x2 + 18x ( ( 1 ( 3x + 18) [ 1 12 x x3 ] 3 0 ( + 3 ) = = = 24 3 / ( 3 ) ( 3x + 18) dx side 5 af 6

7 Opgave 12 B a) Differentialligningen L (T ) = a L (T ) (M L (T )), 0 T 100 når a = og M = 82, hvilket giver L (T ) = exp( 0.08T ) Grafen for L er vist nedenfor. b) Ved en loyalitet på 70 % kan SPS-GYM forvente en tilfredshed på 65.6%. Opgave 12 C a) Et lån på kr. med en kvartalsvis ydelse på kr. og en rente på % kan tilbagebetales på ( ) ln 1 A0 y r n = ln (1 + r) = ln ( ) ln ( ) = 80. Lånet kan således tilbagebetales på 80 kvartaler eller 20 år. b) For 2. termin er rentedelen = kroner. Afdragsdelen er = kr. Bidragssatsen er = kr. Ultimo restgæld er = kroner. Bemærk at bidragssatsen i denne opgave ikke er indregnet som en del af ydelsen, som det normalt gøres. side 6 af 6

8

9

Peter Harremoës Matematik A, delprøve med hjælpemidler. 19 maj x 2. Først findes stationære punkter. f (x) = x 1 /2. 1 x = 0.

Peter Harremoës Matematik A, delprøve med hjælpemidler. 19 maj x 2. Først findes stationære punkter. f (x) = x 1 /2. 1 x = 0. Opgave 6 Skæringspunktet mellem graferne beregnes. f (x) = g (x) Funktionerne sættes lig hinanden. 180 0.4 x = 20 1.2 x Forskrifterne for f og g indsættes. 9 = 3 x Der er divideret med 20 0.4 x på begge

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Mat A eksamen med hjælpemidler 25. maj 2013. (x + a) 1 /2. dx = 42 løses ved hjælp af GeoGebra CAS: Ligningen 15

Opgave 6. Opgave 7. Peter Harremoës Mat A eksamen med hjælpemidler 25. maj 2013. (x + a) 1 /2. dx = 42 løses ved hjælp af GeoGebra CAS: Ligningen 15 Opgave 6 Ligningen 15 0 (x + 1 /2 dx = 42 løses ved hjælp af GeoGebra CAS: Løsningen er derfor a = 1. Se Bilag 2! Opgave 7 Et søjlediagram over hyppighed af lønsum er vist nedenfor. Gennemsnittet er 64.4

Læs mere

Peter Harremoës Matematik A med hjælpemidler 17. august Stamfunktionen til t 1 /2. Grænserne er indsat i stamfunktionen. a 2 +9.

Peter Harremoës Matematik A med hjælpemidler 17. august Stamfunktionen til t 1 /2. Grænserne er indsat i stamfunktionen. a 2 +9. Opgave 6 Arealet under grafen udregnes. b) Arealet er givet ved M = 4 0 2x x 2 + 9 dx Arealet udregnes ved at integrere funktionen. M = 25 9 t dt Der er foretaget substitution t = x 2 + 9. [ ] 25 M = Stamfunktionen

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx141-mat/a-305014 Fredag den 3. maj 014 kl. 9.00-14.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 15. august 2011 kl. 9.00-14.00. kl. 9.00-10.00. hhx112-mat/a-15082011

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 15. august 2011 kl. 9.00-14.00. kl. 9.00-10.00. hhx112-mat/a-15082011 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx11-mat/a-1508011 Mandag den 15. august 011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Peter Harremoës Mat A eksamen med hjælpemidler 21. april 2014

Peter Harremoës Mat A eksamen med hjælpemidler 21. april 2014 Opgave 6 Ved hjælp af GeoGebra CAS ses at udtrykkes reduceres til noget som er forskelligt fra b 3 ab 2. Dette kan også ses ved f.eks. at indsætte a = 0 og b = 1. Se bilag 2! Opgave 7 Data er indlæst i

Læs mere

Peter Harremoës Mat A eksamen med hjælpemidler 23 maj Sandsynligheden for at en tilfældigt udvalgt pakke vejer mindre end 490 gram er 0.16.

Peter Harremoës Mat A eksamen med hjælpemidler 23 maj Sandsynligheden for at en tilfældigt udvalgt pakke vejer mindre end 490 gram er 0.16. Opgave 6 Variablen Y er isoleret i ligningen Y = CS + c (Y t Y + T R) + I + G hvilket giver Y = CS+G+I+T R c c t c+1. Se Bilag 3! Opgave 7 Sandsynligheden for at en tilfældigt udvalgt pakke vejer mindre

Læs mere

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b stk. Peter Harremoës Matematik A med hjælpemidler 16. december 2013 Opagve 6 Variables a isoleres: M = S 1 + a = a + b b a b a = b 1 ( ) 1 b 1 a = b 1 a = b 1 1 b 1 a = b Hvis b = 1, så gælder ligningen

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n =

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n = Opgave 6 a) Se Bilag 2! b) Variablen n isoleres ( L = 2 z 1 α 2 ) 2 L = 2 z 1 α 2 L = 2 z 1 α 2 n = ( ˆp (1 ˆp) n ˆp (1 ˆp) n ˆp (1 ˆp) ( n ( ˆp (1 ˆp) ) 1/2 ) 2 L 2 z 1 α 2 n ) 1/2 Opgave 7 n = 4ˆp (1

Læs mere

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a Matematik A Højere handelseksamen hhx14-mat/a-1808014 Mandag den 18. august 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014 Matematik A Højere handelseksamen hh143-mat/a-151014 Mandag den 15. december 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015

Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015 Opgave 6 a) Stationært punkt beregnes. f (x) = 0 Den afledte sættes lig nul for at bestemme stationært punkt. 5 ln (x) + 5 = 0 Funktionen er differentieret ved hjælp af produktreglen. ln (x) = 1 Der er

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx131-mat/a-705013 Mandag den 7. maj 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

Matematik A. Højere handelseksamen. Gammel ordning. Mandag den 17. december 2018 kl gl-hhx183-mat/a

Matematik A. Højere handelseksamen. Gammel ordning. Mandag den 17. december 2018 kl gl-hhx183-mat/a Matematik A Højere handelseksamen Gammel ordning gl-hhx183-mat/a-17122018 Mandag den 17. december 2018 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh123-mat/b-17122012 Mandag den 17. december 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Bilag 1 til opgave

Bilag 1 til opgave Bilag 1 til opgave 2 Skole: Eksamensnr. Hold: Navn: y h x -4-3 -2 0 1 2 3 4 5 6 7 8 9 10 11 Bilag 2 til opgave 3 Skole: Eksamensnr. Hold: Navn: 20 y 18 16 14 12 10 8 6 4 2-6 -4-2 2 4 6 8 10 12 14 16 18

Læs mere

Peter Harremoës Matematik A eksamen med hjælpemidler 25. maj For at finde ekstrema skal ligningen f (x) = 0 løses. f er differentieret.

Peter Harremoës Matematik A eksamen med hjælpemidler 25. maj For at finde ekstrema skal ligningen f (x) = 0 løses. f er differentieret. Opgave 6 Mulige ekstremumssteder bestemmes. f (x) = 0 1 x = 0 x 1 1 x = 1 x 1 x = x x 2 = x x = 0 x = 1 L = {1} For at finde ekstrema skal ligningen f (x) = 0 løses. f er differentieret. x er lagt til

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh11-mat/b-70501 Mandag den 7. maj 01 kl. 9.00-1.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Matematik A Delprøven uden hjælpemidler

Matematik A Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2009 HHX092-MAA Matematik A Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Peter Harremoës Matematik A eksamen med hjælpemidler 25. maj 2016

Peter Harremoës Matematik A eksamen med hjælpemidler 25. maj 2016 Opgave 6 Se bilag 2! Idet f (x) kun har rod x = 1, kan funktionens monotoniforhold bestemmes ved at indsætte passende valgte værdier. Da f ( 1 /4) = 4 2 = 2 > 0, vokser funktionen i ]0; 1]. Da f (4) =

Læs mere

Opgave 6. Opgave 7. Opgave 8. Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015

Opgave 6. Opgave 7. Opgave 8. Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015 Opgave 6 a) Se Bilag 3! b) Funktionen differentieres, sættes lig nul og ligningen løses. g (x) = 0 K ln (x) + K = 0 K ln (x) = K ln (x) = 1 x = e 1. Det stationære punkt har x = e 1. Opgave 7 a) Data indlæses

Læs mere

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler kl Mandag den 15. august 2011 kl hhx112-mat/b

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler kl Mandag den 15. august 2011 kl hhx112-mat/b Matematik B Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx112-mat/b-15082011 Mandag den 15. august 2011 kl. 9.00-13.00 Matematik B Prøven uden hjælpemidler Prøvens varighed er

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx1-mat/a-160801 Fredag den 16. august 01 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013 Matematik A Højere handelseksamen hhx133-mat/a-161013 Mandag den 16. december 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Delprøven uden hjælpemidler

Delprøven uden hjælpemidler Opgave 1 a) Ved aflæsning på graf fås følgende: Median: 800 kr. Andel dyrere end 1000 kr.: 45%. Opgave 2 Givet funktionen: f (x)= 3x 2 8x +5. a) F(x)= x 3 4x 2 +5x + k. Delprøven uden hjælpemidler Vi finder

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx111-mat/a-305011 Mandag den 3. maj 011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh101-mat/a-27052010 Torsdag den 27. maj 2010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Matematik A. Højere handelseksamen. Vejledende opgave 2

Matematik A. Højere handelseksamen. Vejledende opgave 2 Matematik A Højere handelseksamen Vejledende opgave Efterår 01 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen af denne delprøve skal

Læs mere

Peter Harremoës Matematik B eksamen med hjælpemidler 25. maj 2016

Peter Harremoës Matematik B eksamen med hjælpemidler 25. maj 2016 Opgave 6 a) Skæringspunktet mellem linjerne med ligningerne l : 10x + 20y = 1000 og m : 90x 30y = 600 bestemmes. 10x + 20y = 1000 og 90x 30y = 600Ligningerne er skrevet op. y = 0.5x + 50 og y = 3x 20y

Læs mere

Matematik B. Højere handelseksamen. Tirsdag den 26. maj 2015 kl hhx151-mat/b

Matematik B. Højere handelseksamen. Tirsdag den 26. maj 2015 kl hhx151-mat/b Matematik B Højere handelseksamen hhx151-mat/b-26052015 Tirsdag den 26. maj 2015 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014 Matematik B Højere handelseksamen hhx142-mat/b-18082014 Mandag den 18. august 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematik B, august 2017 Løsninger CAS-værktøj: Nspire. Delprøven uden hjælpemidler

Matematik B, august 2017 Løsninger CAS-værktøj: Nspire. Delprøven uden hjælpemidler Delprøven uden hjælpemidler Opgave 1 a) Gennemsnitligt antal tilmeldte: 4 +3+1+ 9+12+ 4 +17+5+14 +11 x = = 80 10 10 = 8 Det gennemsnitlig antal tilmeldte er 8 personer. Opgave 2 Graf: Opgave 3 a) Vi indsætter

Læs mere

Matematik B. Højere handelseksamen. Vejledende opgave 1

Matematik B. Højere handelseksamen. Vejledende opgave 1 Matematik B Højere handelseksamen Vejledende opgave 1 Efterår 011 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx132-mat/b-16082013 Fredag den 16. august 2013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august kl

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august kl Matematik B Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx102-mat/b-16082010 Mandag den 16. august 2010 kl. 9.00-13.00 Matematik B Prøven uden hjælpemidler Dette opgavesæt består

Læs mere

Matematik A. Højere handelseksamen. Tirsdag den 15. december 2015 kl hhx153-mat/a

Matematik A. Højere handelseksamen. Tirsdag den 15. december 2015 kl hhx153-mat/a Matematik A Højere handelseksamen hh153-mat/a-15122015 Tirsdag den 15. december 2015 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/a-19122011 Mandag den 19. december 2011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er

Læs mere

Matematik B. Højere handelseksamen. Mandag den 17. august 2015 kl hhx152-mat/b

Matematik B. Højere handelseksamen. Mandag den 17. august 2015 kl hhx152-mat/b Matematik B Højere handelseksamen hhx152-mat/b-17082015 Mandag den 17. august 2015 kl. 9.00-1.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014 Vejledning til udvalgte opgave fra Matematik B, sommer 2014 Opgave 7 Størrelsen og udbudsprisen på 100 fritidshuse på Rømø er indsamlet via boligsiden.dk. a) Grafisk præsentation, der beskriver fordelingen

Læs mere

Matematik A. Højere handelseksamen. Gammel ordning. Fredag den 17. august 2018 kl gl-hhx182-mat/a

Matematik A. Højere handelseksamen. Gammel ordning. Fredag den 17. august 2018 kl gl-hhx182-mat/a Matematik A Højere handelseksamen Gammel ordning gl-hhx182-mat/a-17082018 Fredag den 17. august 2018 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave

Læs mere

Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x =

Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x = MAT B GSK august 009 delprøven uden hjælpemidler Opg 1 For en vare er sammenhængen mellem pris og efterspørgsel bestemt ved funktionen d() = + 1 0 1 hvor angiver den efterspurgte mængde og d() angiver

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.

Læs mere

Matematik B. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-13.00. hhx143-mat/b-15122014

Matematik B. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-13.00. hhx143-mat/b-15122014 Matematik B Højere handelseksamen hhx143-mat/b-15122014 Mandag den 15. december 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Matematik A. Højere handelseksamen. Skriftlig prøve (5 timer) Delprøven uden hjælpemidler

Matematik A. Højere handelseksamen. Skriftlig prøve (5 timer) Delprøven uden hjælpemidler Matematik A Højere handelseksamen Skriftlig prøve (5 timer) Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med lige stor vægtning

Læs mere

Matematik B. Højere handelseksamen. Tirsdag den 15. december 2015 kl hhx153-mat/b

Matematik B. Højere handelseksamen. Tirsdag den 15. december 2015 kl hhx153-mat/b Matematik B Højere handelseksamen hh153-mat/b-15122015 Tirsdag den 15. december 2015 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i

Læs mere

Peter Harremoës Mat A eksamen med hjælpemidler 15. december 2014. f (x) = 0. 2x + k 1 x = 0 2x 2 + k = 0 2x 2 = k x 2 = k 2. k 2.

Peter Harremoës Mat A eksamen med hjælpemidler 15. december 2014. f (x) = 0. 2x + k 1 x = 0 2x 2 + k = 0 2x 2 = k x 2 = k 2. k 2. Opgave 6 Se Bilag 3! Funktionen f er givet ved f (x) = x 2 + k ln (x), x > 0. Det oplyses at funktionen har netop ét ekstremum, når k > 0, så x-værdien til dette ekstremum må kunne findes ved at løse ligningen

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0. Opgave 6 Vi sætter P = 1000 og isolerer x i ligningen Se Bilag 2! P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.6 ( 10 y 0.4 )1 /0.6 = x 10 1 /0.6 y 0.4 /0.6 = x x = 10 5 /3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2019 Institution Uddannelse Fag og niveau Lærer(e) Hold Skanderborg-Odder Center for Uddannelse Højvangens

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx103-mat/a-01010 Mandag den 0. december 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2018 Institution Uddannelse Fag og niveau Lærer(e) Skanderborg-Odder Handelsskole Højvangens Torv

Læs mere

Matematik A, maj 2014. Peter Bregendal. Løsninger vha. Nspire CAS. Delprøven uden hjælpemidler. Opgave 1. Givet funktionen f (x) = -x 3 + 4x 2-3x+10

Matematik A, maj 2014. Peter Bregendal. Løsninger vha. Nspire CAS. Delprøven uden hjælpemidler. Opgave 1. Givet funktionen f (x) = -x 3 + 4x 2-3x+10 Delprøven uden hjælpemidler Opgave 1 Givet funktionen f (x) = -x 3 + 4x 2-3x+10 f (x) = -3x 2 + 8x- 3 f (1) = -3+ 8-3 = 2. Opgave 2 Se bilag 1 Opgave 3 Givet funktionen DB(x) = -x 2 + 8x, 0 x 10 -x 2 +

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2017 Institution Uddannelse Fag og niveau Lærer(e) Skanderborg-Odder Handelsskole Højvangens Torv

Læs mere

Matematik B Delprøven uden hjælpemidler

Matematik B Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2009 HHX092-MAB Matematik B Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh121-mat/a-04062012 Mandag den 4. juni 2012 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2018 Institution Uddannelse Fag og niveau Lærer(e) Hold Skanderborg-Odder center for uddannelse Højvangens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2019 Institution Uddannelse Fag og niveau Lærer(e) Hold Skanderborg-Odder Center for Uddannelse Højvangens

Læs mere

MATEMATIK A. Xxxxdag den xx. måned åååå. Kl GL083-MAA. GU HHX DECEMBER 2008 Vejledende opgavesæt. Undervisningsministeriet

MATEMATIK A. Xxxxdag den xx. måned åååå. Kl GL083-MAA. GU HHX DECEMBER 2008 Vejledende opgavesæt. Undervisningsministeriet GU HHX DECEMBER 2008 Vejledende opgavesæt MATEMATIK A Xxxxdag den xx. måned åååå Kl. 10.00 15.00 Undervisningsministeriet GL083-MAA 574604_GL083-MAA_12s.indd 1 16/01/09 15:46:23 Matematik A Prøvens varighed

Læs mere

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december kl

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december kl Matematik B Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx103-mat/b-20122010 Mandag den 20. december 2010 kl. 9.00-13.00 Matematik B Prøven uden hjælpemidler Dette opgavesæt består

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2018 Institution Uddannelse Fag og niveau Lærer(e) Hold Skanderborg-Odder center for uddannelse Højvangens

Læs mere

Matematik B. Højere handelseksamen. Fredag den 19. maj 2017 kl hhx171-mat/b

Matematik B. Højere handelseksamen. Fredag den 19. maj 2017 kl hhx171-mat/b Matematik B Højere handelseksamen hhx171-mat/b-19052017 Fredag den 19. maj 2017 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematik B. Højere handelseksamen. Gammel ordning. Fredag den 17. august 2018 kl gl-hhx182-mat/b

Matematik B. Højere handelseksamen. Gammel ordning. Fredag den 17. august 2018 kl gl-hhx182-mat/b Matematik B Højere handelseksamen Gammel ordning gl-hhx182-mat/b-17082018 Fredag den 17. august 2018 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august 2010. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august 2010. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh10-mat/a-1608010 Mandag den 16. august 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består af

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time.

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time. Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006 05-B-2-U Typeopgave 2 Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time. Dette opgavesæt består af 5 opgaver, der indgår

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ MATEMATIK B-NIVEAU. MATHIT Prøvesæt Kl STXB-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ MATEMATIK B-NIVEAU. MATHIT Prøvesæt Kl STXB-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK B-NIVEAU MATHIT Prøvesæt 2010 Kl. 09.00 13.00 STXB-MATHIT Opgavesættet er delt i to dele. Delprøven uden hjælpemidler: 1 time med autoriseret formelsamling

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx122-mat/b-15082012 Onsdag den 15. august 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl stx161-MAT/A

Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl stx161-MAT/A Matematik A Studentereksamen 1stx161-MAT/A-24052016 Tirsdag den 24. maj 2016 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

TERMINSPRØVE APRIL x MA, 3z MA og 3g MA/2 MATEMATIK. onsdag den 11. april Kl

TERMINSPRØVE APRIL x MA, 3z MA og 3g MA/2 MATEMATIK. onsdag den 11. april Kl TERMINSPRØVE APRIL 2018 3x MA, 3z MA og 3g MA/2 MATEMATIK onsdag den 11. april 2018 Kl. 09.00 14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen. Gammel ordning. Onsdag den 30. maj 2018 kl gl-2stx181-mat/a

Matematik A. Studentereksamen. Gammel ordning. Onsdag den 30. maj 2018 kl gl-2stx181-mat/a Matematik A Studentereksamen Gammel ordning gl-2stx181-mat/a-30052018 Onsdag den 30. maj 2018 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af 6 spørgsmål. Delprøven

Læs mere

MAT B GSK december 2009 delprøven uden hjælpemidler

MAT B GSK december 2009 delprøven uden hjælpemidler MAT B GSK december 009 delprøven uden hjælpemidler Opg Sumkurven for alderen i måneder på en HHX-klasses mobiltelefoner. 90%-fraktilen er 0, måneder a) Giv en fortolkning af 90%-fraktilen og bestem kvartilsættet..

Læs mere

GU HHX MAJ 2009 MATEMATIK B. Onsdag den 13. maj 2009. Kl. 9.00 13.00 GL091-MAB. Undervisningsministeriet

GU HHX MAJ 2009 MATEMATIK B. Onsdag den 13. maj 2009. Kl. 9.00 13.00 GL091-MAB. Undervisningsministeriet GU HHX MAJ 009 MATEMATIK B Onsdag den 13. maj 009 Kl. 9.00 13.00 Undervisningsministeriet GL091-MAB Matematik B Prøvens varighed er 4 timer. Alle hjælpemidler er tilladt. Af opgaverne 8A, 8B, 8C, 8D og

Læs mere

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave

Læs mere

Matematik A, december 2014 Peter Bregendal

Matematik A, december 2014 Peter Bregendal Delprøven uden hjælpemidler Opgave 1 Se graf nedenfor: Opgave 2 Givet funktionen: P(x) = - 1 2 x 2 + 7x- 20. a) Positivt overskud: - 1 2 x 2 + 7x - 20 = 0 x = -7 ± 72-4 -0,5-20 2-0,5 x = -7 ± 9-1 x = -7

Læs mere

Løsninger, Mat A, aug 2017 CAS-værktøj: Nspire. Delprøven uden hjæpemidler

Løsninger, Mat A, aug 2017 CAS-værktøj: Nspire. Delprøven uden hjæpemidler Delprøven uden hjæpemidler Opgave 1 Givet funktionerne f, g og h. a) Eneste graf med toppunkt for x = 1,5 er C. f(x) er derfor C. Bestemmes ved at løse ligningen f (x)= 0. Kun en af graferne har negativ

Læs mere

Matematik B. Højere handelseksamen. Mandag den 16. december 2013 kl hhx133-mat/b

Matematik B. Højere handelseksamen. Mandag den 16. december 2013 kl hhx133-mat/b Matematik B Højere handelseksamen hhx133-mat/b-161013 Mandag den 16. december 013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve september Matematik Niveau B

Højere Handelseksamen Handelsskolernes enkeltfagsprøve september Matematik Niveau B Højere Handelseksamen Handelsskolernes enkeltfagsprøve september 2006 06-0-4 Matematik Niveau B Dette opgavesæt består af 8 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende

Læs mere

MATEMATIK B. Xxxxdag den xx. måned åååå. Kl. 10.00 15.00 GL083-MAB. GU HHX DECEMBER 2008 Vejledende opgavesæt. Undervisningsministeriet

MATEMATIK B. Xxxxdag den xx. måned åååå. Kl. 10.00 15.00 GL083-MAB. GU HHX DECEMBER 2008 Vejledende opgavesæt. Undervisningsministeriet GU HHX DECEMBER 2008 Vejledende opgavesæt MATEMATIK B Xxxxdag den xx. måned åååå Kl. 10.00 15.00 Undervisningsministeriet GL083-MAB 574604_GL083-MAB_12s.indd 1 14/01/09 14:40:30 Matematik B Prøvens varighed

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2019 Institution Skanderborg-Odder Center for Uddannelse Højvangens Torv 2 8660 Skanderborg Uddannelse

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx121-MATn/A-31052012 Torsdag den 31. maj 2012 kl. 09.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve

Læs mere

Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler

Matematik B STX 18. maj 2017 Vejledende løsning   De første 6 opgaver løses uden hjælpemidler ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august

Læs mere

FACITLISTE TIL MATEMA10K C for HHX

FACITLISTE TIL MATEMA10K C for HHX FACITLISTE TIL MATEMA10K C for HHX Denne liste angiver facit til bogens opgaver. Opgaver hvor svaret er redegørende, fortolkende eller vurderende er udeladt. I statistikopgaver hvor der er flere muligheder

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Fredag den 17. august 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Fredag den 17. august 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx1-mat/a-170801 Fredag den 17. august 01 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

TERMINSPRØVE APRIL u Ma MATEMATIK. onsdag den 11. april Kl

TERMINSPRØVE APRIL u Ma MATEMATIK. onsdag den 11. april Kl TERMINSPRØVE APRIL 2018 2u Ma MATEMATIK onsdag den 11. april 2018 Kl. 09.00 13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven med hjælpemidler

Læs mere

Skriftlig eksamen i samfundsfag

Skriftlig eksamen i samfundsfag OpenSamf Skriftlig eksamen i samfundsfag Indholdsfortegnelse 1. Introduktion 2. Præcise nedslag 3. Beregninger 3.1. Hvad kan absolutte tal være? 3.2. Procentvis ændring (vækst) 3.2.1 Tolkning af egne beregninger

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx122-mat/b-17082012 Fredag den 17. august 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4 Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat

Læs mere

Matematik A Delprøven uden hjælpemidler

Matematik A Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 009 HHX091-MAA Matematik A Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07. Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.54 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve 1: 2

Læs mere

Løsninger til eksamensopgaver på B-niveau 2017

Løsninger til eksamensopgaver på B-niveau 2017 Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2018 Institution Skanderborg-Odder Handelsskole Højvangens Torv 2 8660 Skanderborg Uddannelse Fag

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj Matematik Niveau A

Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj Matematik Niveau A Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj 2006 06-0-1 Matematik Niveau A Dette opgavesæt består af 7 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2017 Institution Skanderborg-Odder Handelsskole Højvangens Torv 2 8660 Skanderborg Uddannelse Fag

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere