Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n =

Størrelse: px
Starte visningen fra side:

Download "Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n ="

Transkript

1

2 Opgave 6 a) Se Bilag 2! b) Variablen n isoleres ( L = 2 z 1 α 2 ) 2 L = 2 z 1 α 2 L = 2 z 1 α 2 n = ( ˆp (1 ˆp) n ˆp (1 ˆp) n ˆp (1 ˆp) ( n ( ˆp (1 ˆp) ) 1/2 ) 2 L 2 z 1 α 2 n ) 1/2 Opgave 7 n = 4ˆp (1 ˆp) z2 1 α 2 n L 2 a) Data indlæses i Excel hvorefter man laver en pivottabel. b) Vi opstiller følgende nul-hypotese. H 0 : sommerferieplaner er uafhængige af beskæftigelse. A : sommerferieplaner er afhængige af beskæftigelse. Da p-værdien er under signifikansniveauet på 5 % vil vi afvise nulhypotesen og konkluderer at der er en sammenhæng mellem beskæftigelse og sommerferieplaner. side 1 af 6

3 Opgave 8 a) Sandsynligheden for at en tilfældigt udvalgt pose vaskepulver vejer mere end 1100 gram er b) Gennemsnittet i stikprøven er 995 og standardafvigelsen er 61. Opgave 9 a) Restegælden beregnes Restgælden efter 6 år er derfor kroner. b) Ydelsen beregnes R n = A 0 (1 + r) n y (1 + r)n 1 r = = y = A 0 r 1 (1 + r) n = = Ved lån gennem bilforhandleren bliver den månedlige ydelse derfor kroner. c) Hvis mulighed et benyttes bliver renten 0.33 % og ydelsen på kr. pr. måned skal betales over 7 år. Hvis mulighed 2 benyttes bliver den effektive rente = eller 31.6 %, og den samlede ydelse bliver = kroner pr. måned som skal betales over 6 år. Hvis familien ikke har råd til at betale en ydelse på kroner pr. måned skal mulighed 1 vælges. Hvis familien vil kunne betale over kroner pr. måned, bør mulighed 1 kun vælges hvis den generelle rente i samfundet forventes at være høj mens lånet afbetales. side 2 af 6

4 Opgave 10 a) Funktionerne plottes i GeoGebra og skæring med linjen y = 150 findes som vist på figuren. Importen bestemmes til M = = b) Ligesom i spørgsmål a) bestemmes importen ved en toldsats på 50 kr. til M = = Toldindtægten er derfor ved til at være kroner. Opgave 11 a) Koordinater til de pågældende punkter kan findes ved hjælp af GeoGebras skæringsværktøj. Det giver følgende koordinatsæt: P = (3, 0), Q = (0.5, 0) og R = (1, 2). b) Arealet deles ved hjælp af indskudsreglen ved x = 1. De to delarealer beregnes ved hjælp af GeoGebra til 1.5 og så det samlede areal er side 3 af 6

5 Opgave 12 a) Niveaukurven ses at være en ellipse med centrum i (350,250) ved at lave følgende omskrivninger. f (x, y) = x x 0.09y y = ( x 2 700x ) 0.09 ( y 2 500y ) = 6925 ( 0.04 (x 350) ) ( 0.09 (y 250) ) = (x 350) (y 250) 2 = = (x 350) (y 250) = 1 (x 350) 2 (y 250) = 1 (x 350) 2 (y 250) = 1 b) Der er frit maksimum i ellipsens centrum. For at opnå det stmulige samlede dækningsbidrag pr. dag skal der således produceres 350 styk A og 250 styk B. c) For at finde den optimale produktionssammensætning under bibetingelsen y 0.5x indsættes y = 0.5x i kriteriefunktionen og toppunktet findes. Den fundne værdi af x indsættes i y = 0.5x Herved ses at det optimale er at producere 296 styk A og 202 styk B. side 4 af 6

6 Opgave 13A a) Lad x betegne antal tons KOMPAKT og lad y betegne antal tons NORMAL. Vi har følgende bibetingelser og positiv betingelser. 1.5x + 0.5y 100 x + y 100 x 0 y 0 Kriteriefunktionen er f (x, y) = 1200x y. Maksimumspunktet findes ved hjælp af hjørnekontrol. f (0, 0) = 0 f (66 2 /3) = f (50, 50) = f (0, 100) = Der skal produceres 50 tons KOMPAKT og 50 toms NORMAL for at opnå det størst mulige dækningsbidrag. b) Vi laver følsomhedsanalyse ved at kalde dækningsbidraget for NORMAL for b således at det samlede dækningsbidrag bliver f (x, y) = 1200x + by. Vi løser uligheden f (0, 100) f (50, 50) b b 50 50b b 1200 Dækningsbidraget for NORMAL kan stige op til 1200 kr/ton uden at produktionssammensætningen bør ændres. Opgave 13B a) Differentialligningen løses ved hjælp af GeoGebra, hvilket giver K(t) = exp ( x/25). b) Det varer ca. 17 timer og 20 min før 1000 personer har fået kendskab til begivenheden. side 5 af 6

7 Opgave 13C a) Man laver et xy-plot af data og finder ved lineær regression en linje med ligningen A (x) = 0.20x Mange datapunkter afviger dog ganske betydeligt fra regressionslinjen, hvilket afspejler sig i at determinationskoefficienten er helt nede på 0.25 b) Vi udregner et 95 % konfidensinterval ved ( 1 R 2 )1/2 â ± t n 2,1 α/2 â R 2 (n 2) = ± = 0, 20 ± 0.16 ( ) 1/ Konfidensintervallet beregnes således til [0.04;0.36]. Hvis modellen iøvrigt godtages, er konklusionen at uligheden har en tendens til at stige når arbejdsløsheden stiger. Hele modellen er dog ganske problematisk. For det første kan de 2 lande, som medtages i undersøgelsen, næppe siges at være en stikprøve ud af en langt større population, idet en stikprøve helst ikke skal være mere end 5 % af hele populationen. Endvidere er det ikke klart hvorfor et stort land som USA skal vægte lige så meget som et lille land som Estland. Endelig viser et normalfordelingsplot at stigningen i arbejdsløs dårligt kan modelleres med en normalfordeling. side 6 af 6

8

9

Peter Harremoës Mat A eksamen med hjælpemidler 21. april 2014

Peter Harremoës Mat A eksamen med hjælpemidler 21. april 2014 Opgave 6 Ved hjælp af GeoGebra CAS ses at udtrykkes reduceres til noget som er forskelligt fra b 3 ab 2. Dette kan også ses ved f.eks. at indsætte a = 0 og b = 1. Se bilag 2! Opgave 7 Data er indlæst i

Læs mere

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b stk. Peter Harremoës Matematik A med hjælpemidler 16. december 2013 Opagve 6 Variables a isoleres: M = S 1 + a = a + b b a b a = b 1 ( ) 1 b 1 a = b 1 a = b 1 1 b 1 a = b Hvis b = 1, så gælder ligningen

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Mat A eksamen med hjælpemidler 25. maj 2013. (x + a) 1 /2. dx = 42 løses ved hjælp af GeoGebra CAS: Ligningen 15

Opgave 6. Opgave 7. Peter Harremoës Mat A eksamen med hjælpemidler 25. maj 2013. (x + a) 1 /2. dx = 42 løses ved hjælp af GeoGebra CAS: Ligningen 15 Opgave 6 Ligningen 15 0 (x + 1 /2 dx = 42 løses ved hjælp af GeoGebra CAS: Løsningen er derfor a = 1. Se Bilag 2! Opgave 7 Et søjlediagram over hyppighed af lønsum er vist nedenfor. Gennemsnittet er 64.4

Læs mere

Opgave 6. Opgave 7. Opgave 8. Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015

Opgave 6. Opgave 7. Opgave 8. Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015 Opgave 6 a) Se Bilag 3! b) Funktionen differentieres, sættes lig nul og ligningen løses. g (x) = 0 K ln (x) + K = 0 K ln (x) = K ln (x) = 1 x = e 1. Det stationære punkt har x = e 1. Opgave 7 a) Data indlæses

Læs mere

Peter Harremoës Matematik A eksamen med hjælpemidler 25. maj 2016

Peter Harremoës Matematik A eksamen med hjælpemidler 25. maj 2016 Opgave 6 Se bilag 2! Idet f (x) kun har rod x = 1, kan funktionens monotoniforhold bestemmes ved at indsætte passende valgte værdier. Da f ( 1 /4) = 4 2 = 2 > 0, vokser funktionen i ]0; 1]. Da f (4) =

Læs mere

Peter Harremoës Matematik B eksamen med hjælpemidler 25. maj 2016

Peter Harremoës Matematik B eksamen med hjælpemidler 25. maj 2016 Opgave 6 a) Skæringspunktet mellem linjerne med ligningerne l : 10x + 20y = 1000 og m : 90x 30y = 600 bestemmes. 10x + 20y = 1000 og 90x 30y = 600Ligningerne er skrevet op. y = 0.5x + 50 og y = 3x 20y

Læs mere

Peter Harremoës Matematik A med hjælpemidler 15. december 2016 = 25 = x = = 10 2 =

Peter Harremoës Matematik A med hjælpemidler 15. december 2016 = 25 = x = = 10 2 = Opgave 6 a) Se bilag 2! Opgave 7 a) Omsætningen er givet ved R (x) = p (x) x = 500 x 1 /2 x = 500 x 1 /2 b) Den afsætning, som giver det største dækningsbidrag, bestemmes ved at løse ligningen R (x) =

Læs mere

Matematik A, maj 2014. Peter Bregendal. Løsninger vha. Nspire CAS. Delprøven uden hjælpemidler. Opgave 1. Givet funktionen f (x) = -x 3 + 4x 2-3x+10

Matematik A, maj 2014. Peter Bregendal. Løsninger vha. Nspire CAS. Delprøven uden hjælpemidler. Opgave 1. Givet funktionen f (x) = -x 3 + 4x 2-3x+10 Delprøven uden hjælpemidler Opgave 1 Givet funktionen f (x) = -x 3 + 4x 2-3x+10 f (x) = -3x 2 + 8x- 3 f (1) = -3+ 8-3 = 2. Opgave 2 Se bilag 1 Opgave 3 Givet funktionen DB(x) = -x 2 + 8x, 0 x 10 -x 2 +

Læs mere

Peter Harremoës Mat A eksamen med hjælpemidler 15. december 2014. f (x) = 0. 2x + k 1 x = 0 2x 2 + k = 0 2x 2 = k x 2 = k 2. k 2.

Peter Harremoës Mat A eksamen med hjælpemidler 15. december 2014. f (x) = 0. 2x + k 1 x = 0 2x 2 + k = 0 2x 2 = k x 2 = k 2. k 2. Opgave 6 Se Bilag 3! Funktionen f er givet ved f (x) = x 2 + k ln (x), x > 0. Det oplyses at funktionen har netop ét ekstremum, når k > 0, så x-værdien til dette ekstremum må kunne findes ved at løse ligningen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Campus Vejle HHX Matematik A Ejner Husum

Læs mere

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014 Vejledning til udvalgte opgave fra Matematik B, sommer 2014 Opgave 7 Størrelsen og udbudsprisen på 100 fritidshuse på Rømø er indsamlet via boligsiden.dk. a) Grafisk præsentation, der beskriver fordelingen

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx131-mat/a-705013 Mandag den 7. maj 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013 Matematik A Højere handelseksamen hhx133-mat/a-161013 Mandag den 16. december 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematik A, december 2014 Peter Bregendal

Matematik A, december 2014 Peter Bregendal Delprøven uden hjælpemidler Opgave 1 Se graf nedenfor: Opgave 2 Givet funktionen: P(x) = - 1 2 x 2 + 7x- 20. a) Positivt overskud: - 1 2 x 2 + 7x - 20 = 0 x = -7 ± 72-4 -0,5-20 2-0,5 x = -7 ± 9-1 x = -7

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Campus Vejle HHX Matematik B Ejner Husum

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh101-mat/a-27052010 Torsdag den 27. maj 2010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Jørn Ole Spedtsberg

Læs mere

Samfundsfag og matematik

Samfundsfag og matematik Samfundsfag og matematik Piketty: Kapitalismens 2. grundlæggende lov: β = s/g Lineær regression: y = ax + b Beregninger med Excel: Indekstal = C6/$B6*100. Diagram Chi^2-test: p = 0,04 Brug af egen spørgeskemaundersøgelse

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

Matematik A. Højere handelseksamen. Vejledende opgave 2

Matematik A. Højere handelseksamen. Vejledende opgave 2 Matematik A Højere handelseksamen Vejledende opgave Efterår 01 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen af denne delprøve skal

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx141-mat/a-305014 Fredag den 3. maj 014 kl. 9.00-14.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau A

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau A Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007 07-0-4 Matematik Niveau A Dette opgavesæt består af 7 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige

Læs mere

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0. Opgave 6 Vi sætter P = 1000 og isolerer x i ligningen Se Bilag 2! P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.6 ( 10 y 0.4 )1 /0.6 = x 10 1 /0.6 y 0.4 /0.6 = x x = 10 5 /3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Klasse/hold Fag og niveau Lærer at2hhcmkb11 Matematik B Birgit Paulsen Oversigt over undervisningsforløb 1 Beskrivende statistik 2 Funktioner generelt 3 Lineære funktioner 4 Andengradsfunktioner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / Juni 2013 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Lene Thygesen

Læs mere

Matematik A, vejledende opgave 2, ny ordning. Vejledende løsninger, Peter B. Delprøven uden hjælpemidler. Opgave 1. a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2

Matematik A, vejledende opgave 2, ny ordning. Vejledende løsninger, Peter B. Delprøven uden hjælpemidler. Opgave 1. a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2 Delprøven uden hjælpemidler Opgave 1 a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2 0 = 8 0 = 8 0 2 Opgave 2 a) Først differentierer vi løsningen: y = 10x. Dernæst indsættes løsningen y i y og vi får: y = 2 5x2 x =

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: maj-juni 2011/2012 ZBC Ringsted Hhx Matematik B Jens Jørvad 12hhx21 Oversigt over

Læs mere

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014 Matematik A Højere handelseksamen hh143-mat/a-151014 Mandag den 15. december 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

2. Funktioner af to variable

2. Funktioner af to variable . Funktioner af to variable Opgave 1 Grafisk udformning af de to funktioner,, Opgave f (, y) = z = 5 y N(0) = z = 0 0 = 5 y + y = 5 C = ( ; y) = (0;0) r = 5 Dette medfører som vist en cirkel, med centrum

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B MANY (Mads Schulz

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 14/15

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh123-mat/b-17122012 Mandag den 17. december 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Løsninger til kapitel 14

Løsninger til kapitel 14 Opgave 14.1 a) Linjetilpasningsplottet bliver: Løsninger til kapitel 14 Idet datapunkterne ligger tæt på og jævnt fordelt omkring den rette linje, så ser det ud til, at der med rimelighed er tale om en

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

Hold HH1z grundforløbet 2013 HH1d forår 2014 HH2c/d skoleåret 2014/15 eleverne kommer fra flere forskellige hold på HH1. Grundlæggende matematik

Hold HH1z grundforløbet 2013 HH1d forår 2014 HH2c/d skoleåret 2014/15 eleverne kommer fra flere forskellige hold på HH1. Grundlæggende matematik Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer e-mailadresse Termin hvori undervisningen afsluttes: maj-juni 2015

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik A ( Valghold 1 ) Lærer(e) LSP

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2012 Roskilde

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4.

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4. 1 af 12 MAT A HHX Udskriv siden FACITLISTE TIL KAPITEL 8 Øvelser Øvelse 1 Graf tegnes med CAS. Øvelse 2 Bedste rette linie: Øvelse 3 Bedste rette linie: Øvelse 4 Bedste rette linie: Øvelse 5 ad øvelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) SIPE

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a Matematik A Højere handelseksamen hhx14-mat/a-1808014 Mandag den 18. august 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) Hold LTN

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger

Flemmings Maplekursus 1. Løsning af ligninger Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014 Matematik B Højere handelseksamen hhx142-mat/b-18082014 Mandag den 18. august 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14 Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik C Kenneth Berg k710hhxa1 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2013 IBC-Kolding

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 16/17 Institution Uddannelse Fag og niveau Lærer(e) Hold Haderslev Handelsskole hhx Matematik B Lars

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx132-mat/b-16082013 Fredag den 16. august 2013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Matematik A Delprøven uden hjælpemidler

Matematik A Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 009 HHX091-MAA Matematik A Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 11/12 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Hasse Rasmussen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj-juni 2016 Institution Svendborg Erhvervsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik A Folmer Laursen HH315B Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016/2017, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over planlagte undervisningsforløb

Undervisningsplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over planlagte undervisningsforløb Undervisningsplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2015-2016 Institution Svendborg Erhvervsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jesper

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold CampusVejle, Boulevarden 48, 7100 Vejle HHX Matematik

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2013 Institution Tradium Handelsgymnasiet Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

Opgaver til Kapitel 6 MatB

Opgaver til Kapitel 6 MatB Opgave 1 En funktion i to variable er givet ved f (, ) = + 5 + 0 Indtegn niveauliner svarende til N(0), N(200) og N(400) og illustrér ved hjælp af en pil på niveaulinjerne den retning, hvori niveauet bliver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2012 Institution ZBC Ringsted Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Jacob Debel

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Lineær og kvadratisk programmering med TI NSpire CAS version 3.2

Lineær og kvadratisk programmering med TI NSpire CAS version 3.2 Lineær og kvadratisk programmering med TI NSpire CAS version 3.2 Indhold 1. Lineær programmering i 2 variable: x og y... 1 Eksempel 1: Elementær grafisk løsning i 2d... 1 Eksempel 1: Grafisk løsning i

Læs mere

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A-24052016 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik

Læs mere

MATEMATIK A. Xxxxdag den xx. måned åååå. Kl GL083-MAA. GU HHX DECEMBER 2008 Vejledende opgavesæt. Undervisningsministeriet

MATEMATIK A. Xxxxdag den xx. måned åååå. Kl GL083-MAA. GU HHX DECEMBER 2008 Vejledende opgavesæt. Undervisningsministeriet GU HHX DECEMBER 2008 Vejledende opgavesæt MATEMATIK A Xxxxdag den xx. måned åååå Kl. 10.00 15.00 Undervisningsministeriet GL083-MAA 574604_GL083-MAA_12s.indd 1 16/01/09 15:46:23 Matematik A Prøvens varighed

Læs mere

Modul 12: Exercises. 12.1 Sukkersygepatienters vægt

Modul 12: Exercises. 12.1 Sukkersygepatienters vægt Modul 12: Exercises 12.1 Sukkersygepatienters vægt............... 1 12.2 Newfoundlandske kvinders blodtryk.......... 4 12.3 Korrelationskoefficient.................. 6 12.4 Højde og vægt......................

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2011/2012 Institution Silkeborg Handelsskole/Handelsskolen Silkeborg Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07. Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.54 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve 1: 2

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold CampusVejle, Boulevarden 48, 7100 Vejle HHX Matematik

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007. Matematik Niveau A

Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007. Matematik Niveau A Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007 07-0-1 Matematik Niveau A Dette opgavesæt består af 8 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige

Læs mere

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C MIHY (Michael

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik A Rita Ahrenfeldt hh12okoa11

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven 2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh121-mat/a-04062012 Mandag den 4. juni 2012 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/a-19122011 Mandag den 19. december 2011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er

Læs mere