Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Størrelse: px
Starte visningen fra side:

Download "Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i."

Transkript

1 Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og b som to n 1 matricer. b 1 a b = [ ] b 2 a 1 a 2 a n a 1b 1 + a 2 b 2 + a n b n = b n n a i b i. i=1 1 / 28 2 / 28 Multipel Lineære Regression Den i te observation fra en multipel lineære regressions model skrives som y i = β 0 + β 1 x i1 + β 2 x i2 + + β k x ik + u i, hvor x ij er værdien af den j te forklarende variable hørende til den i te observation. For den i ter observation definer en 1 (k + 1) rækkevektor x i = [ 1 x i1 x i2 x ik ] Bemærk vi har x i0 = 1. Definer parameter (søjle)vektor β = [ β 0 β 1 β 2 β k ] Vi har nu y i = k x ij β j + u i = x i β + u i. j=0 Som matrix-ligning For hvert i = 1,..., n har vi y i = x i β + u i. y 1 x 1 β + u 1 x 1 u 1 y 2 x 2 β + u 2 x 2. β + u 2. y n x n β + u n x n u n Hvilket kan skrives som y = Xβ + u, hvor y og u er n 1 søjle-vektorer og X er en n (k + 1) matrix. Matricen X kaldes også design-matricen. 3 / 28 4 / 28

2 Design-matricen Design-matricen er en n (k + 1) matrice, bestående af værdiene for de k forklarende variable for de n observationer. x 1 1 x 11 x 12 x 1k x 2 X = 1 x 21 x 22 x 2k. = [ x (0) x (1) x (2) x (k)], x n 1 x n1 x n2 x nk hvor x 1j x (j) x 2j =. er en søjle-vektor af de n værdier for den j te forklarende variabel. x nj Estimationsstrategi Vores model: y = Xβ + u Lad ˆβ være et estimat af den sande, men ukendte parameter β Definer den prædikterede værdi som ŷ i = x i ˆβ og residual vektoren som û i = y i ŷ i = y i x i ˆβ. Summen af de kvadrerede residualer er n n RSS = ûi 2 = (y i x i ˆβ) 2 i=1 i=1 Vi vil finde ˆβ så RSS er mindst mulig! 5 / 28 6 / 28 Minimere RSS Vi har altså RSS = n i=1 (y i x i ˆβ) 2. For at minimere differentierer vi mht. ˆβ og sætter lig nul: RSS ˆβ Det kan vi skrive om til = 2 som igen kan skrives om til n x i(y i x i ˆβ) = 0 i=1 X (y X ˆβ) = 0 Repetition: Invertible matricer En kvadratisk matrix A er invertibel, hvis der findes en matrix A 1, så AA 1 = A 1 A = I, hvor I er identitets-matricen. Hvis alle søjler i X er lineært uafhængige (MLR.3), så er X X invertibel med symmetrisk invers matrix (X X) 1. Dvs. (X X)(X X) 1 = (X X) 1 (X X) = I. Matricerne X X og (X X) 1 er desuden symmetriske. Vi skal bare have isoleret ˆβ. X y = X X ˆβ. 7 / 28 8 / 28

3 Repetition: Lineær uafhængighed Tilbage på sporet Defintion: Linært uafhængighe vektorer Vektore x (0), x (1), x (2),..., x (k) er lineært uafhængige, hvis og kun hvis den eneste løsning til a 0 x (0) + a 1 x (1) + a 2 x (2) + + a k x (k) = 0, er at a 0 = a 1 = = a n = 0. Eksempel: Hvis x (1) og x (2) er prisen i hhv. euro og dollar, så har vi lineær afhængighed. I almindeligehed er dette ikke et problem. Men er to eller flere søjler tæt på at være lineært afhængige, så kan variansen af de tilsvarende estimatore være store. Vi finder OLS estimatet ˆβ ved at løse ligningen X y = X X ˆβ. Antag at X X er invertibel. Da har vi X X ˆβ = Xy (X X) 1 X X ˆβ = (X X) 1 Xy ˆβ = (X X) 1 Xy Da vi har fundet ˆβ ved at minimere RSS = n i=1 û2 i kaldes ˆβ en OLS (Ordinarly Least Squares) estimator. 9 / / 28 Middelværdi for stokastisk vektor Lad z 1,..., z n være stokastiske variable, hvor E[z i ] = µ i. Definer stokastisk (søjle)vektor z = [z 1 z 2 z n ]. Den forventede værdi af z er E[z 1 ] µ 1 E[z 2 ] E[z] = µ 2 µ E[z n ] µ n Lad A være en k n ikke-stokastisk matrix og b være en k 1 ikke-stokastisk vektor. Da gælder E[Az + b] = AE[z] + b. Varians for stokastiske vektorer Antag z er en n 1 stokastisk vektor med middelværdi E[z] = µ. Varians-kovarians-matricen Varians-kovarians-matricen for stokastisk vektor z er en n n matrix givet ved Σ = Var[z] = E[(z µ)(z µ) ]. Lad σ ij = Cov(z i, z j ) være kovariansen mellem z i og z j. Da gælder σ 2 1 σ 12 σ 1n σ 21 σ2 2 σ 2n Var[z] =., σ n1 σ n2 σn 2 hvor σ 2 i = σ ii = Cov(z i, z i ) = Var[z i ]. 11 / / 28

4 Regneregler for Varians Antagelser Lad A være en k n ikke-stokastisk matrix og b være en k 1 ikke stokastisk vektor. Da gælder Var[Az + b] = AVar[z]A. Antagelse E.1 (Lineær i parametrene) Modellen kan skrives som y = Xβ + u. Antagelse E.2 (Ingen perfekt kolinearitet) Design-matricen X har fuld rang. Antagelse E.3 (Betinget nul-middelværdi) De betingede middelværdier E[u i X] = 0 for i = 0,..., n. 13 / / 28 Sætning E.1: (OLS estimaterne er unbiased) Under antagelserne E.1 til E.3 er OLS estimatoren ˆβ unbiased. Bevis: Vi har ˆβ = (X X) 1 X y = (X X) 1 X (Xβ + u) = (X X) 1 (X X)β + (X X) 1 X u = β + (X X) 1 X u. Den betingede middelværdien af ˆβ givet X er da E[ ˆβ X] = β + (X X) 1 X E[u X] = β + (X X) 1 X 0 = β. Som i MLR.5 har vi brug for at antage at alle fejlled har samme varians: Antagelse E.4 (Homoskedastiske fejlled) (i) Var(u i X) = σ 2, i = 1,..., n, (ii) Cov(u i, u s X) = 0, for alle t s. På matrix form kan disse to antagelse skrives som σ σ 2 0 Var(u X) =. = σ2 I, 0 0 σ 2 hvor I er n n identitets matricen. 15 / / 28

5 Kovarians-matricen for OLS estimatoren Sætning E.2: (Kovarians-matricen for OLS estimatoren) Under antagelse E.1 til E.4 har vi Var[ ˆβ X] = σ 2 (X X) 1. Bevis: Var[ ˆβ X] = Var[(X X) 1 X (Xβ + u) X] = (X X) 1 X Var[u X]((X X) 1 X ) = (X X) 1 X Var[u X]X(X X) 1 = (X X) 1 X (σ 2 I)X(X X) 1 = σ 2 (X X) 1 X X(X X) 1 = σ 2 (X X) 1 Normalfordelte fejlled Sidst gennemgik vi antagelserne MLR.1 til MLR.5 der gav os estimatore for β i erne og σ 2 der var unbiased. Nu vi vil gerne teste hypoteser som H 0 : β 1 = 0 vs H 1 : β 1 0. Hypotesetest kræver en fordelingsantagelse: Antagelse MLR.6 (Normalfordelte fejlled) Fejlledene u i er indbyrdes uafhængige og uafhængige af de forklarende variable x 1, x 2,..., x n og er normalfordelte med middelværdi nul og fælles varians σ 2 : u i N (0, σ 2 ). Med mindre alle søjlerne X er vinkelrette på hinanden, så vil der være en korrelation mellem de enkelte ˆβ j er. 17 / / 28 Normalfordelte estimatore Sætning 4.1: (Normalfordelte estimatore) Under antaglese MLR.1 til MLR.6 og betinget af de forklarende variable har vi: ˆβ j N (β j, Var[ ˆβ j ]), hvor Var[ ˆβ j ] = σ 2 /(SST j (1 Rj 2 )). Hvis vi standardiserer får vi ˆβ j β j N (0, 1). Var[ ˆβ j ] Bemærk: Vi har benyttet den ukendte varians σ 2. Normaltfordelte estimatore: Matrix-vejen Antagelsen om at u i erne er uafhængige og u i N (0, σ 2 ) kan skrives som u N n (0, σ 2 I). N n er notation for en n dimensional normalfordeling. Vi har fra tidligere ˆβ = (X X) 1 X y = (X X) 1 X (Xβ + u) = β + (X X) 1 X u. Vi kender allerede middelværdi og varians for ˆβ, så da en lineær transformation af en normalfordelt stokastisk vektor også er normalfordelt har vi ˆβ N k+1 ( β, σ 2 (X X) 1). 19 / / 28

6 z Eksempel på to-dimensional normalfordeling To dimensional Normalfordeling t-fordelte standardiserede estimatore Hvis vi erstatter den ukendte varians σ 2 med vores estimator ˆσ 2 ender vi med en t-fordeling: x1 x Sætning 4.2: (t fordelte standardiserede estimatore) Under antagelse MLR.1 til MLR.6 gælder ˆβ j β j se( ˆβ j ) t n k 1, hvor de n k 1 er antallet af frihedsgrader. De k + 1 svarer til antallet af ukendte β j er i modellen. Ovenfor har vi brugt standardfejlen (standard error): se( ˆβ j ) = ˆσ 2 /(SST j (1 Rj 2)) Bemærk: se( ˆβ j ) er et konsistent estimat af Var( ˆβ j ). 21 / / 28 Hypotese-test Vi vil gerne teste hypotesen H 0 : β j = 0 H 1 : β j 0 Nul-hypotesen siger at x j ikke har noget betydning for y, når der er taget højde for alle de andre forklarende variable. Under antagelse af MLR.1 til MLR.6 og at H 0 er sand har vi p-værdier Definition: (p-værdi) En p-værdi er sandsynligheden for at observere en mindst lige så ekstrem teststørrelse næste gang, hvis alle modelantagelser (fx. MLR.1 til MLR.6) er opfyldt og H 0 er sand. Antag T t n k 1, da er p-værdien hørende til H 0 : β j = 0 vs H 1 : β j 0 givet ved t ˆβ j ˆβ j se[ ˆβ j ] t n k 1. P[ T > t ˆβ j ] t ˆβj 0 t ˆβj T Bemærk: t ˆβ j er et eksempel på en teststørrelse. Bemærk: jo længere t ˆβ j er fra nul, jo mindre tror vi på H 0. Beslutning: Hvis p-værdien er mindre end vores signifikans-niveau α, så afviser vi H 0 ellers er konklsusionen, at vi ikke kan afvise H 0. Typisk vælger vi signifikans-niveauet til α = / / 28

7 R-eksempel Datasættet lilleby indeholder oplysninger om bl.a. højde, alder og vægt for 50 tilfældigt udvalgte københavnere. Vi vil analysere modellen vaegt β 0 + β 1 hoejde + β 2 alder + u. Det gør vi i R med kommadoen model = lm(vaegt ~ hoejde + alder, data=lilleby) Resultater Som sidst opsummeres modellen og resultater med summary(model): Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) *** hoejde e-07 *** alder ** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 47 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 2 and 47 DF, p-value: 3.631e-07 Vi kan bl.a. se ˆβ 0 = og t ˆβ j = / = Hypotese test af H 0 : β 0 = 0 vs H 1 : β 0 0 har p-værdi på , dvs. vi afviser nul-hypotesen. Bemærk også at vi har 47 firhedsgrader (n k 1 = ). 25 / / 28 En-sidet test Konfidensintervaller Antag vi ønsker at teste følgende hypoteser H 0 : β j 0 H 1 : β j < 0 I dette tilfælde, jo mindre t ˆβ j er, jo mindre tror vi på H 0. Hvis T t n k 1, så er p-værdien givet ved P[T < t ˆβ j ] t ˆβj 0 T Bemærk: R returnerer altid P[ T > t ˆβ j ] (svarende til H 0 : β j = 0 vs H 1 : β j 0). Hvis man laver en lille tegning kan man nemt finde ovestående sandsynlighed. Definition: Konfidensinterval for β j Et (1 α)100% kofidensinterval for β j er givet ved ˆβ j ± t n k 1,α/2 se( ˆβ j ), hvor t n k 1,α/2 er (α/2)100% fraktilen i en t-fordeling med n k 1 frihedsgrader. I R: confint(model,level=0.95), hvor model er modellen. Bemærk: Antag vi vil teste hypotesen H 0 : β j = K H 1 : β j K Hvis afviser H 0 hypotesen, hvis K falder udenfor (1 α)100% kofidensintervallet, så svarer det til at teste på normal vis med et signifikans-niveau på α. 27 / / 28

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund mail@jesperlund.com http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: maj-juni 2011/2012 ZBC Ringsted Hhx Matematik B Jens Jørvad 12hhx21 Oversigt over

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test) Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Introduktion til Statistiske Modeller for Finansielle Tidsserier. Forelæsningsnoter til Finansiel Økonometri

Introduktion til Statistiske Modeller for Finansielle Tidsserier. Forelæsningsnoter til Finansiel Økonometri Introduktion til Statistiske Modeller for Finansielle Tidsserier Forelæsningsnoter til Finansiel Økonometri Jesper Lund mail@jesperlund.com http://www.jesperlund.com 14. marts 2006 1 Indledning Formålet

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics)

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics) MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics) DANMARKS TEKNISKE UNIVERSITET 6 udgave 005 FORORD Dette notat kan læses på baggrund af en statistisk viden

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0. Opgave 6 Vi sætter P = 1000 og isolerer x i ligningen Se Bilag 2! P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.6 ( 10 y 0.4 )1 /0.6 = x 10 1 /0.6 y 0.4 /0.6 = x x = 10 5 /3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 2013/14

Læs mere

Bilag 1: Beregning af omkostningsækvivalenter

Bilag 1: Beregning af omkostningsækvivalenter Bilag 1: Beregning af omkostningsækvivalenter Bilaget indeholder den tekniske beregning af omkostningsækvivalenterne til brug for benchmarkingen 2013. FORSYNINGSSEKRETARIATET FEBRUAR 2013 INDLEDNING...

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

MønsterGenkendelse Forår 2001. S. I. Olsen

MønsterGenkendelse Forår 2001. S. I. Olsen MønsterGenkendelse Forår 2001 S. I. Olsen Dette skrift er 3. udkast til et notesæt til brug i kurset Mønstergenkendelse. Noterne dækker primært områderne: Statistiske mønstergenkendelse, Klyngeanalyse,

Læs mere

Flerniveau modeller. Individuelt studieforløb. Efterårssemesteret 2002. Folkesundhedsvidenskab ved Københavns Universitet

Flerniveau modeller. Individuelt studieforløb. Efterårssemesteret 2002. Folkesundhedsvidenskab ved Københavns Universitet Individuelt studieforløb Efterårssemesteret 2002 Flerniveau modeller Folkesundhedsvidenskab ved Københavns Universitet Vejleder: Jørgen Holm Petersen Eksamensnummer 20 Indholdsfortegnelse 1. Indledning...3

Læs mere

Statistisk bearbejdning af overvågningsdata - Trendanalyser

Statistisk bearbejdning af overvågningsdata - Trendanalyser Danmarks Miljøundersøgelser Miljøministeriet Teknisk anvisning fra DMU nr. 4, 006 Statistisk bearbejdning af overvågningsdata - Trendanalyser NOVANA (Tom side) Danmarks Miljøundersøgelser Miljøministeriet

Læs mere

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal Delprøven uden hjælpemidler Opgave 1 a) Se graf: Opgave 2 a) f (x)= 25000x + 475000 År hvor værdien er 150000: 25000x + 475000 = 150000 25000x = 325000 x = 13 I år 2025 vil værdien være faldet til 150000

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hfe Mat A Viktor Kristensen

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

Byggeøkonomuddannelsen

Byggeøkonomuddannelsen Byggeøkonomuddannelsen Risikoanalyse Successiv kalkulation Ken L. Bechmann 18. november 2013 1 Dagens emner Risikoanalyse og introduktion hertil Kalkulation / successiv kalkulation Øvelser og småopgaver

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Økonomisk Kandidateksamen 2003II Økonometri 1. Værdisætning af skov

Økonomisk Kandidateksamen 2003II Økonometri 1. Værdisætning af skov Økonomisk Kandidateksamen 2003II Økonometri 1 Værdisætning af skov Praktiske anvisninger til individuel tag-hjem eksamen i Økonometri 1: Start med at sikre dig at du kan få adgang til data, opgavetekst

Læs mere

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b stk. Peter Harremoës Matematik A med hjælpemidler 16. december 2013 Opagve 6 Variables a isoleres: M = S 1 + a = a + b b a b a = b 1 ( ) 1 b 1 a = b 1 a = b 1 1 b 1 a = b Hvis b = 1, så gælder ligningen

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

B3: Strategi, marked og produktion. F2003 Obligatorisk Opgave 1

B3: Strategi, marked og produktion. F2003 Obligatorisk Opgave 1 B3: Strategi, marked og produktion. F2003 Obligatorisk Opgave 1 Svend Hylleberg, Claus Thrane Jensen, Per Baltzer Overgaard og Michael H.J. Stæhr 10.4.2003 Abstract Udleveret materiale findes på Obligatorisk_1_03_udl.xls

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 3 udgave 03 FORORD Dette notat giver en

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n =

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n = Opgave 6 a) Se Bilag 2! b) Variablen n isoleres ( L = 2 z 1 α 2 ) 2 L = 2 z 1 α 2 L = 2 z 1 α 2 n = ( ˆp (1 ˆp) n ˆp (1 ˆp) n ˆp (1 ˆp) ( n ( ˆp (1 ˆp) ) 1/2 ) 2 L 2 z 1 α 2 n ) 1/2 Opgave 7 n = 4ˆp (1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11.

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010/11 Institution Uddannelse Fag og niveau Lærer(e) Hold Zealand Business College Hhx Matematik

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005 Hierarkiske generaliserede lineære modeller Lee og Nelder, Biometrika (21) 88, pp 987-16 Dagens program: Mandag den 2. maj Hierarkiske generaliserede lineære modeller - Afslutning Hierarkisk generaliseret

Læs mere

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder Spar Nord Banks ansøgningsscoremodel - et ekspertbaseret ratingsystem for nye udlånskunder Mål for ansøgningsscoremodel Rating af nye udlånskunder som beskrives vha. en række variable: alder, boligform,

Læs mere

Baggrundsnotat: Modelteknisk

Baggrundsnotat: Modelteknisk Sekretariatet for Energitilsynet Baggrundsnotat: Modelteknisk materiale Store forskelle i varmepriserne hvorfor? Center for Varme Tekniske bilag I dette baggrundsnotat gennemgås de økonometriske forhold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2013 IBC-Kolding

Læs mere

IDRÆTSSTATISTIK BIND 1

IDRÆTSSTATISTIK BIND 1 IDRÆTSSTATISTIK BIND 1 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN 87-87436-05-1 Bd.1 iii Forord Denne bog er skrevet til brug i et statistikkursus

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005 TEKST NR 435 2004 BASISSTATISTIK Jørgen Larsen 2004, 2005 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING OG ANVENDELSER

Læs mere

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier

Læs mere

Lær nemt! Statistik - Kompendium

Lær nemt! Statistik - Kompendium David Brink Lær nemt! Statistik - Kompendium Ventus wwwventusdk Lær nemt! Statistik - Kompendium 005 David Brink Nielsen og Ventus Download kompendiet gratis på wwwventusdk ISBN 87-7681-01-7 Ventus Falkoner

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 9. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 OPSAMLING EKSAKTE MODELLER Fordele: Praktiske til initierende analyser/dimensionering

Læs mere

SimHerd online regnemodul til beregning af Rotavec Corona gevinst

SimHerd online regnemodul til beregning af Rotavec Corona gevinst SimHerd online regnemodul til beregning af Rotavec Corona gevinst Jehan Ettema, 16. januar 2014 Indholdsfortegnelse Overordnet beskrivelse... 1 Analysen... 2 Beskrivelse af 3 scenarier... 2 Simuleringseksperimentet...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Vektorregning. Vektorer som lister

Vektorregning. Vektorer som lister 10 Vektorregning Vektorer som lister En vektor laves nemmest som en liste på TI-89 Titanium / Voyage 200. I nedenstående skærmbillede ser du, hvordan man definerer vektorer og laver en simpel udregning

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

Indholdsfortegnelse 1. INDLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 2 2. LÆSEVEJLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 3

Indholdsfortegnelse 1. INDLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 2 2. LÆSEVEJLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 3 Indholdsfortegnelse 1. INDLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 2 2. LÆSEVEJLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 3 3. TEORETISK UDGANGSPUNKT (1072:872) 3 3.1 FORFORSTÅELSE AF SUNDHED

Læs mere

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter.

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Eksempel I Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Per Bruun Brockhoff IMM DTU 02402 Eksempler 1 Eksempel I Tiden mellem kundeankomster på et posthus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2. juni 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding (tovholder) VUC Vest, Stormgade 47,

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Statistisk forsøgsplanlægning. med benyttelse af Statgraphics

Statistisk forsøgsplanlægning. med benyttelse af Statgraphics MOGENS ODDERSHEDE LARSEN Statistisk forsøgsplanlægning med benyttelse af Statgraphics Vekselvirkning CD 10 8 C 1 udbytte 6 4 0 1 3 4 D 11 udgave 00, DTU FORORD Dette notat er baseret på at de studerende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Handelsskolen Silkeborg Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Frede

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

EVALUERINGSENHEDEN. Analyse af karaktereffekten af. deltagelse i manuduktion på HA 2. år. Copenhagen Business School

EVALUERINGSENHEDEN. Analyse af karaktereffekten af. deltagelse i manuduktion på HA 2. år. Copenhagen Business School EVALUERINGSENHEDEN Copenhagen Business School Analyse af karaktereffekten af deltagelse i manuduktion på HA 2. år 12. april 2011 INDHOLD 1. Undersøgelsens metode og formål 3 1.1. Evalueringernes gennemførelse.

Læs mere

Fortolkning, illustration mm. af interaktion i lineære regressionsmodeller ved hjælp af MS Excel og SPSS

Fortolkning, illustration mm. af interaktion i lineære regressionsmodeller ved hjælp af MS Excel og SPSS Fortolkning, illustration mm. af interaktion i lineære regressionsmodeller ved hjælp af MS Excel og SPSS KIM MANNEMAR SØNDERSKOV Tlf. 8942 1260 E-mail: ks@ps.au.dk INSTITUT FOR STATSKUNDSKAB AARHUS UNIVERSITET

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

IDRÆTSSTATISTIK BIND 2

IDRÆTSSTATISTIK BIND 2 IDRÆTSSTATISTIK BIND 2 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN 87-87436-07-8 Bd.2 iii Forord Denne bog er skrevet til brug i et statistikkursus

Læs mere

Variansanalyse (ANOVA)

Variansanalyse (ANOVA) 3 / 46 2 / 46 4 / 46 Faculty of Health Sciences Indhold dag 2 Variansanalyse (ANOVA) Ulla B Mogensen Biostatistisk Afd., SUND, KU. Mail: ulmo@sund.ku.dk T-testet fra dag 1 Ensidet variansanalyse. Modelkontrol.

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere