Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling
|
|
|
- Dagmar Madsen
- 9 år siden
- Visninger:
Transkript
1 Disrete fordelinger Fire vigtige disrete fordelinger: 1. Uniform fordeling (disret) 2. Binomial fordeling 3. Hyper-geometris fordeling 4. Poisson fordeling 1
2 Uniform fordeling Definition Esperiment med lige sandsynlige udfald. Definition: Lad X: S R være en disret stoastis variabel. Hvis aldes fordelingen af X en (disret) uniform fordeling eller ligefordeling. 2 P(X = ) = P(X = ) = LP(X = ) = Sandsynlighedsfuntion: Fordelingsfuntion: 1 f( : ) = F( : ) = for for = = 1 1, 1 2,, K, 2, K,
3 Uniform fordeling Esempel Esempel: Kast med terning f() X: # øjne Middelværdi: E(X) = = Varians: Var(X) = = (1-3.5) (6-3.5) Sandsynlighedsfuntion: Fordelingsfuntion: 1 f( : 6) = 6 F( : 6) = 6 for = 1,2, K,6 for = 1,2, K,6
4 Uniform fordeling Middelværdi & varians Sætning: Lad X være uniform fordelt med mulige udfald 1, 2,, Da gælder i i= 1 middelværdi af X: E(X) = μ = varians af X: Var(X) = i= 1 ( i μ) 2 4
5 Binomial fordeling Bernoulli proces Gentagelse af forsøg med to mulige udfald. Bernoulli proces: 1. Esperimentet består af n gentagelser af samme forsøg. 2. Hvert forsøg har 2 mulige udfald: succes eller fiaso, også aldet et Bernoulli forsøg. 3. P( succes ) = p er ens for alle forsøg. 4. Forsøgene er uafhængige. 5
6 Binomial fordeling Bernoulli proces Definition: Lad den stoastise variabel X angive antal succes er i n Bernoulli forsøg. Fordelingen af X aldes en binomial fordeling med antalsparameter n og sandsynlighedsparameter p, hvor p = P( succes ). Notation: X ~ bn(n,p) 6
7 Binomial fordeling Sandsynligheds- & fordelingsfuntion Sætning: Hvis X ~ bn( n, p ), så har X sandsynlighedsfuntion n n b(;n,p) = P(X = ) = p (1 p), = 0,1,2, K,n n!!(n )! og fordelingsfuntion B(;n,p) = P(X ) = b(t;n,p), t= 0 = 0,1,2, K,n (se TabelA.1) 7
8 Binomial fordeling Opgave BILKA har mulighed for at afvise et parti batterier, hvis de ie opfylder BILKA s accept-politi: Der udtages en stiprøve på 20 batterier: Hvis ét eller flere batterier ie virer, asseres hele partiet. Antag, der modtages et parti, hvor 10% ie virer. 1. Hvad er sandsynligheden for, at hele partiet asseres? 2. Hvad er sandsynligheden for, at højst 3 ie virer? 8
9 Binomial fordeling Middelværdi & varians Sætning: Hvis X ~ bn(n,p), så er middelværdi af X: varians af X: E(X) = np Var(X) = np(1-p) Esemplet fra før: Hvad er det forventede antal batterier, der ie virer? 9
10 Hyper-geometris fordeling Hyper-geometris forsøg Hyper-geometris forsøg: 1. n elementer udtages ud af N elementer uden tilbagelægning. 2. af de N elementer er succes er og N- er fiaso er Bemær!! I modsætning til binomial fordeling er det uden tilbagelægning og forsøgene ie uafhængige. Bruges ofte i valitetsontrol. 10
11 Hyper-geometris fordeling Definition Definition: Lad den stoastise variabel X angive antal succes er i et hyper-geometris forsøg, hvor der udtages n elementer ud af N elementer, hvoraf er succes er og N-er fiaso er. Fordelingen af X aldes en hyper-geometris fordeling. Notation: X ~ hg(n,n,) 11
12 Hyper-geometris fordeling sandsynligheds- og fordelingsfuntion Sætning: Hvis X ~ hg( N, n, ), så har X sandsynlighedsfuntion N n h(;n,n,) P(X ) = = =, = 0,1,2, K,n N og fordelingsfuntion n H(;N,n,) = P(X ) = h(t;n,n,), t= 0 = 0,1,2, K,n 12
13 Hyper-geometris fordeling Opgave Føte modtager et parti batterier på 40 sty. Partiet er uacceptabelt, hvis 3 eller flere batterier er defete. Stiprøveplan: udtag 5 batterier. Hvis et batteri ie virer, asseres hele partiet. Hvad er sandsynligheden for, at netop et batteri ie virer, hvis der er 3 defete i hele partiet? Er det en god stiprøveplan? 13
14 Hyper-geometris fordeling Middelværdi & varians Sætning: Hvis X ~ hg(n,n,), så er middelværdi af X: varians af X: n E(X) = N N n Var(X) = N 1 n N 1 N 14
15 Poisson fordeling Poisson proces Esperiment, hvor samme hændelse observeres i et tidsinterval. Poisson proces: 1. # hændelsen indtræffer i [a,b] er uafhængigt # hændelsen indtræffer i [c,d], hvor a<b<c<d 2. Sandsynligheden for 1 hændelse i et lille tidsinterval [a, a + ε ] er proportional med ε. 3. Sandsynligheden for mere end 1 hændelse i lille tidsinterval tæt på 0. } No memory 15
16 Poisson fordeling Definition Definition: Lad den stoastise variabel X angive antal hændelser i tidsintervallet t fra en Poisson proces, hvor gennemsnitlig # hændelser pr. tidsenhed er λ. Fordelingen af X aldes en Poisson fordeling med parameter μ = λt. Notation: X ~ pois(μ), hvor μ = λt 16
17 Poisson fordeling Sandsynligheds- & fordelingsfuntion Sætning: Hvis X ~ pois(μ), så har X sandsynlighedsfuntion p(;μ) = P(X = ) = μ e μ!, = 0,1,2,K og fordelingsfuntion P(; μ) = P(X ) = p(t;μ), t= 0 = 0,1,2, K (se TabelA.2) 17
18 Poissonfordeling Esempler Nogle esempler X ~ pois(μ) : X ~ pois( 2 ) X ~ pois( 4 ) f() 0,4 0,3 0,2 f() 0,4 0,3 0,2 0,1 0,1 0 =0 =1 =2 =3 =4 =5 =6 =7 0 =0 =2 =4 =6 =8 18
19 Poissonfordeling Middelværdi & varians Sætning: Hvis X ~ pois(μ), så er middelværdi af X: varians af X: E(X) = μ Var(X) = μ 19
20 Poissonfordeling Opgave Netto har lavet lidt research: På hverdagsformiddage ommer der gennemsnitlig 3 under minuttet. 1. Hvad er sandsynligheden for, at der ommer 2 under mellem ? 2. Hvad er sandsynligheden for, at der ommer mindst 2 under i det samme interval? 3. Hvad er sandsynligheden for, at der ommer mindst 10 under mellem ? 20
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.
Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet
Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800
Teoretisk Statistik, 13 april, 2005
Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1
Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen
Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer
Vejledende løsninger til opgaver i kapitel 6
Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22
Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: [email protected]
Grundlæggende statistik Lektion 2 Indhold Diskrete fordelinger Binomial fordelingen Poisson fordelingen Hypergeometrisk fordeling Data typer el. typer af tilfældige variable Diskrete variable > Kategoriseres
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1
Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april 2009 1/28 Landmålingens
Løsninger til kapitel 5
1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),
Karakteristiske funktioner og Den Centrale Grænseværdisætning
E6 efterår 1999 Notat 10 Jørgen Larsen 20. oktober 1999 Karakteristiske funktioner og Den Centrale Grænseværdisætning Karakteristiske funktioner som er nære slægtninge til Fourier-transformationen) er
Hvad skal vi lave i dag?
p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.
02402 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel 4
0202 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel Hjemmeopgaver Vejledende løsning.2 Eksperimentet kan beskrives ved binomialfordelingen, X b(x; n, p), hvor n = og p = 1 2. Dermed kan man
4 Sandsynlighedsfordelinger og approksimationer
4 Sandsynlighedsordelinger og approksimationer 4. Sandsynlighedsordeling or specielle diskrete variable 4.. Bernoulliordelingen En indikatorvariabel (dummyvariabel) er en variabel, som viser (indikerer)
Sandsynlighedsregning Oversigt over begreber og fordelinger
Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)
Sandsynlighed og Statistik
36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,
Opgaver i sandsynlighedsregning
Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
INSTITUT FOR MATEMATISKE FAG c
INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: [email protected] Dataanalyse Sandsynlighed og stokastiske
Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.
Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder
Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen
Teoretisk Statistik, 16. februar Generel teori,repetition
1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske
CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)
CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Løsning til prøveeksamen 1
IMM - DTU 020 Probability 2006-2-8 BFN/bfn Løsning til prøveeksamen Spørgsmål ) For en indikatorvariabel I A for hændelsen A gælder E(I A ) = P(A) (se for eksemepl side 68). Således er E(X) = P(N ) = =
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1
Løsning til eksamen 16/
1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Susanne Ditlevsen Institut for Matematiske Fag susanne
Statistik og Sandsynlighedsregning 1 Repetition MS kapitel 1 3 Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne Hvad er sandsynlighed? - beskriver systemer
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Binomialfordelingen. Binomialfordelingen. Binomialfordelingen
Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige
Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen
Vigtigste nye emner i.,. og.5 Sandsynlighedsregning. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Siene Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: [email protected] Binomialfordelingen
2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:
Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.
CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning
CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)
CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)
Uge 10 Teoretisk Statistik 1. marts 2004
1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt
Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.
Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population
hvor a og b er konstanter. Ved middelværdidannelse fås videre
Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den
