CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : Kursus navn: Sandsynlighedsregning

Størrelse: px
Starte visningen fra side:

Download "CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning"

Transkript

1 CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord nr Der er i alt 30 spørgsmål fordelt på 30 opgaver, benævnt opgave,,..., 30 i teksten. De enkelte spørgsmål er ligeledes nummereret og angivet som spørgsmål,,...,30 i teksten. Bevarelserne af de 30 spørgsmål føres ind i nedenstående skema. Spørgsmål Svar Spørgsmål Svar Svarmulighederne for hvert spørgsmål er nummereret fra til 6. Indføres et forkert nummer i skemaet, kan dette rettes ved at sværte det forkerte nummer over og anføre det rigtige nedenunder. Er der tvivl om meningen med en rettelse, betragtes spørgsmålet som ubesvaret. Kun forsiden skal afleveres. Afleveres blankt eller forlades eksamen i utide, skal forsiden alligevel afleveres. Kladde, mellemregninger og bemærkninger tillægges ingen betydning, kun tallene indført ovenfor registreres. Der gives 5 point for et korrekt svar og for et ukorrekt svar. Ubesvarede spørgsmål eller et 6-tal svarende til ved ikke giver 0 point. Det antal point, der kræves for, at et sæt anses for tilfredstillende besvaret, afgøres endeligt ved censureringen af sættene. Husk at forsyne opgaveteksten med navn, underskrift og bordnummer. Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder er meningsfulde. Sættets sidste side er nr 9; blad lige om og se, at den er der. I teksten benyttes betegnelsen log for naturlige logaritmer, dvs. logaritmer med grundtal e.

2 Opgave En 0 årig pige samler på figurer fra pakker med morgenmadsprodukter. Der er 5 forskellige typer af figurer, der antages at forekomme lige hyppigt. Spørgsmål Sandsynligheden for, at pigen får fem forskellige figurer fra de fem første pakker, hun åbner, er: Opgave Spørgsmål Levetiden af en type komponenter kan beskrives ved identisk fordelte ikke negative stokastisk variable X i med en hazard-rate hx, der vokser med x: Gamle komponenter har en større fejlhyppighed end unge. Gamle komponenter har en mindre fejlhyppighed end unge. 3 Fejlhyppigheden er den samme for unge og gamle komponenter, men der er flere unge. 4 Det kan ikke lade sig gøre at have en hazardrate der er voksende for alle x > 0. 5 Oplysningerne er ikke tilstrækkelige til at man kan sige noget generelt.

3 Opgave 3 En æggeproducent har på et givet tidspunkt et problem med salmonellaforurening af æg. Antag, at sandsynligheden for, at et tilfældigt valgt æg er forurenet med salmonella er ρ, og at forekomsten af salmonella mellem forskellig æg i en æggebakke kan antages at være uafhængig. Spørgsmål 3 Sandsynligheden for, at der er højst æg med salmonella i en bakke med 0 æg er: i=0 0ρ i i! e 0ρ ρ 0 + 0ρ 9 ρ + 45ρ 8 ρ 0ρ 0 0ρ 0ρ ρ + 0 0ρ 0 0ρ ρ 0 + 0ρ ρ ρ ρ Φ 0ρ 0ρ ρ hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 3

4 Opgave 4 Vi betragter en stokastisk variabel X, der følger en gamma, λ fordeling. Man danner en ny variabel Y = X. Spørgsmål 4 Tæthedsfunktionen f Y y findes til f Y y = λ y 3 e λ y f Y y = λ y e λ y 3 f Y y = λ y e λ y 4 f Y y = λ ye λy 5 f Y y = λ ye λ y Opgave 5 En mand slår med en fair terning indtil han to gange i træk får det samme antal øjne. Lad X betegne det samlede antal slag han bruger. Spørgsmål 5 Bestem sandsynligheden PX = k for k N. 5 6 k 6, k {,,3,...} 5 6 k 6. k {,3,4,...} 3 6, k {,,3,4,5,6} 4, k {,,3,...,36} 36 5 k k 4

5 Opgave 6 En kontinuert stokastisk variabel X har en tæthed fx som angivet på figuren. fx /6 Spørgsmål 6 Fordelingsfunktionen Fx for X er Fx = Fx = 3 Fx = 4 Fx = 5 Fx = x+ 6 x < x+3 6 x < 6 x 6 x x+ 3 x < 3 x < x 3 x x+ x < x+3 x < x x x + x < x < x x x x < x 3 + x < x x 5

6 Opgave 7 Til beskrivelse af den tid i sekunder, det tager at downloade en given hjemmeside, benyttes en stokastisk variabel X med EX = s og varians V arx = 4 s. Spørgsmål 7 En bedste øvre grænse for PX > 5s findes til Φ 5 hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. Opgave 8 Til en militær operation skal udtages en gruppe på 5 personer. De 5 personer skal tages fra en gruppe af 40 personer, hvoraf man ved, at har et særligt veludviklet nattesyn. Idet man ikke ønsker at forskelsbehandle, udtages de 5 personer tilfældigt. Spørgsmål 8 Sandsynligheden for, at ingen af de 5 personer har særligt veludviklet nattesyn, findes til

7 Opgave 9 Et firma fremstiller elektroniske enheder til brug i forbindelse med rumfart. Tolerancekravene er meget høje, så en betragtelig del af komponenterne - 5% overholder ikke de nødvendige specifikationer og kan ikke benyttes. Komponenterne fremstilles i batches af 400. Til en given anvendelse skal bruges 80 enheder. Det er forbundet med en del omkostninger at påbegynde produktionen af en batch, så man er interesseret i, om man kan nøjes med at producere en enkelt batch for at imødekomme ordren. Spørgsmål 9 Sandsynligheden for, at én batch er tilstrækkelig findes eventuelt approksimativt, til 400 i=80 Φ 3 0 i=0 400 i i 4 80 Φ i=0 300i i! e i 3 4 i i 3 4 i 4 7

8 Opgave 0 En forretningsrejsende skal nå en flyafgang og overvejer, om der er tid til at gå på restaurant inden rejsen. Vedkommende skønner, at der er en sandsynlighed på 4 5 for at finde en passende restaurant, medens der er en sandsynlighed på for, at den rejsende kan nå at få serveret og indtage sit måltid, givet, at hun har fundet en egnet restaurant. Spørgsmål 0 Sandsynligheden for, at den forretningsrejsende kan nå at finde en restaurant og indtage et måltid inden flyrejsen, er Opgave En gruppe af filer har en størrelse, der kan beskrives ved en exponentialλ fordeling. Man har til et givet formål brug for 3 tilfældigt udvalgte af disse filer. Spørgsmål Tæthedsfunktion - fx for størrelsen af den næststørste af filerne findes til fx = λe λx fx = λ xe λx 3 fx = 6λe λx 6λe 3λx 4 fx = e λx λe λx e λx 5 fx = λe λx λe λx 8

9 Opgave I en familie forekommer en alvorlig arvelig sygdom. Man ved, at 5% af familiemedlemmerne har risiko for at få sygdommen. Der findes et genetisk baseret test kit til bestemmelse af om, en given person har risiko for at udvikle sygdommen. Testet giver altid positivt udslag, hvis en person har risiko for at få sygdommen, medens testet desværre også giver positivt udslag i 5% af de tilfælde, hvor personen ikke har risiko for at få sygdommen. Man har testet et familiemedlem, og testet har givet positivt udslag. Spørgsmål Efter kendskab til testresultatet vurderer man, at risikoen for, at den testede person har risiko for at få sygdommen, er Opgave 3 Ved et busstoppested i den indre by kan tiden mellem busserne med god tilnærmelse beskrives ved uafhængige eksponentialλ fordelte stokastiske variable. En person kommer til stoppestedet på et tilfældigt tidspunkt. Spørgsmål 3 Personens forventede ventetid er λ λ 3 λ 4 λ 5 Man kan ikke bestemme denne forventningsværdi uden kendskab til, den forrige bus afgangstidspunkt. 9

10 Opgave 4 Antallet af kolonier af en given type af skimmelsvamp i et parti korn, der har været udsat for fugt, kan beskrives ved en Poissonfordelt stokastisk variabel med middelværdi 5. Tilsvarende kan forekomsten af kolonier af en anden type skimmelsvamp i et parti fugtskadet korn beskrives ved en Poisson fordelt stokastisk variabel med middelværdi 3. Det antages, at de to typer af kolonier er de eneste typer, der kan forekomme og, at de forekommer uafhængigt af hinanden. Man udtager en stikprøve af en størrelse svarende til et kvart parti korn. Spørgsmål 4 Givet partiet har været udsagt for fugt er fugtskadet findes sandsynligheden for, at der er højst en skimmelsvampskoloni i stikprøven, til 4 Φ i=0 8 i 4 9e 8 5 3e 8 i 3 4 i 4 Opgave 5 For de tre hændelser A,B og C kendes, PA, PB, PC, PA B, PA B C og PA B C. Man ønsker at bestemme PB C. Spørgsmål 5 Man finder PB C ved PB C = PA + PB + PC PA B PA B C PB C = PA + PB + PC PA B + PA B C PA B C 3 PB C = PB + PC PA B C 4 PB C = PA B C PA PB PC + PA B PA B C 5 Kan ikke lade sig gøre, idet der ikke er de tilstrækkelige oplysninger 0

11 Opgave 6 Man har X, der er en stokastisk variabel, der følger en exponentialβ fordeling og Y, der er en stokastisk variabel, der følger en normalµ,σ fordeling. Man kan antage, at X og Y er uafhængige. Spørgsmål 6 Sandsynligheden PX > x, Y y findes til y x u π e β β e xβ Φ 3 e xβ Φ y µ σ v µ σ y µ σ 4 y x βe βu πσ e v µ σ dvdu dudv 5 Kan ikke bestemmes da den simultane fordeling for X og Y ikke er angivet. hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. Opgave 7 Man har to stokastiske variable X og Y med EX = 4,EY = 3,V arx = 9,V ary = 4 og EXY = 6. Man danner nu den stokastiske variabel Z = X 3Y. Spørgsmål 7 Man finder EZ og V arz til EZ =,V arz = 4 EZ =,V arz = 7 3 EZ = 7,V arz = 4 4 EZ = 7,V arz = 7 5 EZ = 7,V arz = 0

12 Opgave 8 IQ for skolebørn kan med god tilnærmelse beskrives ved en normal00, 5 fordeling. Man betragter nu 00 tilfældigt udvalgte skolebørn. Spørgsmål 8 Sandsynligheden for, at det skolebarn, der har den højeste IQ, har en IQ på mere end 30, er Φ Φ Φ Φ Φ hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. Opgave 9 Parret X,Y er bivariat standardiseret normalfordelt med korrelationskoefficient ρ =. Spørgsmål 9 Man finder PX + Y 0,Y X til Arctan π 6 3 Arctan π Arctan 5 π

13 Opgave 0 En type af frø spredes fra en moderplante på en sådan måde, at frøets placering i forhold til moderplanten med en passende valgt længdeenhed kan beskrives ved to uafhængige standardiserede normalfordelte variable, hvor moderplanten betragtes som nulpunktet i koordinatsystemet. Spørgsmål 0 Middelafstanden af en plante til moderplanten er 0 3 π 4 π 5 π Opgave En stokastisk variabel defineres ud fra to kast med en retfærdig mønt på følgende måde: Ved plat tildeles X værdien 0, ved plat og krone tildeles X værdien, medens X tildeles værdien tre ved krone. Spørgsmål Middelværdien EX af X findes til

14 Opgave En bestemt fiskeart lægger et antal æg, der kan beskrives ved en Poisson fordelt stokastisk variabel X med middelværdi µ. Hvert æg vil med sandsynligheden p give en fiskelarve af hunkøn og med sandsynligheden p give en fiskelarve af hankøn. Antag at en given fisk har lagt X = x æg. Spørgsmål Det forventede antal æg fra denne fisk, der giver en fiskelarve af hunkøn er xp µp 3 x µ p 4 µp + p 5 xp p Opgave 3 Ved en flyafgang med 400 passagerer kan den bagage, en tilfældigt valgt passager medbringer, beskrives ved en stokastisk variabel med middelværdi 30 kg og varians 00 kg. Spørgsmål 3 Sandsynligheden for, at den samlede vægt af bagage overstiger.5 ton findes - eventuelt approksimativt - til Φ Φ.5 5 Opgaven kan ikke løses uden kendskab til fordelingstype. 4

15 Opgave 4 Et punkt vælges tilfældigt i det markerede område på figuren. { Tætheden } for { det valgte punkts } koordinater er således givet ved fx,y = c for x,y x y \ x 4 y 4 og 0 ellers, hvor \ betyder mængdedifferens, altså de punkter der er i den førstnævnte mængde uden at være i den anden. /,/ /,/ /, / /, / Spørgsmål 4 Konstanten c er

16 Opgave 5 De stokastiske variable X og Y er uafhængige og begge uniformt fordelt på [0,]. Lad A betegne hændelsen {Y < cos πx}. Spørgsmål 5 Bestem den betingede sandsynlighedstæthed for X givet A, som funktion af x. cos πx 3 cos πx 4 π cos πx. 5 sin πx Opgave 6 En spiller slår to gange med en almindelig 6-sidet terning. Antallet af øjne i det første kast betegnes med X medens det totale antal øjne i de to kast betegnes med Y. Det oplyses, at Y = 0 det totale antale øjne i de to kast var 0. Spørgsmål 6 Bestem sandsynlighedsfordelingen fx Y = 0 = PX = x Y = 0 for X antallet af øjne i det første kast, givet Y = 0 det totale antale øjne i de to kast var 0. fx Y = 0 = 6 x {,,3,4,5,6} f Y = 0 = 3 36,f Y = 0 = ,f3 Y = 0 = 36 f4 Y = 0 = 0 36,f5 Y = 0 = 5 36,f6 Y = 0 = f4 Y = 0 = 4 f5 Y = 0 = f6 Y = 0 = 4 4 f4 Y = 0 = 5 f5 Y = 0 = 5 f6 Y = 0 = 5 5 fx Y = 0 = 3 x {4,5,6} 6

17 Opgave 7 Antallet af fejl på en stålplade kan beskrives ved en Poissonfordeling med middelværdi µ. Man kan benytte en model, hvor A i angiver hændelsen, at der er i fejl på en stålplade. Alternativt kunne man benytte en model med en stokastisk variabel N, hvor N beskriver antallet af fejl på stålpladen. Man ønsker at udtrykke sandsynligheden for hændelsen H = A 0 A A ved brug af N. Spørgsmål 7 PH kan alternativt udtrykkes som PH = PN PH = PN 0 + PN + PN 3 PH = PA i 4 PH = PN = 0,N =,N = 5 Man kan ikke på det foreliggende grundlag udtrykke PH ved brug af N. Opgave 8 I det reelle interval 0;0 vælges et tal tilfældigt 5 gange. Man betegner det næsthøjeste af disse tal med X. Spørgsmål 8 Efter en passende valgt skalering med en konstant kan X beskrives ved en Normalfordeling Betafordeling 3 Gammafordeling 4 Ligefordeling uniform fordeling 5 Rayleigh fordeling 7

18 Opgave 9 Filer, der sendes gennem et kommunikationsnetværk opdeles i et helt antal lige store såkaldte pakker. I det system, der betragtes, vil antallet af pakker fra en tilfældigt valgt fil kunne beskrives ved en geometrisk fordeling med parameter p. Vi betragter nu det eksperiment, hvor en pakke i kommunikationsnetværket vælges tilfældigt, og man betegner størrelsen - målt i pakker - af den fil, hvorfra pakken stammer, med X. Man interesserer sig for fordelingen af den stokastiske variabel X. Spørgsmål 9 Sandsynlighedsfordelingen for X findes til PX = i = i p i p PX = i = i p i p 3 PX = i = i p i 4 PX = i = p i p 5 i + PX = i = p p 3 8

19 Opgave 30 Lad X og Y være to positive stokastiske variable med simultan tæthedsfunktion { λ fx,y = e λx for 0 < y x 0 ellers Man danner nu en ny stokastisk variabel Z = Y X med tæthedsfunktion f Zz. Spørgsmål 30 Indenfor værdimængden af Z findes f Z z til f Z z = +z f Z z = 3 f Z z = λe λz 4 f Z z = z 5 f Z z = 6z z Slut på opgavesættet. 9

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 0. maj 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 20. december 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 20. december 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 20. december 2011 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 6 sider Skriftlig prøve, den: 24. maj 2 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 16. december 2010 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 8. august 06 Kursus nr : 005 Kursus navn: Sandsynlighedsregning Varighed : timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider Skriftlig prøve, den: 17. december 015 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede) fordelingsfunktion

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 29 sider. Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041. (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 29 sider. Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041. (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 29 sider Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041 Kursus navn: Statistik 1 Tilladte hjælpemidler: Alle sædvanlige Dettesæterbesvaretaf: (navn) (underskrift)

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable: udfald

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :...

Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :... År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik Skriftlig prøve, den 5. december 3. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige. "Vægtning":

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

StatDataN: Middelværdi og varians

StatDataN: Middelværdi og varians StatDataN: Middelværdi og varians JLJ StatDataN: Middelværdi og varians p. 1/33 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle egetræer,

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter.

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Eksempel I Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Per Bruun Brockhoff IMM DTU 02402 Eksempler 1 Eksempel I Tiden mellem kundeankomster på et posthus

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar Side 1 af 26 sider Skriftlig prøve, den 14. december 2013. Kursus navn: Billedanalyse. Kursus nummer: 02502 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. 4 timer Alle opgaver vægtes ligeligt.

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Løsninger til kapitel 5

Løsninger til kapitel 5 1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse

Læs mere

Nanostatistik: Opgaver

Nanostatistik: Opgaver Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner

Læs mere

Alle hjælpemidler er tilladt. Computer med Matlab kræves. Navn :.Læreren... Underskrift :... Bord nr. :... Ogave

Alle hjælpemidler er tilladt. Computer med Matlab kræves. Navn :.Læreren... Underskrift :... Bord nr. :... Ogave Skriftlig prøve, den 14. december 015. Kursus navn: Billedanalyse. Kursus nummer: 050 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. Computer med Matlab kræves. 4 timer Alle opgaver vægtes

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit 5.1-5.2: - Fordelingsfunktion - Tæthedsfunktion - Eksempel:

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14 Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/29 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Matematik 3 SS. Københavns Universitet Naturvidenskabelig kandidateksamen, sommeren Opgaver til besvarelse i 3 timer fredag den 18. juni 1993.

Matematik 3 SS. Københavns Universitet Naturvidenskabelig kandidateksamen, sommeren Opgaver til besvarelse i 3 timer fredag den 18. juni 1993. Københavns Universitet Opgaver til besvarelse i 3 timer fredag den 18. juni 1993. Opgave 1 (50%) Det bemærkes, at en række af nedenstående spørgsmål kan besvares uafuængigt af de Øvrige spørgsmål (resultaterne,

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 21 sider Skriftlig prøve: 15. december 2003 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af

Læs mere

Vejledende løsninger til opgaver i kapitel 6

Vejledende løsninger til opgaver i kapitel 6 Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer

Læs mere

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling Disrete fordelinger Fire vigtige disrete fordelinger: 1. Uniform fordeling (disret) 2. Binomial fordeling 3. Hyper-geometris fordeling 4. Poisson fordeling 1 Uniform fordeling Definition Esperiment med

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Fordelinger. En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave. Udvidet version. Ulrich Fahrenberg uli@math.auc.

Fordelinger. En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave. Udvidet version. Ulrich Fahrenberg uli@math.auc. Fordelinger En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave Udvidet version Ulrich Fahrenberg uli@math.auc.dk Da denne fordelingsoversigt's første udgave så verdens lys

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 9. januar 1997. Kursus navn : 04250 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 19. december 1998. Kursus navn : 04250 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014 Matematik A Højere handelseksamen hh143-mat/a-151014 Mandag den 15. december 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Vigtigste nye emner i 2.1, 2.2 og 2.5

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 2. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 STOKASTISK MODEL FOR KØSYSTEM Population Ankomst Kø Ekspedition Output Ankomstproces

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter Ekstraopgaver uge 2-02402 Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet DTU. Kursus 02511. Forside + 25 sider. 30. Maj 2011. 1 Danmarks Tekniske Universitet Skriftlig prøve, den 30. maj 2011 Kursus navn: Indledende Medicinsk Billedanalyse Kursusnr: 02511 Varighed: 4 timer

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

2 0.9245. Multiple choice opgaver

2 0.9245. Multiple choice opgaver Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere