hvor a og b er konstanter. Ved middelværdidannelse fås videre

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "hvor a og b er konstanter. Ved middelværdidannelse fås videre"

Transkript

1 Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den flerdimensionale normalfordeling Korrelation og uafhængighed, repetition Til karakteristik af fordelingen af (X,Y) benyttes µ x = E[X], µ y =E[Y] og σ x = var[x], σ y = var[y] samt kovariansen mellem X og Y : cov(x,y) = E[(X- µ x )(Y- µ y )] = E[XY] - µ x µ y = σ xy cov(x,x) = var[x] X,Y stokastisk uafhængige => cov(x,y) = 0, da E[(X- µ x )(Y- µ y )] = E[X- µ x ] E[Y- µ y ] = 0. Derimod cov(x,y) = 0 > stokastisk uafhængighed. Betragt identiteten [(ax + by) (a µ x + b µ y )] = a (X- µ x ) + b (Y- µ y ) + ab(x- µ x )(Y- µ y ) hvor a og b er konstanter. Ved middelværdidannelse fås videre

2 (*) var[ax+by] = a var[x] + b var[y] + ab cov(x,y) Sættes a = og b = ± i (*) fås var[x ± Y] = var[x] + var[y] ± cov(x,y) og hvis tillige X og Y er uafhængige haves var[x ± Y] = var[x] + var[y] Sættes b = i (*) fås var[ax+y] = var[x] a + cov(x,y) a + var[y], der kan opfattes som et andengradspolynomium i a med værdi 0. var[ax + Y] a toppunkt: cov(x,y) cov (X,Y) var[x]var[y] var[x], var[x] Diskriminanten må derfor være 0, dvs. cov (X,Y) var[x] var[y] <=> cov (X,Y) / var[x] var[y] <=>

3 - cov(x,y) / var[x] var[y] <=> - ρ 3 Korrelationskoefficienten ρ er derfor et mere egnet mål for afhængigheden mellem X og Y. ρ er kun lig, når der findes et a for hvilket var[ax + Y] = 0, dvs. når ax + Y for et eller andet fast a antager samme værdi i alle punkter (x,y), der har positiv sandsynlighed : ax + y = konstant. Fordelingen er da i virkeligheden ikke todimensional, idet alle i betragtning kommende punkter ligger på en ret linie. Endelig bemærkes, at cov(x,y) og ρ samtidig er 0. Er denne betingelse opfyldt, siger man, at X og Y er ukorrelerede i modsat fald er de korrelerede. Vi har da ovenfor indset, at to uafhængige variable altid er ukorrelerede; mens det omvendte ikke behøver at være tilfældet. Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge 4) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5. Den flerdimensionale normalfordeling

4 4 Eksempel fra sidst: Quiz med to runder Husk at X ~ bin(n,p ), (Y X = x) ~ bin(x,p ) Punktsandsynlighed for Y: n n n x n x x y x y f(y) = f(x)f(y X= x) = p ( p ) p ( p )??? x y = xy = xy = Det er nu ikke så svært endda at beregne denne sum... Det viser sig at Y ~ bin(n,p p ). Bevis: () Eksempel fra sidst: Quiz med to runder n y y x y n x x y x= y n! (n y)! f(y) = p p p ( p ) ( p ) y!(n y)! (n x)!(x y)! n y (n y) (x y) x y x= y n n y = (p p ) ( p ) (p ( p )) y x y n y (n y) u u u= 0 u n n y = (p p ) ( p ) (p ( p )) y

5 5 (3) Eksempel fra sidst: Quiz med to runder Benyt så at (-p ) + (p p p ) = - p p således at n y u= 0 (n y) u u n y p p ( p ) u pp pp = fordi det er summen af punktssh. i bin Dermed får vi som ønsket: p( p ) n y,. ( p p ) n y f(y) = (pp ) ( pp ) y n y Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix Definition Regneregler 4. Summer af stokastiske variable 5. Den flerdimensionale normalfordeling

6 6 Middelværdivektor m-dim. sv.(x,x,,x m ) som søjlevektor (m H ): Middelværdivektor (m H ): X X = X m [ ] EX µ= EX [ ] = EX [ m] Kovariansmatrix Varianser og kovarianser samles i kovariansmatricen (m H m): dvs. c i,j = cov(x i,x j ), i,j =,,m [ ] var X cov(x,x ) cov(x,x m) cov(x,x ) var [ X] cov(x,x m) C = cov(x,x m) cov ( X,Xm) var [ Xm]

7 7 () Kovariansmatrix m T C er symmetrisk og positiv semidefinit ( x :x Cx 0) C er en diagonalmatrix, hvis X'erne er parvis uafhængige C er singulær, hvis og kun hvis der findes en lineær relation mellem X'erne (a X +þa m X m + b = 0). [ ] [ ] m = : det C = (var X )(var X ) (cov(x,x )) [ ] [ ] ( ) = (var X )(var X ) ( ρ(x,x )) så C er singulær, hvis og kun hvis ρ (X,X ) = ", dvs. hvis og kun hvis X er en lineær funktion af X. Eksempel: opgave.6, igen-igen Model : X ~ N(µ,σ ), X ~ N(β µ,τ + β σ ), cov(x,x ) = β σ Altså [ ] EX µ σ βσ =, C=, det C= σ τ βµ βσ τ + β σ Korrelationsmatrix Vi kan også danne korrelationsmatricen (m H m): ρ(x,x ) ρ(x,xm) (X,X ) (X,X m) ρ ρ ρ(x,x m) ρ(x,x m)

8 8 Middelværdi og varians for lineær transformation af X Lad X være en m-dimensional sv. (m H ); A en k H m-matrix; B en k H -matrix (søjle). Så er Y = AX + B en k-dimensional stokastisk variabel med mid- delværdivektor E[Y] og kovariansmatrix betegnet var[y] givet ved [ ] [ ] EY= AEX+ B (k ) [ ] [ ] T T var Y = Avar X A = ACA (k k) Eksempel: Sum af stokastiske variable (lige om lidt) Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable Middelværdi og varians Punktsandsynligheder og tætheder 5. Den flerdimensionale normalfordeling

9 9 Middelværdi og varians for summer Fra sidst: Generelt: [ + ] = [ ] + [ ] [ ] [ ] [ ] EX X EX EX var X + X = var X + var X + cov(x,x ) [ + + ] = [ ] + + [ ] EX X EX EX m m m [ ] [ ] var X + + X = var X + cov(x,x ) m i i i = (i,j):i< j j () Middelværdi og varians for summer Bevis (for m = 3): [ + + 3] = [ + + 3] = E[ X + X ] + E[ X ] = E[ X ] + E[ X ] + E[ X ] EX X X E(X X) X [ ] [ 3 3 var X + X + X = var (X + X ) + X 3 = 3] (3) Middelværdi og varians for summer Bevis (for m =3): X X+ X + X 3 = () X= AX X 3 Dermed:

10 [ + + 3] [ ] = [ ] [ ] EX X X = AEX var X + X + X = Avar X A = ACA 3 T T 0 Fordeling af summer f er simultan punktssh. for (X,X ) med diskret udfaldsrum S. Punktsansynlighed for Y = X + X : g(y) = P(Y = y) = P((X,X ) A) = f(x,x ) (x,x ) A hvor A = {(x,x ),S x + x = y} = {( x,y-x ) x,s }. Altså: g(y) = f (x,y x ) x S () Fordeling af summer f er simultan tæthed for (X,X ) med kontinuert udfaldsrum S. Tæthed for Y = X + X : g(y) = f(x,y x )dx Når X og X er uafhængige fås specielt: g(y) = P(Y = y) = f (x )f (y x ) x S g(y) = f (x )f (y x )dx

11 (3) Fordeling af summer Antag at X og X er uafhængige sv. og lad Y = X + X. Poisson : X ~ Ps (λ ), X ~ Ps (λ ) Y Y ~ Ps ( λ + λ ). Binomial: X ~ bin(n,p),x ~ bin(n,p) Y Y ~ bin( n + n,p). NB: Samme p! Gamma: X ~ Γ(β, "),X ~ Γ(β, ") Y Y ~ Γ(β + β, "). NB: Samme "! Specialtilfælde: Exponential- og P -fordelingen. Exponential : X ~ ex(λ),x ~ ex(λ) Y Y ~ Γ(, 8) = Erl(, 8). P : X ~ P (f ),X ~ P (f ) Y Y ~ P (f +f ). Normal: X ~ N(µ,σ ), X ~ N(µ,σ ) Y Y ~ N(µ + µ,σ + σ ). Endda: Y ~ N(µ + µ,σ + σ + σ ), hvis cov (X,X ) = σ. (4) Fordeling af summer Eksempel/Bevis for normalfordelingen, (X,X ) ~ N(0,): x / (y x ) / f(y) = f (x )f (y x )dx = e e dx π Nu er + = + (x y/) y /4 / ( ) (x (y x ) )/ (x y/) y /4 så dvs. Y = X +X ~ N(0,). f(y) = e e dx π y /4 y /4 = e π / = e π π

12 (5) Fordeling af summer Sætning : E[ Z] = E[X +Y] = E[X] + E[Y]. Bevis : E[Z] = z g(z) dz = z f(x,z-x) dx dz = z f(x,z-x) dz dx = (x+y) f(x,y) dy dx = x f(x,y) dy dx + y f(x,y) dx dy = x f (x) dx + y f (y) dy = E[X] + E[Y] Eksempel : Addition af stokastiske variable I en industriel produktionsproces bearbejdes produkterne på to maskiner A og B, der arbejder uafhængigt af hinanden. Produkterne fremstillet på maskine A, hhv. B, er uafhængigt af hinanden defekte med sandsynlighed 0.007, hhv. o.o. Et parti indeholder 300 produkter fremstillet på maskine A og 00 produkter fra maskine B. Hvad er sandsynligheden for at et parti indeholder mere end 0 defekte produkter? Lad X A og X B være antal defekte produkter fra hhv. A og B. Da er X A ~ bin(300 ; 0.007) X B ~ bin(00 ; 0.0) Men da både p A og p B er mindre end 0. og n A, n B er store, gælder X Ps(.), X Ps(.0) X + X ~ Ps(4.). A B A B a a Den søgte sandsynlighed bliver derfor P(X A + X B > 0) = P(X A + X B 0) = =

13 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5. Den flerdimensionale normalfordeling Den to-dimensionale N-fordeling (eksempel: opg..6) Generel m-dimensional N-fordeling Lineær transformation Den flerdimensionale normalfordeling Ønsker tæthed for den simultane fordeling af m (marginalt) normalfordelte variable, der kan være indbyrdes afhængige. m = : Ønsker f(x,x ) hvor X,X er som ovenfor. Hvis X og X er uafhængige: f(x,x ) = exp ( x µ ) ( x µ ) πσσ σ σ hvor µ, µ er middelværdier og σ, σ er varianser. Hvad hvis X og X er afhængige?

14 4 Eksempel: opgave.6, igen-igen-igen Husk model: X ~ N(µ, σ ), (X X = x ) ~ N(βx, τ ), X ~ N(βµ, τ + β σ ). Simultan tæthed f (x,x ) = f(x )f(x x) = exp( q / ) π σ τ hvor q = (x µ ) + (x βx σ τ ) Kontroller at () Eksempel: opgave.6 igen-igen-igen som vi genkender som T x µ x x βµ x σ βσ µ q = βσ τ + β σ βµ T var X cov(x, X ) x E X [ ] [ ] [ ] [ ] x E X x E X cov(x,x ) var X x E X C

15 5 (3) Eksempel: opgave.6 igen-igen-igen Dermed: f(x,x ) = exp( q/) π σ τ T = exp (x ) C (x ) µ µ ( π) detc x hvor x =. x Den simultane tæthed for (X,X ) er altså fuldstændigt bestemt udfra middelværdivektor og kovariansmatrix for X. Den to-dimensionale normalfordeling Lad den -dimensionale stokastiske variabel (U,U ) have tæthedsfunktion (*) ϕ(u,u ) = e π -ρ - (u -ρuu +u ) (-ρ ) hvor ρ є (-,+). Den marginale tæthedsfunktion for U findes pr. definition som (u ρuu +u ) (-ρ ) ϕ - f(u)= (u,u )du = e du π -ρ Idet (u - ρu u +u ) = u (u -ρu ) (-ρ ) (-ρ ) følger

16 u (u ρu ) (-ρ ) f(u)= e e du π π -ρ - Indføres herefter substitutionen z = (u ρu )/ (- ρ ) fås videre u z u f(u)= e e dz= e - π π π 6 Altså er U ~ N(0,), og af symmetrigrunde er også U ~ (0,). Parameteren ρ i (*) er korrelationskoefficienten mellem U og U, se nedenfor, hvor samme substitution som ovenfor benyttes. ρ(u,u ) = [ ] [ ] [ ] [ ] [ ] EUU -EU EU = E U U = u u (u,u )du du [ ] var U var U ϕ u (u ρu ) (-ρ ) u e u e du d = - - π π -ρ u = u - ρe du =ρ π u Lad nu X = σ U + µ, X = σ U + µ, hvor (U,U ) har tæthedsfunktion (*). (X,X ) har da tæthedsfunktion x-µ x-µ f ( x,x ) = ϕ, σσ σ σ (**) = e πσ σ -ρ x -µ x -µ x -µ x -µ - ( ) - ρ +( ) -ρ σ σ σ σ ( )

17 Definition : Den stokastiske variabel (X,X ) siges at være normalfordelt med parametrene µ, µ, σ, σ, ρ,hvis tæthedsfunktionen er givet ved (**). Vi skriver (X,X ) ~ N(µ, µ, σ, σ, ρ). Af det ovenfor anførte fremgår at E[X ] = µ,e[x ] = µ, var[x ] = σ,var[x ] = σ, ρ(x, X ) = ρ Af (**) ses, at hvis (X,X ) har en -dimensional normalfordeling, og hvis X og X er ukorrelerede, så er X og X stokastisk uafhængige. Lad (X,X ) have tæthedsfunktionen (**). Den betingede tæthedsfunktion for X givet X = x er ( ) ( ) ( ) f x x = f x f x,x = e πσ -ρ = e πσ -ρ og vi ser, at x -µ x -µ x -µ x -µ x -µ - ( ) -ρ +( ) + -ρ σ σ σ σ σ ( ) ( ) σ x-µ -ρ (x -µ ) σ -ρ σ (X X = x ) ~ N(µ + ρ (x µ ), σ (- ρ )). σ Tilsvarende kan det vises, at σ σ (X X = x ) ~ N(µ + ρ (x µ ), σ (- ρ )). σ 7

18 8 () Den to-dimensionale normalfordeling Tæthed for normalfordeling med middelværdi og kovarians σ σ C = σ σ er givet ved µ µ= µ T f(x,x ) = exp (x ) C (x ) µ µ ( π) detc der på nær en konstant er lig (x µ ) (x µ ) ρ(x µ )(x µ ) exp + ( ρ ) σ σ σσ (3) Den to-dimensionale normalfordeling Pæne egenskaber: X og X uafhængige ] ρ = 0 ] X og X ukorrelerede X ~ N(µ,σ ) og X ~ N(µ, σ ) σ (X X =x ) ~ N µ +ρ (x -µ ),σ (-ρ ) σ Altså: Hvis (X,X ) er to-dimensional normalfordelt bliver både marginale og betingede fordelinger også normalfordelinger!

19 9 Den m-dimensionale normalfordeling m-dimensional sv. X (m H ) med mv. µ (m H ) og kovar. C(m H m). Simultan tæthed T - f(x,...,x m)= exp (x-µ) C (x-µ) m ( π) detc C singulær] det C = 0 ] der findes lineærkombination a X + a m X m = b, dvs. udfaldsrum for (X,..,X m ) er underrum af ú m. X,..,X m er indbyrdes uafhængige, hvis og kun hvis C er en diagonalmatrix. () Den m-dimensionale normalfordeling Antag at X,..,X m er uafhængige og alle N(µ,σ )-fordelt. Så er C lig mh m diagonalmatricen med σ i diagonalen og 0 udenfor. Simultan tæthed: m f(x,...,x m)= exp m - (xi-µ) /σ ( π) i= = exp - (x -µ) πσ detc σ m i i= som vi også vidste det skulle være

20 0 Lineær transformation Lad X være m-dimensionalt normalfordelt med middelværdivektor µ og kovariansmatrix C: X ~ N(µ,C) Hvis A er en k H m-matrix; og B en k H -matrix (søjle), så er Y = AX + B normalfordelt (k-dimensionalt) med middelværdivektor Aµ + B og kovariansmatrix ACA T : Y = AX + B ~ N(Aµ + B, ACA T ) NB: For A = (... ) og B = 0 fås fordelingen af X +þ+x m. () Lineær transformation Lad X, X, X 3 være uafhængige og marginalt N(0,)-fordelte Så er X X+3X X +X X 3 Y= = X ~ N, N(,C). 5 5 = µ

Betingede sandsynligheder Aase D. Madsen

Betingede sandsynligheder Aase D. Madsen 1 Uge 12 Teoretisk Statistik 15. marts 2004 1. Betingede sandsynligheder Definition Loven om den totale sandsynlighed Bayes formel 2. Betinget middelværdi og varians 3. Kovarians og korrelationskoefficient

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Repetition Stokastisk variabel

Repetition Stokastisk variabel Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@imm.dtu.dk Dagens nye emner afsnit 6.3 (og 6.4 Betingede

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

3 Stokastiske variable 3.1 Diskrete variable

3 Stokastiske variable 3.1 Diskrete variable 3 Stokastiske variable 3.1 Diskrete variable Punktsandsnligheden benævnes P(x) = P(X = x). {x, P(x)} er en sandsnlighedsfordeling for den stokastiske variabel, X, hvis 1) P(x) $ 0 for alle værdier af x.

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Landmåling involverer ofte bestemmelse af størrelser som ikke kan

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

StatDataN: Middelværdi og varians

StatDataN: Middelværdi og varians StatDataN: Middelværdi og varians JLJ StatDataN: Middelværdi og varians p. 1/33 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle egetræer,

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

Landmålingens fejlteori - Lektion 5 - Fejlforplantning

Landmålingens fejlteori - Lektion 5 - Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/30 Fejlforplantning Landmåling involverer ofte bestemmelse af størrelser som ikke

Læs mere

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner 5.1 og 5.2 Ligefordeling med to

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Diverse opdateringer ved Rasmus Waagepetersen. Version 1.

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Diverse opdateringer ved Rasmus Waagepetersen. Version 1. Noter i fejlteori Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen Diverse opdateringer ved Rasmus Waagepetersen. Version 1.3 April 2016 2 Indhold 1 Motivation 3 2 Det matematiske fundament

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider Skriftlig prøve, den: 17. december 015 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Sandsynlighed og Statistik

Sandsynlighed og Statistik 36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering

Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering Landmålingens fejlteori Lektion 3 Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition: Middelværdi og

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.

Binomialfordelingen. X ~ bin(n,p): X = antal succeser i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes. Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 0. maj 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0 Middelværdi og varians Middelværdien af en diskret skalarfunktion f(x), for x = 0, N er: µ = N f(x) N x=0 For vektorfuktioner er middelværdivektoren tilsvarende: µ = N f(x) N x=0 Middelværdien er en af

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider. Skriftlig prøve, den: 18. december 2014 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider. Skriftlig prøve, den: 18. december 2014 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider Skriftlig prøve, den: 8. december 04 Kursus nr : 040 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Mat2SS Vejledende besvarelse uge 11

Mat2SS Vejledende besvarelse uge 11 MatSS Vejledende besvarelse uge Eksamen V99/00 opg. a Kønsfordelingen 996 den samme for de tre skoler Mænd Kvinder I alt København 5 = n x 56 = x 8 = n Odense 9 = n x 06 = x 5 = n Århus 0 = n x 40 = x

Læs mere

Flerdimensionale fordelinger. Erik Michaelsen Nielsen

Flerdimensionale fordelinger. Erik Michaelsen Nielsen Flerdimensionale fordelinger Erik Michaelsen Nielsen Masterprojekt Institut for Matematiske Fag Aalborg Universitet Forår 5 Forord Dette masterprojekt er udarbejdet af Erik Michaelsen Nielsen på Aalborg

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.2

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.2 Noter i fejlteori Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen Version 1.2 April 2014 2 Indhold 1 Motivation 3 2 Det matematiske fundament 5 2.1 Lidt sandsynlighedsregning......................

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. maj 05 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variable Loven om den itererede middelværdi Eksempler 1 Beskrivelse af

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variabler Loven om den itererede middelværdi Eksempler 1 Beskrivelse

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

MM501/MM503 forelæsningsslides

MM501/MM503 forelæsningsslides MM501/MM503 forelæsningsslides uge 50, 2009 Produceret af Hans J. Munkholm 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen dx Eksempler = et udtryk, der indeholder

Læs mere

Deskriptiv teori i flere dimensioner

Deskriptiv teori i flere dimensioner Kapitel 17 Deskriptiv teori i flere dimensioner I kapitel 13 og 14 udviklede vi en række deskriptive værktøjer til at beskrive sandsynlighedsmål på (R, B) Vi vil i dette kapitel forsøge at udvikle varianter

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Løsning til eksamen 16/

Løsning til eksamen 16/ 1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable: udfald

Læs mere

Sandsynlighedsteori

Sandsynlighedsteori Fordelingskatalog til Sandsynlighedsteori 1.1 + 1.2 Svend Erik Graversen August 2005 1 Dette katalog indeholder de vigtigste egenskaber ved de 6 mest almindelige diskrete fordelinger samt de 11 mest almindelige

Læs mere

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Dages eer afsit 5.3 og 5.4 Siultae kotiuerte fordeliger P(X dx,y dy = f(x,ydxdy Sadsylighedsregig 9. forelæsig Bo Friis Nielse Mateatik og Coputer Sciece Daarks Tekiske Uiversitet 8 Kgs. Lygby Daark Eail:

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 16. december 2010 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 27. maj 20 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift) (bord

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Lidt om fordelinger, afledt af normalfordelingen

Lidt om fordelinger, afledt af normalfordelingen IMM, 2002-10-10 Poul Thyregod Lidt om fordelinger, afledt af normalfordelingen 1 Introduktion I forbindelse med inferens i normalfordelinger optræder forskellige fordelinger, der er afledt af normalfordelingen,

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive

Læs mere