Basal statistik 19. september Eksempel: To metoder, som forventes at skulle give samme resultat:

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Basal statistik 19. september Eksempel: To metoder, som forventes at skulle give samme resultat:"

Transkript

1 En- og to-stikprøve problemer, september Basal statistik 19. september 2006 En- og to-stikprøve problemer sammenligning af to situationer: parret t-test Wilcoxon signed rank test logaritmetransformation sammenligning af to grupper uparret t-test Mann-Whitney test Lene Theil Skovgaard Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet Eksempel: To metoder, som forventes at skulle give samme resultat: MF: Transmitral volumetric flow, bestemt ved Doppler ekkokardiografi SV: Left ventricular stroke volume, bestemt ved cross-sectional ekkokardiografi person MF SV gennemsnit SD SEM Er der forskel på de to målemetoder? En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Personen er sin egen kontrol Det giver stor styrke til at opdage evt. forskelle. Parret situation: Se på differenserne men på hvilken skala? Er differensernes størrelse nogenlunde uafhængig af niveauet? Eller er der snarere tale om relative (procentuelle) forskelle: I så fald skal der tages differenser på en logaritmisk skala. Undersøg om differenserne har middelværdi 0

2 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Simulerede data for to ens målemetoder: Simulerede data for to målemetoder med konstant (additiv) forskel:: mf sv mf sv difference difference average average En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Simulerede data for to målemetoder med proportionale forskelle: Statistisk model for differenser mellem parrede observationer: mf X i : flowmålingen MF for den i te person Y i : flowmålingen SV for den i te person Differenser d i = X i Y i (i = 1,, 21) uafhængige, normalfordelte sv E(d i ) = δ, V ar(d i ) = σ 2 d OBS: Intet krav om fordeling af selve flowmålingerne! difference Estimation: Gennemsnit: ˆδ = d = 0.24 cm 3 Spredning: s d = 6.96 cm average Spredning på ˆδ: SEM = s d n = 6.96 cm3 21 = 1.52

3 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september % sikkerhedsinterval for δ: eller mere præcist d ± ca. 2 SEM d ± t 97.5% (20) SEM = 0.24 ± = ( 2.93,3.41) idet er t 97.5% (20), den relevante t-fraktil. Test af nulhypotesen H 0 : δ = 0 (ingen bias) t = ˆδ 0 SEM = = t(20) 21 P = 0.88, altså ingen indikation af bias (hvilket også fremgår af sikkerhedsintervallet, der indeholder 0) Test og sikkerhedsintervaller er ækvivalente! Indlæsning fra data-filen mf_sv.tal en tekstfil med 2 kolonner a 21 linier en for hver person, med variabelnavne i første linie. Vælg /File/Open/ Gå herefter i Edit-mode og definer nye variable: /Data/Transform/Compute/ dif=mf-sv average=(mf+sv)/2 Herefter bruges Statistics/Descriptive/Summary Statistics for at få en oversigt over materialet Variable Mean Std Dev Std Error mf sv dif average En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Parret t-test i SAS ANALYST: Statistics/Hypothesis Tests/Two-Sample Paired t-test for Means, klik af i Interval under Tests for at få et 95% konfidensområde for forskellen: Two Sample Paired t-test for the Means of mf and sv Sample Statistics Group N Mean Std. Dev. Std. Error mf sv Hypothesis Test Null hypothesis: Mean of (mf - sv) = 0 Alternative: Mean of (mf - sv) ^= 0 t Statistic Df Prob > t % Confidence Interval for the Difference between Two Paired Means Lower Limit Upper Limit Statistics/Hypothesis Tests/One-Sample t-test for a Mean næsten uændret output, dog: One Sample t-test for a Mean Sample Statistics for dif N Mean Std. Dev. Std. Error Direkte programmering: data a1; infile mf_sv.tal ; input mf sv; dif=mf-sv; average=(mf+sv)/2; proc means mean std stderr data=mf_sv; proc univariate normal data=mf_sv; var dif; proc ttest data=mf_sv; paired mf*sv;

4 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Antagelser for det parrede t-test: Differenserne d i : er uafhængige: personerne har ikke noget med hinanden at gøre har samme varians: vurderes ved det såkaldte Bland-Altman plot af differenser mod gennemsnit er normalfordelte: vurderes grafisk eller numerisk histogram har vi set, hmm... formelt test: Hvis normalfordelingen ikke er en god beskrivelse, sker der følgende: Test og konfidensinterval bliver stadigvæk nogenlunde OK i flg. den centrale grænseværdisætning Normalområder bliver misvisende! Normalområdet kaldes i dette specialtilfælde for limits-of-agreement: Statistics/Descriptive/Distributions Fit: normal parameters Goodness-of-Fit Tests for Normal Distribution Test ---Statistic p Value----- Kolmogorov-Smirnov D Pr > D >0.150 Cramer-von Mises W-Sq Pr > W-Sq Anderson-Darling A-Sq Pr > A-Sq d ± ca. 2 s d Disse grænser er vigtige for at afgøre om to målemetoder kan erstatte hinanden. En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Nonparametriske test: Test, der ikke bygger på en normalfordelingsantagelse Ikke forudsætningsfri Ulemper tab af efficiens (sædvanligvis lille) uklar problemformulering - manglende model, og dermed ingen fortolkelige parametre ingen estimater! - og ingen sikkerhedsintervaller kan kun anvendes i simple problemstillinger med mindre man har godt med computerkraft Nonparametrisk one-sample test af middelværdi 0 (parret two-sample test) sign test, fortegnstest udnytter kun observationernes fortegn, ikke deres størrelse ikke særligt stærkt invariant ved transformation Wilcoxon signed rank test udnytter observationernes fortegn, kombineret med rangordenen af de numeriske værdier stærkere end sign-testet kræver at man kan tale om store og små forskelle kan påvirkes af transformation

5 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Sign testet (fortegnstest) X i : flowmålingen MF for den i te person Y i : flowmålingen SV for den i te person Binomialtest: X Bin(n, p) H 0 : p = 0.5 Her er n = 19, x = 12 Vi ønsker at teste hypotesen P(X > Y ) = P(X < Y ) = 1 2 Vi tæller Hvor mange af de 21 differenser er positive? n + (=12) Hvor mange af de 21 differenser er negative? n (=7) Hvor mange af de 21 differenser er præcis 0? n 0 (=2) Blandt dem, der ikke er 0 (n = n + + n = 19), er der da signifikant flest af den ene slags? Er 12 vs. 7 signifikant skævt? Geigy tabeller giver 95% konfidensgrænser: (0.38,0.84) En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Wilcoxon signed rank test Large-sample approksimation (n > 25): Z = Her finder vi Z = og dermed P=0.36, ( x np 0.5) np(1 p) N(0, 1) ( ) = 0.92 men samplet er for lille Her ser vi på størrelsen af differenserne, dog kun for at rangordne dem indbyrdes person MF SV differens positiv diff. negativ diff Sum

6 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september R: summen af positive (eller negative) range, n=19, R=103 Tabel B9: Large-sample approksimation (n > 25): R N(M, S 2 ) M = n(n + 1) n(n + 1)(2n + 1), S = 4 24 Her finder vi Z = R M 1 2 S N(0, 1) M = 95, S = 24.85, Z = 0.30 og dermed P=0.76, Rangene giver ingen signifikans på 5% niveau... men igen: samplet er for lille En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Nonparametriske parrede tests i SAS OBS: Disse kan kun foretages direkte på de udregnede differenser! ANALYST: Statistics/Descriptive/Distributions Direkte programmering: proc univariate normal data=mf_sv; var dif; Tests for Location: Mu0=0 Test -Statistic p Value Student s t t Pr > t Sign M 2.5 Pr >= M Signed Rank S 8 Pr >= S Forskellige programmer benytter forskellige teststørrelser! Eksempel: To forskellige metoder til bestemmelse af glucosekoncentration. Ref: R.G. Miller et.al. (eds): Biostatistics Casebook. Wiley, REFE: Farvetest, der kan forurenes af urinsyre TEST: Enzymatisk test, mere specifikt for glucose. nr. REFE TEST X SD

7 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Scatter plot: Vi skal se på differenser D i = REFE i TEST i N(δ, σ 2 d ) Er der systematisk forskel? Test δ=0 ˆδ=9.89, s d =9.70, t= ˆδ sem = ˆδ s d / =8.27 t(45) P< n Stærk indikation af bias. Limits of agreement siger, at de typiske differenser ligger i intervallet 9.89 ± = ( 9.51, 29.29) På tegningen ses, at dette er en dårlig beskrivelse, idet differenserne stiger med niveauet (gennemsnittet) variationen stiger også med niveauet En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Limits of agreement Scatter plot, efter logaritmetransformation: Relative afvigelser giver ide til tage logaritmer

8 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Bemærk: Der findes uafhængig information om reproducerbarheden, ud fra gentagne målinger på samme prøve: Det er de oprindelige målinger, der skal logaritmetransformeres, ikke differenserne! Det er ligegyldigt, hvilken logaritmefunktion, der vælges (der er proportionalitet mellem alle logaritmer) For den naturlige logaritme gælder Var(log(Y)) Var(Y) Y 2 CV 2 Hvis man plotter spredningen mod gennemsnittet ses en nogenlunde proportionalitet Efter logaritmering gentages proceduren med differenser og konstruktion af limits of agreement En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Limits of agreement, for logaritmer Efter logaritmetransformation (og udeladelse af den laveste måling), får vi en acceptabel figur Der er en tydelig outlier (den mindste observation)

9 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Limits of agreement Limits of agreement, omsat til oprindelig skala: ± = ( 0.018, 0.150) Det betyder, at der i 95% af tilfældene vil gælde < log(refe) log(test) = log( REFE TEST ) < hvilket ved tilbagetransformation giver, at < REFE TEST < eller omvendt < TEST REFE < Fortolkning: TEST ligger typisk mellem 14% under og 2% over REFE. En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Vi benytter Statistics/Descriptive/Summary Statistics (proc means;) for at få en oversigt over de logaritmiske differenser Ny problemstilling: Er der forskel på energiindtaget for magre og fede kvinder? The MEANS Procedure Variable Mean Std Dev Std Error refe test dif lrefe ltest ldif Der er helt klart en signifikant bias mellem de to målemetoder: t = = = som vurderet i en t-fordeling med 44 frihedsgrader giver P < Som det ses af tegningen, er denne bias ikke helt konstant, idet den afhænger (svagt) af niveauet. Her kan vi ikke benytte personen som sin egen kontrol. I stedet har vi To uafhængige stikprøver tostikprøve-problemet, uparret sammenligning

10 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Statistics/Descriptive/Summary Statistics med figur som Class-variabel, eller proc means N mean std stderr data=lean_obese; class figur; var energi; Analysis Variable : energi N figur Obs N Mean Std Dev Std Error lean obese Traditionelle antagelser: X 1.1,, X 1.13 N(µ 1, σ 2 ) X 2.1,, X 2.9 N(µ 2, σ 2 ) alle observationerne er uafhængige personerne har ikke noget med hinanden at gøre der er samme populationsvarians i de to grupper bør checkes observationerne følger en normalfordeling i hver gruppe, med hver deres middelværdi normalfordelingen checkes ligesom tidligere, hvis det kan lade sig gøre En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september To-stikprøve t-test H 0 : µ 1 = µ 2 t = x 1 x 2 se( x 1 x 2 ) = x 1 x 2 1 s = = 3.95 n n 2 hvilket i en t-fordeling med 20 frihedsgrader giver P = Begrundelse for teststørrelse: X 1 normalfordelt N(µ 1, 1 n 1 σ 2 ) X 2 normalfordelt N(µ 2, 1 n 2 σ 2 ) X 1 X 2 N(µ 1 µ 2, ( 1 n n 2 )σ 2 ) σ 2 estimeres ved s 2, et poolet variansskøn, og antallet af frihedsgrader er df=(n 1-1)+(n 2-1)=(13-1)+(9-1)=20 Hvad betyder teststørrelsens fordeling? Vi forestiller os mange ens undersøgelser af de samme to populationer: magre, 9 fede = t magre, 9 fede = t magre, 9 fede = t Fordeling af t erne? Hvorfor ikke bare x 1 x 2? Fordi fordelingen så afhænger af σ 2 og derfor ikke kan slås op i en tabel

11 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Indlæsning af 22 datalinier, en for hver kvinde, men to variable for hver kvinde: status energi Når data er gemt i sasuser, skiftes til Edit-mode for at definere en ny variabel (i dette tilfælde en karaktervariabel) ved hjælp af /Data/Transform/Recode status=1 figur= lean status=2 figur= obese Et uparret t-test i SAS ANALYST: Statistics/Hypothesis Tests/Two-Sample t-test for Means kryds af i Confidence Interval under Tests Two Sample t-test for the Means of energi within figur Sample Statistics Group N Mean Std. Dev. Std. Error lean obese Hypothesis Test Null hypothesis: Mean 1 - Mean 2 = 0 Alternative: Mean 1 - Mean 2 ^= 0 If Variances Are t statistic Df Pr > t Equal Not Equal % Confidence Interval for the Difference between Two Means Lower Limit Upper Limit Bemærk, at der er 2 forskellige udgaver af t-testet, afhængig af, om varianserne kan antages at være ens eller ej. En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Direkte programmering: data lean_obese; infile lean_obese.tal ; input nr status energi rang; if status=2 then figur= obese ; if status=1 then figur= lean ; proc means N mean std stderr; class figur; var energi; proc ttest data=lean_obese; class figur; var energi; proc npar1way wilcoxon data=lean_obese; class figur; var energi; Rimeligheden af ens varianser undersøges ved F = s2 2 s 2 1 = = 1.27 Hvis de to varianser faktisk er ens, skal denne størrelse være F-fordelt med (8,12) frihedsgrader. Vi finder P=0.68 og kan altså med god samvittighed anvende et poolet variansskøn. Hvad skulle vi ellers have gjort? t = x 1 x 2 se( x 1 x 2 ) = x 1 x 2 Dette ville give os: s 2 1 n 1 + s2 2 n 2 t(??) t = 3.86 t(15.9), P =

12 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Test for varianshomogenitet i SAS: Statistics/Hypothesis Tests/Two-Sample test for Variances kryds af i Confidence Interval under Tests Forskel, ja...men hvor stor? Estimeret forskel = gennemsnitlig forskel = = 2.23 Two Sample Test for Variances of energi within figur Sample Statistics figur Group N Mean Std. Dev. Variance lean obese Den sande forskel er nok ikke lige 2.23, men et sted i nærheden. 95% sikkerhedsinterval Hypothesis Test Null hypothesis: Variance 1 / Variance 2 = 1 Alternative: Variance 1 / Variance 2 ^= 1 - Degrees of Freedom - F Numer. Denom. Pr > F = interval, der med 95% sandsynlighed omslutter den sande forskel 1 = 2.23 ± = (1.05, 3.41) Den tidligere viste teststørrelse er den reciprokke, 1/0.78=1.27, samme P-værdi. 97.5% fraktil poolet i t(20)-fordeling spredning spredning på gennemsnitlig forskel En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Signifikansniveauet α (sædvanligvis 0.05) angiver den risiko, vi er villige til at løbe for at forkaste en sand nulhypotese, også betegnet som fejl af type I. accept H 0 sand 1-α α H 0 falsk β 1-β fejl af type II forkast fejl af type I 1-β kaldes styrken, denne angiver sandsynligheden for at forkaste en falsk hypotese. Men hvad betyder H 0 falsk? Hvor store forskelle er der? Styrken er en funktion af forskellen! Styrkefunktion: Hvis forskellen er xx, hvad er så styrken, dvs. sandsynligheden for at opdage den på 5% niveau?? power size of difference styrken udregnes for at dimensionere en undersøgelse når resultaterne er i hus, præsenteres konfidensintervaller

13 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september To aktive behandlinger: A og B Placebo: P Statistisk signifikans afhænger af: sand forskel antal observationer den tilfældige variation, dvs. den biologiske variation signifikansniveau Resultater: 1. trial: A signifikant bedre end P (n=100) 2. trial: B ikke signifikant bedre end P (n=50) Konklusion: A er bedre end B??? Nej, ikke nødvendigvis. Klinisk signifikans afhænger af: størrelsen af den påviste forskel En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Ingen signifikans? Hvad kan det skyldes? At der ikke er en forskel At forskellen er så lille, at den er vanskelig at opdage At variationen er så stor, at en evt. forskel drukner At materialet er for lille til at kunne påvise nogensomhelst forskel af interesse. Inden undersøgelsens gennemførelse bør man Fastsætte MIREDIF (mindste relevante differens) foretage styrkeberegninger (power) beregne det nødvendige patientantal Variation Hvordan kan vi nedbringe variationen, så vi bliver i stand til at se evt. differenser klarere? Benytte personen som sin egen kontrol. Begrænse effekten af uønskede kovariater: foretage alle målinger på samme tidspunkt af dagen, evt. også på samme ugedag. begrænse aldersvariationen (eller lave regression på alderen) benytte skrappere inklusionskriterier for f.eks. vægt for at undgå outliers. randomisere tage flere målinger lige efter hinanden på samme person og benytte gennemsnittet i beregningerne

14 En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Hvis vi ikke vil benytte en normalfordelingsantagelse, kan vi lave et nonparametrisk test: Mann-Whitney test (Kruskal-Wallis test) Det totale materiale rangordnes, herefter Tabel B10, s. 534: n s =9, n l =13 (mindste gruppe skal først ved opslag). Rangsum: R=150 rangværdi rangværdi person figur energi lean obese 1 lean lean lean lean lean lean lean lean lean lean lean lean lean obese obese obese obese obese obese obese obese obese Sum Forventet sum En- og to-stikprøve problemer, september En- og to-stikprøve problemer, september Nonparametrisk uparret test i SAS Statistics/ANOVA/Nonparametric One-Way ANOVA/ med energi som Dependent og figur som Independent Large-sample approksimation (n > 25): Her finder vi R N(M, S 2 ) M = n s(n s + n l + 1) nl M, S = 2 6 Z = R M 1 2 S N(0, 1) M = 103.5, S = , Z = 3.07 og dermed P=0.002 Korrektioner er nødvendige ved mange ties! The NPAR1WAY Procedure Wilcoxon Scores (Rank Sums) for Variable energi Classified by Variable figur Sum of Expected Std Dev Mean figur N Scores Under H0 Under H0 Score lean obese Wilcoxon Two-Sample Test Statistic Normal Approximation Z One-Sided Pr > Z Two-Sided Pr > Z t Approximation One-Sided Pr > Z Two-Sided Pr > Z Average scores were used for ties. Z includes a continuity correction of 0.5. Kruskal-Wallis Test Chi-Square DF 1 Pr > Chi-Square

15 En- og to-stikprøve problemer, september Som regel gør det ingen synderlig forskel i P-værdi om man benytter parametriske eller non-parametriske metoder. Men det er vigtigt at respektere sit design! Eks: Målemetoderne MF og SV: Parret T-test: t = 0.16, f = 20 P = 0.88 Sikkerhedsinterval: (-2.93 cm 3, 3.41 cm 3 ) Uparret T-test: t = 0.04, f = 40 P = 0.97 Sikkerhedsinterval: ( cm 3, cm 3 )

Basal statistik. 16. september 2008

Basal statistik. 16. september 2008 Basal statistik 16. september 2008 En- og to-stikprøve problemer sammenligning af to situationer: parret t-test Wilcoxon signed rank test logaritmetransformation sammenligning af to grupper uparret t-test

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Basal statistik. 29. januar 2008

Basal statistik. 29. januar 2008 Basal statistik 29. januar 2008 Deskriptiv statistik Grafik Summary statistics Normalfordelingen Typer af data Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Kommentarer til øvelser i basalkursus, 2. uge

Kommentarer til øvelser i basalkursus, 2. uge Kommentarer til øvelser i basalkursus, 2. uge Opgave 2. Vi betragter målinger af hjertevægt (i g) og total kropsvægt (målt i kg) for 10 normale mænd og 11 mænd med hjertesvigt. Målingerne er taget ved

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

CLASS temp medie; MODEL rate=temp medie/solution; RUN;

CLASS temp medie; MODEL rate=temp medie/solution; RUN; Ugeopgave 2.1 Bakterieprøver fra patienter transporteres ofte til laboratoriet ved stuetemperatur samt mere eller mindre udsat for luftens ilt. Dette er især uheldigt for prøver som indeholder anaerobe

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 Parret sammenligning, målemetoder med logaritmer Tosidet variansanalyse

Læs mere

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015 Faculty of Health Sciences Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 1 / 84 Logaritmer og kovariansanalyse Parret sammenligning, målemetoder med logaritmer Tosidet

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Basal Statistik - SPSS

Basal Statistik - SPSS Faculty of Health Sciences Basal Statistik - SPSS Begreber. Parrede sammenligninger. Lene Theil Skovgaard 5. september 2017 1 / 16 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske

Læs mere

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

Phd-kursus i Basal Statistik, Opgaver til 2. uge

Phd-kursus i Basal Statistik, Opgaver til 2. uge Phd-kursus i Basal Statistik, Opgaver til 2. uge Opgave 1: Sædkvalitet Filen oeko.txt på hjemmesiden indeholder datamateriale til belysning af forskellen i sædkvalitet mellem SAS-ansatte og mænd, der lever

Læs mere

Seniorkursus i Biostatistik og Stata, Dag 2

Seniorkursus i Biostatistik og Stata, Dag 2 SENIORKURSUS STATA OG BIOSTATISTIK Aarhus Universitet juni DAGENS TEMA: SAMMENLIGNINGER FORMIDDAG: KONTINUERTE DATA EFTERMIDDAG: KATEGORISKE DATA STATISTISK ANALYSE AF TO UAFHÆNGIGE STIKPRØVER FRA NORMALFORDELTE

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 15. januar 2018

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 15. januar 2018 Faculty of Health Sciences Basal Statistik Begreber. Parrede sammenligninger. Lene Theil Skovgaard 15. januar 2018 1 / 91 Indhold Planlægning af undersøgelse, protokol Grafik, Basale begreber Parrede sammenligninger

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere

Basal Statistik. Indhold. Planlægning af undersøgelse. Ide, Problemstilling. Faculty of Health Sciences. Begreber. Parrede sammenligninger.

Basal Statistik. Indhold. Planlægning af undersøgelse. Ide, Problemstilling. Faculty of Health Sciences. Begreber. Parrede sammenligninger. Faculty of Health Sciences Indhold Basal Statistik Begreber. Parrede sammenligninger. Lene Theil Skovgaard 15. januar 2018 Planlægning af undersøgelse, protokol Grafik, Basale begreber Parrede sammenligninger

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Basal Statistik. Sammenligning af grupper. Vitamin D eksemplet. Praktisk håndtering af data. Faculty of Health Sciences

Basal Statistik. Sammenligning af grupper. Vitamin D eksemplet. Praktisk håndtering af data. Faculty of Health Sciences Faculty of Health Sciences Sammenligning af grupper Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 7. februar 2017 Sammenligning af to grupper: T-test Dimensionering af undersøgelser

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 7. februar 2017

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 7. februar 2017 Faculty of Health Sciences Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 7. februar 2017 1 / 96 Sammenligning af grupper Sammenligning af to grupper: T-test Dimensionering

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016 Faculty of Health Sciences Basal Statistik Begreber. Parrede sammenligninger. Lene Theil Skovgaard 6. september 2016 1 / 88 APPENDIX Programbidder svarende til diverse slides: Indlæsning af vitamin D datasæt,

Læs mere

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik ... september 1 Epidemiologi og biostatistik. Uge, mandag. september Michael Væth, Institut for Biostatistik. Ikke parametrisk statistiske test : Analyse af overlevelsesdata (ventetidsdata) Censurering

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Epidemiologi og Biostatistik Kliniske målinger (Kapitel. +.1 + 11.-11 + 1.1-) Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere