Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Størrelse: px
Starte visningen fra side:

Download "Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge"

Transkript

1 Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1

2 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på målinger. Fordelingens sandsynlighedsteoretiske egenskaber giver et solidt matematisk grundlag at bygge på. Normalfordelingen er symmetrisk, har et maximum og er fuldstændigt beskrevet ved to parametre, nemlig midddelværdien og variansen (eller standardafvigelsen). 2

3 Hvis X er normalfordelt med middelværdi µ og varians σ 2 har X tæthed { } 1 ϕ(x) = exp (x µ)2 2πσ 2 2σ 2 Vi skriver X N(µ, σ 2 ) Vi antager fremover at vi har observationer af x = (x 1,..., x n ) X = (X 1,..., X n ) hvor X i, i = 1,..., n er normalfordelte med samme varians σ 2, men muligvis med forskellig middelværdi µ i. 3

4 T-test benyttes når man vil teste hypoteser om middelværdien af normalfordelte variable. Vi ser på 3 forskellige slags t-test: One-sample t-test benyttes når man vil teste om uafhængige, identisk fordelte normale variable kommer fra en fordeling med en kendt middelværdi. Uparret t-test benyttes når man vil sammenligne middelværdierne i to grupper af uafhængige, identisk fordelte normale variable. Det antages at der er samme varians i de to grupper, og man ønsker at teste om middelværdierne er ens. Parret t-test benyttes når man vil teste om differencen mellem sammenhørende par af observationer af normalfordelte variable med samme varians kommer fra en normalfordeling med kendt middelværdi. Er det samme som one-sample t-test udført på differenserne. 4

5 One-sample t-test Statistisk model: (R n, (N (µ,σ 2 )) (µ,σ 2 ) R ]0, [) hvor N (µ,σ 2 ) har tæthed Hypotese: ϕ (µ,σ 2 )(x) = { 1 ( 2πσ 2 ) exp 1 n 2σ 2 } n (x s µ) 2 s=1 H : µ = µ 0 5

6 Estimatorer under den fulde model: og ˆµ = 1 n ˆσ 2 = 1 n dog benyttes s 2 = n x s = x s=1 n (x s x) 2 s=1 1 n 1 n (x s x) 2 ˆµ N(µ, σ2 n ) ; SSD = nˆσ2 = (n 1)s 2 σ 2 χ 2 n 1 ; ˆµ s 2 s=1 6

7 Estimatorer under hypotesen: og µ = µ 0 σ 2 = 1 n n (x s µ 0 ) 2 s=1 n σ 2 σ 2 χ 2 n 7

8 Kvotientteststørrelsen for test af µ = µ 0 er Q(x) = ( ˆσ 2 σ 2 ) n 2 og testsandsynligheden er givet ved ( ɛ(x) = 2P T n 1 x µ ) 0 s/ n hvor T n 1 er T fordelt med n 1 frihedsgrader. Bemærk: Vi beregner gennemsnittet, trækker den formodede middelværdi fra og dividerer med et estimat af standardafvigelsen. Vi har altså en teststørrelse, der under hypotesen har middelværdi 0 og varians 1. 8

9 Bemærk også at under hypotesen er X N(µ 0, σ2 n ), dvs at n( X µ0 ) N(0, σ 2 ). Desuden er (n 1)s 2 σ 2 χ 2 n 1 og X s 2. Definitionen af en t-fordeling med f frihedsgrader er netop T = U Z/f hvor U N(0, 1) og Z χ 2 f og U Z. Vi kan altså direkte se at vores teststørrelse T = n( x µ0 ) s = n( x µ0 )/σ ((n 1)s2 /σ 2 )/(n 1) er t-fordelt med n 1 frihedsgrader. 9

10 VIGTIGT: Testsandsynligheden (p-værdien) angiver sandsynligheden for at man under et lignende eksperiment observerer den samme eller en større afstand mellem gennemsnittet og den formodede middelværdi som den man har observeret i det konkrete eksperiment. Hvis denne sandsynlighed er stor kan vi godt tro på at den observerede forskel blot skyldes tilfældig variation. Hvis sandsynligheden er lille vil vi være tilbøjelige til ikke at tro på at det udelukkende skyldes tilfældigheder, men snarere at data ikke stammer fra en fordeling med den formodede middelværdi. Hvis testsandsynligheden er mindre end 0.05 siger vi at middelværdien er signifikant forskellig fra µ 0 på 5% niveau. 10

11 Uparret t-test: Sammenligning af middelværdi i to normalfordelinger Observation fra x = (x rs ) r=1,2,s=1,...nr X = (X rs ) r=1,2,s=1,...nr uafhængige normalfordelte variable X rs N(µ r, σ 2 ) med µ r R og σ > 0. Sæt n = n 1 + n 2. X har tæthed ϕ µ1,µ 2,σ 2(x) = 1 ( 2πσ 2 ) n exp { 1 2σ 2 } 2 n r (x rs µ r ) 2 r=1 s=1 11

12 Statistisk model og hypotese Statistisk model (R n, (N (µ1,µ 2,σ 2 )) (µ1,µ 2,σ 2 ) R 2 ]0, [) hvor N (µ1,µ 2,σ 2 ) har tæthed ϕ µ1,µ 2,σ 2(x) Hypotese: H : µ 1 = µ 2 = µ 12

13 Estimatorer og teststørrelse MLE under M : ˆµ r = x r ˆσ 2 = 1 n Dog benyttes : s 2 = 1 n 2 MLE under H : µ = x σ 2 = 1 n Dog benyttes : s 2 = 1 n 1 2 n r (x rs x r ) 2 r=1 s=1 2 n r (x rs x r ) 2 r=1 s=1 2 n r (x rs x) 2 r=1 s=1 2 n r (x rs x) 2 r=1 s=1 13

14 Testsandsynlighed og fordeling af estimatorer Fordeling af MLE under M: Fordeling af MLE under H: ˆµ 1 ˆµ 2 ˆσ 2 ˆµ r N(µ r, 1 n r σ 2 ) nˆσ 2 σ 2 χ 2 n 2 µ ˆσ 2 µ N(µ, 1 n σ2 ) n σ 2 σ 2 χ 2 n 1 14

15 Kvotientteststørrelse Testsandsynlighed ɛ(x) = 2P Q(x) = ( ˆσ 2 σ 2 ) n 2 T n 2 x 1 x 2 s 1 n n 2 hvor s 2 = 1 2 nr n 2 r=1 s=1 (x rs x r ) 2, og T n 2 er T fordelt med n 2 frihedsgrader. Bemærk: Vi beregner differencen på de to gennemsnit, trækker den formodede middelværdi fra (=0) og dividerer med et estimat af standardafvigelsen på differencen. Vi har altså en teststørrelse, der under hypotesen har middelværdi 0 og varians 1. Også her kan vi direkte se fordelingen af vores teststørrelse udfra fordelingerne af de enkelte elementer og definitionen af en t-fordeling., 15

16 Eksempel: eksamensopgave For at undersøge om methylkviksølv er lige farligt for mænd og kvinder udførtes et forsøg hvor raske personer fik indgivet CH oralt. I forsøget deltog seks kvinder og ni mænd. For hver person måltes halveringstiden i dage for den indgivne methylkviksølv. Det kan i det følgende antages at observationerne er uafhængige og normalfordelte. Ved besvarelsen kan nedenstående R-udskrifter og Figur 1 anvendes. Resultaterne er angivet i datasættet methyl 16

17 > methyl sex halvtid 1 kvinde 52 2 kvinde 69 3 kvinde 73 4 kvinde 88 5 kvinde 87 6 kvinde 56 7 mand 72 8 mand 88 9 mand mand mand mand mand mand mand 74 17

18 1. Er det rimeligt at antage at målingerne fra henholdsvis mænd og kvinder stammer fra fordelinger med samme varians? 2. Angiv et estimat og et 95% konfidensinterval for forskellen mellem middelværdierne for halveringstiden for kvinder og mænd. 3. Kan halveringstiden antages at være den samme for kvinder og mænd? Forklar p-værdien i Udskrift Antag at halveringstiden ikke afhænger af køn. Angiv estimater for middelværdi og varians i den fælles halveringsfordeling. 5. Kommenter residualplottet Figur 1. Er det rimeligt at antage at data er normalfordelt? 18

19 Udskrift 1 > var.test(halvtid ~ sex, data = methyl) F test to compare two variances data: halvtid by sex F = , num df = 5, denom df = 8, p-value = alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: sample estimates: ratio of variances

20 Udskrift 2 > t.test(halvtid ~ sex, data = methyl, var.equal=true) Two Sample t-test data: halvtid by sex t = , df = 13, p-value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean in group kvinde mean in group mand

21 Udskrift 3 > t.test(halvtid, data = methyl) One Sample t-test data: halvtid t = , df = 14, p-value = 4.835e-13 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: sample estimates: mean of x

22 Residualer Index 22

23 Løsning til spørgsmål 1 1. Er det rimeligt at antage at målingerne fra henholdsvis mænd og kvinder stammer fra fordelinger med samme varians? Fra Udskrift 1: F = , num df = 5, denom df = 8, p-value = alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: Se også IH s

24 Løsning til spørgsmål 2 2. Angiv et estimat og et 95% konfidensinterval for forskellen mellem middelværdierne for halveringstiden for kvinder og mænd. Fra Udskrift 2: 95 percent confidence interval: sample estimates: mean in group kvinde mean in group mand

25 Løsning til spørgsmål 3 3. Kan halveringstiden antages at være den samme for kvinder og mænd? Forklar p-værdien i Udskrift 2. Fra Udskrift 2: t = , df = 13, p-value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

26 Løsning til spørgsmål 4 4. Antag at halveringstiden ikke afhænger af køn. Angiv estimater for middelværdi og varians i den fælles halveringsfordeling. Fra Udskrift 3: t = , df = 14, p-value = 4.835e-13 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: sample estimates: mean of x

27 T-teststørrelsen er givet ved T = x µ 0 s/ n hvor s 2 er estimatet for variansen vi er interesseret i. Testet er for µ 0 = 0 og x er angivet til at være Frihedsgraderne er 14 og antallet af observationer er således n = 15. Vi får s 2 = ( x µ 0) 2 T 2 /n = /15 = Derfor estimerer vi fordelingen af halveringstiden til N( , ). 27

28 Løsning til spørgsmål 5 5. Kommenter residualplottet Figur 1. Er det rimeligt at antage at data er normalfordelt? Bemærk at punkterne ligger nogenlunde symmetrisk omkring 0 uden åbenlys stuktur og uden outliers. Residualplottet kan således godt underbygge en antagelse om normalfordelte data. 28

29 Parret t-test Dette test benyttes hvis man har sammenhørende par af observationer, for eksempel før og efter et indgreb på samme subjekt, og man ønsker at teste om indgrebet ændrer middelværdien. I praksis udføres testet ved at lave et one-sample t-test på differencerne. 29

30 Lineær regression Observationssæt t x t 1 x t n x n Realisationer af stokastiske variable X r, r = 1,..., n X r erne er indbyrdes uafhængige. X r N(ν + βt r, σ 2 ) 30

31 Lineær regression X r N(ν + βt r, σ 2 ) Ny parametrisering EX r = α + β(t r t) for r = 1,..., n Regressionslinien bliver y(t) = α + β(t t) og liniens skæring med y aksen bliver α β t. 31

32 Statistisk model Linearitetsmodel M l : EX r = α + β(t r t), (α, β) R 2, Parameterområde under modellen Θ 0 = R 2 ]0, [ x er observation fra den statistiske model (R n, (N α,β,σ 2) (α,β,σ 2 ) R 2 ]0, [) hvor N α,β,σ 2 ϕ α,β,σ 2(x) = har tæthed 1 ( 2πσ 2 ) n exp { 1 2σ 2 } n (x r α β(t r t)) 2 r=1 32

33 MLE for (α, β, σ 2 ) er entydigt givet ved Dog benyttes s 2 l = ˆα = x ˆβ = n r=1 (x r x)(t r t) SSD t ˆσ l 2 = 1 n (x r x n r t)) 2 r=1 1 n 2 n (x r x ˆβ(t r t)) 2 r=1 33

34 ˆα, ˆβ og ˆσ 2 l (eller s 2 l ) er uafhængige og ˆα N(α, 1 n σ2 ) ˆβ N(β, σ 2 SSD t ) SSD l = (n 2)s 2 l = nˆσ 2 l σ 2 χ 2 n 2 34

35 Estimatet for regressionslinien y(t) bliver ŷ(t) = x + ˆβ(t t). Den stokastiske variabel Y (t) = X + ˆβ(t r t) har fordeling Y (t) N (α + β(t t), σ 2 ( 1n + (t t) 2 ) ) SSD t Variansen på den estimerede regressionslinie vokser med afstanden til t, således at regressionslinien er bedst bestemt nær t. I praktiske anvendelser indsættes ( x, ˆβ, s 2 l ) i stedet for parameterværdierne, når man skal angive estimatorernes og den estimerede regressionslinies fordelinger. 35

36 Test for β under linearitetsmodellen Hypotese: H β : EX r = α + β 0 (t r t), r = 1,..., n, α R Parameterområde under hypotesen: Θ β = R ]0, [ Statistisk model (R n, (N α,σ 2) (α,σ 2 ) R ]0, [) hvor N α,σ 2 ϕ α,σ 2(x) = har tæthed 1 ( 2πσ 2 ) n exp { 1 2σ 2 } n (x r α β 0 (t r t)) 2 r=1 36

37 MLE under H β ˆα = x ˆσ 2 β = 1 n Dog benyttes s 2 β = n (x r x β 0 (t r t)) 2 r=1 1 n 1 n (x r x β 0 (t r t)) 2 r=1 ˆα og ˆσ 2 β er uafhængige ˆα N(α, 1 n σ2 ) SSD β = (n 1)s 2 β = nˆσ2 β σ2 χ 2 n 1 ( Testsandsynlighed: ɛ β (x) = 2P T β SSDt ˆβ ) β 0 s l hvor T β = SSDt ( ˆβ(X) β 0 ) s l (X) er T fordelt med n 2 frihedsgrader. 37

38 Eksempel på eksamen Fedtsyreprocenten er den fundamentale kvalitetsegenskab ved sæbe. Den bestemmes sædvanligvis ved langsomme kemiske laboratoriemålinger. Til lettelse af produktionskontrollen i sæbefabrikker har man foreslået at bestemme fedtsyreprocenten ved at måle sæbens elektriske ledningsevne. Ledningsevnen er let at måle, og målingerne kan udføres på produktionsstedet. I nedenstående tabel findes en række uafhængige bestemmelser af ledningsevnen målt i milli-siemens (ms) for en bestemt sæbetype og forskellige fedtsyreprocenter. 38

39 Fedtsyre- Ledningsevne procent i ms Tabel 1: Sammenhæng mellem ledningsevne og fedtsyreprocent i sæbe 39

40 1. I R-udskriften nedenfor er data analyseret ved hjælp af en lineær regressionsmodel. Opstil den statistiske model. Redegør for forudsætningerne for analysen, og diskuter om disse kan antages at være opfyldte i det foreliggende tilfælde. 2. Angiv estimater for parametrene under regressionsmodellen og disses fordeling. 3. Er data forenelige med en hypotese om at ledningsevnen ikke afhænger af fedtsyreprocenten? 4. Er data forenelige med en hypotese om at regressionslinien har en hældning på 0.6? Ved besvarelsen kan nedenstående uddrag af et R-udskrift og et QQ-plot af de standardiserede residualer anvendes. Data antages at ligge i datasættet ledning med de to variable fedtpct og ledning. 40

41 Udskrift 1: Call: lm(formula = ledning ~ I(fedtpct - mean(fedtpct)), data = ledning) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-16 I(fedtpct - mean(fedtpct)) e Residual standard error: on 14 degrees of freedom 41

42 Normal Q Q Plot Sample Quantiles Theoretical Quantiles 42

43 Besvarelse 1. Opstil den statistiske model. Data består af 16 observationer af ledningsevnen, hvor fedtsyreprocenten også er angivet. Vi angiver den rte måling af ledningsevnen som x r med tilhørende fedtsyreprocent t r. Det antages at ledningsevnen X r er normalfordelt med middelværdi α + β(t r t), hvor t er gennemsnittet af de angivne fedtsyreprocenter, og varians σ 2. Den statistiske model bliver således (R 16, (N α,β,σ 2) (α,β,σ 2 ) R 2 ]0, [) hvor N α,β,σ 2 har tæthed { 1 ϕ α,β,σ 2(x) = ( exp 1 2πσ 2 ) 16 2σ 2 16 r=1 (x r α β(t r t)) 2 } 43

44 1. Redegør for forudsætningerne for analysen, og diskuter om disse kan antages at være opfyldte i det foreliggende tilfælde. Det antages at data er uafhængige. Det angives at det er uafhængige bestemmelser, så denne antagelse vil vi godtage. Derudover antages data at være normalfordelt med den givne middelværdi. Dette kan efterprøves ved at se på fordelingen af residualerne. Fra udskriftet kan vi bruge informationen om residualerne. Her bør henholdsvis min og max og 1. og 3. kvartil være nogenlunde lige store i absolut værdi. Det lader til at være fint opfyldt. Derudover bør medianen være tæt på 0, der er gennemsnittet af residualerne. Dette lader også til at være opfyldt, og vi godtager således normalfordelingsantagelsen. QQ-plottet af de standardiserede residualer indikerer også fin overensstemmelse med normalfordelingsantagelsen, da punkterne ligger tæt på en ret linie. 44

45 2. Angiv estimater for parametrene under regressionsmodellen og disses fordeling. Bemærk først at regressionen er foretaget på de centrerede værdier af fedtprocenten, dvs gennemsnittet af t r er fratrukket alle fedtprocentangivelser inden analysen. Vi skal angive estimater for de 3 parametre α, β og σ og deres fordelinger. Vi har ˆα = 1 n x r og ˆα N(α, σ2 n n ) r=1 n r=1 ˆβ = (x r x)(t r t) σ n r=1 (t og ˆβ N(β, 2 r t) 2 n r=1 (t r t) ) 2 s 2 = 1 n 2 n (x r x ˆβ(t r t)) 2 og (n 2)s 2 σ 2 χ 2 n 2 r=1 hvor s 2 er estimatet for σ 2. Vi benytter estimaterne for α, β og σ når fordelingerne skal vurderes. 45

46 I udskriftet under Coefficients er α betegnet som interceptet og estimeret til Dette estimat er gennemsnittet af ledningsevnemålingerne. Standardfejlen for estimatet er angivet til Denne kunne også findes i sidste linie hvor s er angivet til Antallet af målinger er n = 16. Bemærk at s/ n = / 16 = Vi får således følgende bud på fordelingen af ˆα: ˆα N( , ) 46

47 I udskriftet under Coefficients findes estimatet for β under I(fedtpct - mean(fedtpct)) og er estimeret til med en standard fejl på Vi har følgende bud på fordelingen af ˆβ: ˆβ N( , ) 47

48 I udskriftets sidste linie angives et estimat for σ til s = og frihedsgraderne er n = 2 = 14. Vi har følgende bud på fordelingen af s 2 : s χ 2 14 = χ

49 3. Er data forenelige med en hypotese om at ledningsevnen ikke afhænger af fedtsyreprocenten? Vi skal teste hypotesen H : β = 0 Dette kan gøres med t-teststørrelsen T β = SSDt ˆβ 0 s der under hypotesen er T-fordelt med n 2 = 14 frihedsgrader. Den er allerede regnet ud i udskriftet og kan findes på linien for β: I(fedtpct - mean(fedtpct)) e-06 Den er således angivet til T β = Testsandsynligheden er opgivet til at være 1.63e-06. Der er altså en meget lille sandsynlighed for at observere en værdi for ˆβ på eller længere væk fra 0 i en stikprøve af denne størrelse, hvis den sande værdi af β er 0. Vi afviser således hypotesen om at ledningsevnen ikke afhænger af fedtsyreprocenten. 49

50 4. Er data forenelige med en hypotese om at regressionslinien har en hældning på 0.6? Vi skal teste hypotesen H : β = 0.6 Dette kan gøres med t-teststørrelsen SSDt T β = ˆβ 0.6 s der under hypotesen er T-fordelt med n 2 = 14 frihedsgrader. I udskriftets sidste linie er s angivet til , og vi har ˆβ = Vi mangler værdien af SSD t. Den kan beregnes således: Estimatet for standardfejlen på ˆβ er angivet til , og er estimeret ved s/ SSD t. Vi får at SSDt = / =

51 Vi kan nu beregne t-teststørrelsen: T β = SSDt ˆβ 0.6 s = = Testsandsynligheden er givet ved 2P (T 1.883) og kan slås op i R med ordren > 2*(1-pt( , df=14)) [1] Da testsandsynligheden er større end 0.05 kan vi acceptere hypotesen om en hældning på 0.6 på 5% niveau. 51

52 Hvis man ikke har mulighed for at slå testsandsynligheden op i R kan en tilnærmelse findes i MS s Her angives at P (T ) = 0.025, dvs at P ( T ) = Da > kan vi konkludere at vi accepterer hypotesen på 5% niveau. En endnu grovere tilnærmelse kan findes udfra betragtningen: P ( T n 1.96) > P ( Y 1.96) = 0.05 for alle n = 1, 2,..., hvor Y er standard normalfordelt. Konklusion: Data er forenelige med en hypotese om at regressionslinien har en hældning på

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 22 sider. Skriftlig prøve: 13. december 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Nanostatistik: Lineær regression

Nanostatistik: Lineær regression Nanostatistik: Lineær regression JLJ Nanostatistik: Lineær regression p. 1/41 Sammenhænge Funktionssammenhæng: y er en funktion af x. Ex: Hvis jeg kender afstanden mellem to galakser så kender jeg også

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Perspektiver i Matematik-Økonomi: Linær regression

Perspektiver i Matematik-Økonomi: Linær regression Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: jlj@imf.au.dk Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet

Læs mere

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod.

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. 1-stikprøve t-test (Eksamen 2005 opgave 1) Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. I nedenstående tabel betragtes blodprøver fra 9 patienter. Hver

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3.

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3. Model Program (8.15-10): 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. Bruger nu to indices: i = 1,...,k for gruppenr. og j = 1,...,n i for observation indenfor gruppe. k = 3 grupper: µ 1

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 1. december 2011 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Nanostatistik: Test af hypotese

Nanostatistik: Test af hypotese Nanostatistik: Test af hypotese JLJ Nanostatistik: Test af hypotese p. 1/50 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2 Statistik og Sandsynlighedsregning IH kapitel Overheads til forelæsninger, onsdag 5. uge Resultater om normalfordeling X N(µ,σ ). N har tæthed ϕ µ,σ (x) = exp (x µ) πσ σ EX = µ, Var(X) = σ X µ N(0,) σ

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2012 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Mat2SS Vejledende besvarelse uge 11

Mat2SS Vejledende besvarelse uge 11 MatSS Vejledende besvarelse uge Eksamen V99/00 opg. a Kønsfordelingen 996 den samme for de tre skoler Mænd Kvinder I alt København 5 = n x 56 = x 8 = n Odense 9 = n x 06 = x 5 = n Århus 0 = n x 40 = x

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Preben Blæsild og Jens Ledet Jensen

Preben Blæsild og Jens Ledet Jensen χ 2 Test Preben Blæsild og Jens Ledet Jensen Institut for Matematisk Fag Aarhus Universitet Egå Gymnasium, December 2010 Program 8.15-10.00 Forelæsning 10.15-12.00 Statlab: I arbejder, vi cirkler rundt

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i Da er r i = e i ˆσ ei t(n 3) (tæt på N(0,1) hvis n ikke alt for lille). Program 1. lineær regression: opgave 3 og 13 (sukker-temperatur). 2. studentiserede residualer, multipel regression. Tommelfinger-regel:

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel:

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel: Normal fordeling Tæthedsfunktion for normalfordeling med middelværdi µ og varians σ 2 : Program (8.15-10): f() = 1 µ)2 ep( ( 2πσ 2 2σ 2 ) E µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4 1. vigtige sandsynlighedsfordelinger:

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere