MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL
|
|
|
- Cecilie Graversen
- 9 år siden
- Visninger:
Transkript
1 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL
2 DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x = 9 4x + 3 = 2x x = 13 5 = 1 x 2(x + 5) = 4 KLASSE PRINTARK GYLDENDAL 2
3 DIGITALE VÆRKTØJER A1.2 SORTER LIGNINGER 2x + 24 = 8x 15 2x = 7x 3 2 x x 3 4 = 15 2x + x 2 5 = x x 2 = 2x + 3 x + 5 = x 25 7 KLASSE PRINTARK GYLDENDAL 3
4 DIGITALE VÆRKTØJER A2 HVORDAN LØSER DU BEDST OPGAVEN? A Tegn et kvadrat med sidelængden 7. B Mål længden af diagonalen. C Find omkredsen. D Find arealet. A Tegn en skitse med mål af et værelse, som har form som et rektangel, og som måler 3,2 meter i længden og 2,4 meter i bredden. B Find arealet af værelset. A Tegn et parallelogram som har arealet 24. B Find omkredsen af parallelogrammet. A Tegn en retvinklet trekant med sidelængderne 3, 4 og 5. B Find omkredsen af trekanten. C Find arealet af trekanten. D Mål vinklernes størrelse. A Tegn en ligesidet trekant med sidelængden 10. B Tegn en cirkel, som går gennem trekantens hjørner. C Find omkredsen af cirklen. A Tegn en skitse af en terning, som er klippet op, så man kan se alle seks kvadratiske grundflader, som terningen består af. Der behøver ikke være mål på din skitse A Tegn en skitse med mål af en kasse set forfra, fra siden og oppefra. Kassen måler 75 cm i længden, 35 cm i bredden og 40 cm i højden. B Find kassens rumfang. A Tegn en cirkel med et areal mellem 40 og 45 cm 2. B Hvad er længden af radius? C Hvor stor er cirklens omkreds? A Tegn et rektangel, hvor længden af en diagonal er 5 cm. B Hvor lange er siderne i rektanglet? C Hvad er rektanglets areal? A Tegn en skitse med mål af, hvordan en palle set oppefra kan pakkes med fladskærmstv. En palle måler 120 cm x 80 cm. Fladskærmstv er i papkasser, som måler 100 cm i længden, 10 cm i bredden og 58 cm i højden. KLASSE PRINTARK GYLDENDAL 4
5 PLANGEOMETRI AX BEGREBER OG GIVNING A Tegn en stump-, spids- og retvinklet trekant, der alle har arealet 27. B Tegn to forskellige højder i hver trekant. A Undersøg, om man kan tegne en retvinklet og ligesidet trekant. ligebenet trekant. B Forklar forskellen på en ligesidet og en ligebenet trekant. A Hvad er gradtallet for vinkel A, B og C i trekant ABC, hvor b = 4? B Forklar forskellen på en ligesidet og en ligebenet trekant. A Tegn en DEF, hvor D = 135 og E = 18,5. B Tegn en ny trekant, der er kongruent med DEF. C Tegn en ny trekant, der er ligedannet, men ikke kongruent med DEF. A Tegn mindst fem forskellige polygoner. Bestem vinkelsummen for hver figur. B Hvad er vinkelsummen i en n-kant? A Tegn en trekant, og tegn dens medianer. B Beskriv, hvad en median i en trekant er. A Tegn en trekant, og tegn dens midtpunktstransversaler. B Beskriv, hvad en midtpunktstransversal er. A Undersøg, om to trekanter altid er ligedannede, hvis de er ligesidede. ligebenede. har samme omkreds. har samme vinkler. KLASSE PRINTARK GYLDENDAL 5
6 PLANGEOMETRI UX SØMBRÆTPAPIR KLASSE PRINTARK GYLDENDAL 6
7 PLANGEOMETRI UX.1 FIRKANTER OG TESSELERING KLASSE PRINTARK GYLDENDAL 7
8 PLANGEOMETRI UX.2 FIRKANTER OG TESSELERING KLASSE PRINTARK GYLDENDAL 8
9 PLANGEOMETRI AX.1 HØJDEMÅLINGER Find to forskellige ting, som I i gruppen ønsker at finde højden på, fx træ, husmur, flagstang, elmast eller lignende. Del jer i to mindre grupper, hvor hver gruppe finder højden på de to genstande med to forskellige metoder. Det vil sige, at de to genstande måles ved hjælp af alle fire metoder. I kan evt. filme, hvordan I foretog målingerne. Metode 1: Brug solen I kan kun bruge denne metode, når solen skinner. Det skal ligeledes være muligt at se, hvor fx træets skygge rammer. Sæt en pind eller en tommestok lodret i jorden og mål længden. Mål derefter længden på skyggen af den lodrette pind. Til slut måles længden på skyggen fra træet. Nu kan træets højde beregnes ved at bruge ligedannede trekanter. Metode 2: Brug jeres højde Den ene person lægger sig på jorden og kigger præcist hen over hovedet på en kammerat og op på toppen af træet. Kamme ratens højde, afstanden fra træet til kammeraten og afstanden fra den liggende persons øje. Med disse informationer kan træets højde beregnes ved at bruge de to ligedannede trekaner. KLASSE PRINTARK GYLDENDAL 9
10 PLANGEOMETRI AX.2 HØJDEMÅLINGER Metode 3: Brug et klinometer I kan bestemme højden af fx et træ ved at bruge et klinometer og et målebånd eller tommestok. Et klinometer er et instrument, der kan måle vinklen mellem vandret og et sigtepunkt. Klinometeret holdes i hånden mens I sigter på træets top og aflæser sigtevinklen v. I skal måle den lodrette højde fra klinometeret til jorden og den vandrette afstand fra klinometeret til træet. Så kan I tegne situationen i et bestemt længdeforhold og måle højden af træet på tegningen. Metode 4: Brug en målepind I skal bruge en pind, der har mindst samme længde som armen på den, der måler. Pinden holdes lodret ud i strakt arm, så det lodrette stykke på pinden har samme længde som armen. Stå foran træet, så pinden (toppen af pinden og lige over, hvor hånden holder i pinden) netop dækker træet. Mål afstanden fra den der måler og hen til træet, så har I højden på træet. I nogle af metoderne kan I finde højden ud fra jeres målinger, og i andre er I nødt til, efter I har foretaget jeres målinger, at lave en tegning i et bestemt målestoksforhold, og derefter ved at måle på tegningen finde frem til, hvor højt fx træet er. KLASSE PRINTARK GYLDENDAL 10
11 PLANGEOMETRI EX.1 BEGREBER OG FAGORD PLANGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Topvinkler Ligedannethed Pythagoras læresætning Matematisk bevis KLASSE PRINTARK GYLDENDAL 11
12 PLANGEOMETRI EX.2 BEGREBER OG FAGORD PLANGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Ensliggende vinkler Pythagoræiske tripler Kongruens KLASSE PRINTARK GYLDENDAL 12
13 PLANGEOMETRI EX.3 EGENSKABER VED KVADRAT ABCD A F C I O P G M J H N L K B E D KLASSE PRINTARK GYLDENDAL 13
14 RUMGEOMETRI AX.1 RUMLIGE FIGURER A B C D E F G H I KLASSE PRINTARK GYLDENDAL 14
15 RUMGEOMETRI AX.2 RUMLIGE FIGURER J K L M N O KLASSE PRINTARK GYLDENDAL 15
16 RUMGEOMETRI UX.1 CIRKELUDSNIT KLASSE PRINTARK GYLDENDAL 16
17 RUMGEOMETRI UX.2 CIRKELUDSNIT KLASSE PRINTARK GYLDENDAL 17
18 RUMGEOMETRI UX.3 CIRKELUDSNIT KLASSE PRINTARK GYLDENDAL 18
19 RUMGEOMETRI EX.1 BEGREBER OG FAGORD RUMGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Massefylde Udfoldninger Rumdiagonaler KLASSE PRINTARK GYLDENDAL 19
20 RUMGEOMETRI EX.2 BEGREBER OG FAGORD RUMGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Rumfang Overfladeareal Pythagoras KLASSE PRINTARK GYLDENDAL 20
Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)
1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6
Tegning. Arbejdstegning og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn fra tre synsvinkler
Tegning Arbejds og isometrisk Ligedannede figurer Målestoksforhold Konstruktion Perspektiv Kassens højde Bundens bredde dybde Hullets diameter Afstand mellem hul og bund Højde over jorden Musvit 30 10
MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER
LÆS OG SKRIV MATEMATIK A1 LÆS MATEMATIK Brug de tre rammer i modellen, når du skal løse en matematikopgave. Det er ikke sikkert, du skal bruge alle punkter i hver ramme til alle opgaver. Find ud af, hvilke
Plangeometri FORHÅNDSVIDEN. I dette kapitel skal du arbejde med plangeometri. Plangeometri handler om figurer og egenskaber ved figurer i en plan.
Plangeometri I dette kapitel skal du arbejde med plangeometri. Plangeometri handler om figurer og egenskaber ved figurer i en plan. I den første del af kapitlet skal du arbejde med trekanter, hvor du skal
I denne opgave arbejder vi med følgende matematiske begreber:
I denne opgave arbejder vi med følgende matematiske begreber: En meter: 1 m. En kvadratmeter: 1 m. 1 m 2 1 m. En kubikmeter: 1 m 3 Radius-beregning af træet Find omkredsen af træet, mål i brysthøjde. Ca.
Geometri i plan og rum
INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af
Matematik. Meteriske system
Matematik Geometriske figurer 1 Meteriske system Enheder: Når vi arbejder i længder, arealer og rummål er udgangspunktet metersystemet: 2 www.ucholstebro.dk. Døesvej 70 76. 7500 Holstebro. Telefon 99 122
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....
OM KAPITLET PLANGEOMETRI. Elevernes egne svar eller Elevernes egne forklaringer. I
PLNGEOMETRI OM KPITLET I dette kapitel om plangeometri skal eleverne arbejde med trekanter og deres egenskaber. Eleverne skal kunne anvende deres viden om trekanter til at beregne afstande, som de ikke
7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri
7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler
Hvilke geometriske figurer kender I?
A Hvilke geometriske figurer kender I? Fortæl hinanden hvad de forskellige geometriske figurer på væggen hedder og hvordan I kan kende dem. Kig jer omkring udenfor og find eksempler på: Fx: bordpladen
Undersøgelser af trekanter
En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,
Mattip om. Geometri former og figurer. Du skal lære: Kan ikke Kan næsten Kan. At finde og tegne former og figurer
Mattip om Geometri former og figurer Du skal lære: At finde og tegne former og figurer Kan ikke Kan næsten Kan At beregne omkreds og areal af figurer Om forskellige typer trekanter At finde højde og grundlinje
Pythagoras Ensvinklede trekanter Trigonometri. Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen
MATEMATIKBANKENS P.E.T. KOMPENDIUM Pythagoras Ensvinklede trekanter Trigonometri Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen FORENKLEDE FÆLLES MÅL FOR PYTHAGORAS, ENSVINKLEDE TREKANTER
Matematik for lærerstuderende klasse Geometri
Matematik for lærerstuderende 4.-10. klasse Geometri Klassisk geometri (kapitel 6) Deduktiv tankegang Ræsonnementskompetence Mål med kapitlet: Erkender Thales sætning som fundament for afstandsberegning.
geometri trin 2 brikkerne til regning & matematik preben bernitt
brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er
Tip til 1. runde af Georg Mohr-Konkurrencen Geometri
Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,
Tegning. Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn arbejdstegninger
Tegning Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning Målestoksforhold bruges når man skal vise noget større eller mindre end det er i virkeligheden.
KonteXt +5, Kernebog
1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:
Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.
Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler
bruge en formel-samling
Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber
geometri trin 1 brikkerne til regning & matematik preben bernitt
brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er
Arbejdskort geometri på græs 1
Arbejdskort geometri på græs 1 8 hegnspæle Snor Sæt tre pæle, så de danner en vinkel. Marker vinklen med en snor. Pæl nr. 4 placeres så den har samme afstand til begge vinkelben. Pæl nr. 5 til 8 placeres
GEOMETRI I PLAN OG RUM
LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige
Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.
6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle
Tip til 1. runde af Georg Mohr-Konkurrencen. Geometri. Georg Mohr-Konkurrencen
Tip til. runde af Georg Mohr-Konkurrencen Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en teoretisk indføring, men der i stedet fokus på
Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri
Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når
ELEVFORUDSÆTNINGER OM KAPITLET PLANGEOMETRI
OM KAPITLET I dette kapitel om plangeometri arbejder eleverne med forskellige egenskaber ved plane figurer. I den første del af kapitlet arbejder eleverne med at finde areal af rektangler, parallelogrammer,
På opdagelse i GeoGebra
På opdagelse i GeoGebra Trekanter: 1. Start med at åbne programmet på din computer. Du skal sørge for at gitteret i koordinatsystem er sat til. Dette gør vi ved at trykke på Vis oppe i venstre hjørne og
Plangeometri BEGREBER OG NAVNGIVNING. FORHÅNDSVIDEN Du skal bruge et digitalt værktøj til nogle af opgaverne på dette opslag. PLANGEOMETRI 79 OPGAVE 2
Plangeometri KTIVITT OPGV 2 PLNGOMTRI 79 GRR OG NVNGIVNING I en ligesidet trekant er siderne 6 m. realet af trekanten er 1,6 m 2. I dette kapitel skal du arejde med ktivitet for to til tre personer. eregn
Trigonometri - Facitliste
Trigonometri - Facitliste En del opgaver, undersøgelser og aktiviteter er formuleret, så der er flere mulige facit, da resultatet på forskellig måde afhænger af elevernes valg. I de tilfælde anføres eksempelvis
Den pythagoræiske læresætning
Den pythagoræiske læresætning 1. Udfyld skemaet herunder dvs. find den manglende hypotenuse ved a 2 + b 2 = c 2 : 1 20 21 2 12 35 3 28 45 4 56 33 5 119 120 6 168 95 7 52 165 8 207 224 9 315 572 10 627
Trekants- beregning for hf
Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel
Opgave 1 Til denne opgave anvendes bilag 1.
Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål
Færdigheds- og vidensområder
Klasse: Mars 6./7. Skoleår: 16/17 Eleverne arbejder med bogsystemet format, hhv. 6. og 7. klasse. Da der er et stort spring i emnerne i mellem disse trin er årsplanen udformet ud fra Format 7, hvortil
Matematiske kompetencer
Matematiske kompetencer I dette kapitel skal du arbejde med forskellige matematiske kompetencer. I matematik skal du kunne andet og mere end blot at gentage paratviden og regne opgaver i kendte situationer.
Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).
Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på
Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2
Opgave 1 Opgave 2 21 000 m 2 B. 125,66 m 2 C. 1200 m 2 D. 185 540 m 2 Opgave 3 Det betyder, at en centimeter på tegningen svarer til 100 cm i virkeligheden B. 22m 2 C. D. E. Hvis længdeforholdet ændres
brikkerne til regning & matematik geometri basis+g preben bernitt
brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri, basis+g ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering
Trekanthøjder Figurer
Trekanthøjder D E N C B F G T I H L N S J M F K ST O T I U Q R V SK X Y 97887204290_Vaerkstedmap_Kopisider_-70.indd 24 24 /0/2 :46 M Trekanthøjder D B L F E H C G I J I L K M O R S N Y Q G Y E T U 97887204290_Vaerkstedmap_Kopisider_-70.indd
I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:
INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en
Bjørn Grøn. Euklids konstruktion af femkanten
Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen
Matematiske færdigheder opgavesæt
Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas
Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden.
Tilhørende: Robert Nielsen, 8b Geometribog Indeholdende de vigtigste og mest basale begreber i den geometriske verden. 1 Polygoner. 1.1 Generelt om polygoner. Et polygon er en figur bestående af mere end
Forslag til løsning af Opgaver om areal (side296)
Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens
Geometrisk tegning - Facitliste
Geometrisk tegning - Facitliste Om kapitlet I dette kapitel om geometrisk tegning skal eleverne arbejde med forskellige tegneteknikker og hjælpemidler. De skal gengive og undersøge muligheder og begrænsninger
Matematik på Åbent VUC
Lektion 8 Geometri Når du bruger denne facitliste skal du være opmærksom på, at: - der kan være enkelte fejl. - nogle af facitterne er udeladt - bl.a. der hvor facitterne er tegninger. - decimaltal kan
RIKKE SARON PEDERSEN MICHAEL POULSEN MICHAEL WAHL ANDERSEN PETER WENG FACITLISTE TIL TRÆNINGSHÆFTE 5
RIKKE SARON PEDERSEN MICHAEL POULSEN MICHAEL WAHL ANDERSEN PETER WENG 5 FACITLISTE TIL TRÆNINGSHÆFTE 5 Kontext 5, Facitliste til træningshæfte Samhørende titler: KonteXt 5 Kernebog KonteXt 5 Kopimappe
brikkerne til regning & matematik geometri F+E+D preben bernitt
brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun
8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:
8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse
Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant
Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1
GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)
Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på
Matematik Færdigheds- og vidensmål (Geometri og måling )
Matematik Færdigheds- og vidensmål (Geometri og måling ) Kompetenceområde Klassetrin Faser 1 Eleven kan kategorisere Efter klassetrin Eleven kan anvende geometriske begreber og måle Eleven kan kategorisere
geometri basis+g brikkerne til regning & matematik preben bernitt
brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri G ISBN: 978-87-92488-15 2 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk Denne
Lær at bygge en tipi-hule af lægter og genbrugstræ
Lær at bygge en tipi-hule af lægter og genbrugstræ 1 Kom godt i gang! Det er en god ide at have praktisk tøj på, når man arbejder i håndværksfagene. Brug arbejdshandsker, lange bukser, lukkede sko, malertøj
6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion
6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Areal og overflade: kunne foretage beregninger af sammensatte arealer og sammensætte formler til beregning af disse.
Geometriske tegning - Fase 2 Fremstille præcise tegninger
Navn: Klasse: Geometriske tegning - Fase 2 Fremstille præcise tegninger Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer eviser og forslag til forbedring 1. Jeg kan tegne isometrisk tegninger
7 Trekanter. Faglige mål. Trekanter. Linjer i trekanter. Pythagoras. Areal
7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Trekanter: kende navne for sider og vinkelspidser i trekanter, kunne konstruere bestemte trekanter ud fra givne betingelser
Geometriske eksperimenter
I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor
Kun beregnet billetpris. Korrekt regneudtryk, ingen facit.
Opgavenummer 1.1 200 2 46 108 Hun skal have 108 kr. retur. Korrekt regneudtryk, korrekt facit og korrekt konklusion (bidrager positivt til helhedsindtryk). 46 46 92 200 92 108 Hun skal have 108 kr. tilbage.
Elevark Niveau 2 - Side 1
Elevark Niveau 2 - Side 1 Opgave 2-1 Brug (Polygon-værktøjet) og tegn trekanter, der ligner disse: Brug (Tekstværktøjet) til at skrive et stort R under de retvinklede trekanter Se Tip 1 og 2 Elevark Niveau
GeomeTricks Windows version
GeomeTricks Windows version Elevarbejdsark MI 130 En INFA-publikation - 1998 GeomeTricks - Elevarbejdsark Viggo Sadolin 16 september 1997 Oversigt over elevarbejdsarkene Klassetrin Type ark 3 4 5 6 7 8
RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L
SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske
Løsningsforslag til Geometri 4.-10. klasse
Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem
Kompetencetræning #2 også til prøven. 31. Januar 2019
Kompetencetræning #2 også til prøven 31. Januar 2019 Bordet rundt Har I prøvet noget af? Var der nogle forhindringer i at prøve noget af? Hvis du har prøvet noget af hvor var udfordringerne så for dig
Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål
4. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier!!!* Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi
Sandt eller falsk. Hvis klokken er halv elleve, er den to timer senere halv et. Niveau. Sandt I et rektangel er de modstående sider parallelle.
lægge sammen og gange, skal man altid gange først. eller falsk I et kvadrat er alle vinkler 90. Hvis klokken er halv elleve, er den to timer senere halv et. viser frost, og temperaturen falder yderligere,
OM KAPITLET RUMGEOMETRI. egne svar eller Elevernes egne forklaringer. I disse
OM KPITLET I dette kapitel om rumgeometri skal eleverne arbejde med at tegne rumlige figurer med et digitalt værktøj, som kan tegne i 3D. De skal undersøge og lære forskellige formler til beregning af
Eksamensspørgsmål: Trekantberegning
Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8
Trigonometri. Store konstruktioner. Måling af højde
Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er
Matematik. Tema: Brøker og procent Uge 33. Skoleåret 2019/20 Årsplan 9. Klasse. Mål Aktiviteter Øvelser/Evaluering.
Tema: Brøker og procent Uge 33 1 Procent og promille Hvordan reagerer kroppen på alkohol? Hvordan reagerer kroppen på alkohol 2 Promille Promille Sådan reagerer kroppen, når man drikker vin Hvor mange
Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring
Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger
Matematik. Mål Aktiviteter Øvelser/Evaluering
Tema: Plangeometri Uge 34-36 Mål Aktiviteter Øvelser/ 6 Trigonometri Sider og vinkler i retvinklede trekanter: Du kender trekantens linier og kan anvende ligedannethed til beregning af ukendte vinkler
Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -
2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...
Opgave 1 -Tages kvadrat
Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker
F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade
F-dag om geometri Fremstilling og beskrivelse af stiliserede blade I foråret fejrede Canada at landet havde eksisteret som nation i 150 år. I den anledning blev der fremstillet et logo, der tog afsæt i
Færdigheds- og vidensområder Evaluering. Tal: Færdighedsmål
Klasse: Jorden mat Skoleår: 16/17 Eleverne arbejder med bogsystemet format, hhv. 4. og 5. klasse. Bøgerne er bygget op, så emnerne følger hinanden hele vejen, hvorfor årsplanen er opbygget efter disse.
cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty
cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11
Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:
Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave
Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.
Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske
Om ensvinklede og ligedannede trekanter
Om ensvinklede og ligedannede trekanter Vi vil her give et bevis for sætningen, der siger at for trekanter er begreberne ensvinklet og ligedannet det samme. Sætningen er langt fra trivial trekanter er
Rundt om bordet Tegning
Rundt om bordet - Forfra Fra siden Fra oven Forfra Fra siden Fra oven 58 Quiz runden - A4 A Spørgsmål : Begrund. - Spørgsmål : Hvor høj er flagstangen? - Målepinden er m. 50 m 0 m Spørgsmål : Er alle kvadrater
Geometri Følgende forkortelser anvendes:
Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien
Kvadrant - instrumentbeskrivelse og virkemåde
Kvadrant instrumentbeskrivelse og virkemåde Kvadrant - instrumentbeskrivelse og virkemåde Kvadranterne i instrumentpakken fra geomat.dk er kopier af et instrument lavet af Georg Hartman i 1547. Originalen
Linjer. Figurer. Format 4. Nr. 14. Navn: Klasse: Dato: Kopiark til elevbog side 17
Linjer Nr. 14 a a Forlæng linjerne med lineal. Mål afstanden mellem de linjer, der sandsynligvis er parallelle. Farv linjer med samme farve, hvis de er parallelle. Find parallelle linjer i tegningerne,
Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.
Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med
Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene.
Hop videre med Udforskning af opgaverne ne bygger videre på opgaver fra Kænguruen og lægger op til, at klassen sammen kan diskutere og udforske problemstillingerne. Opgavenumrene henviser til de opgaver,
Matematik. Mål Aktiviteter Øvelser/Evaluering
Tema: Plangeometri Uge 34-36 6 Trigonometri Sider og vinkler i retvinklede trekanter: Du kender trekantens linjer og kan anvende ligedannethed til beregning af ukendte vinkler og sidelængder Sider og vinkler
Linjespillet. Figurer. Format6. Nr. 18. Kopiark til elevbog side 16
Nr. 18 Linjespillet Farv højde Farv linje Farv linjestykke Farv halvlinje Farv en parallel linje Farv en vinkelret linje Par- eller gruppeaktivitet. Kast på skift en 6-sidet terning. Vælg en farve hver.
Matematik interne delprøve 09 Tesselering
Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der
Finde midtpunkt. Flisegulv. Lygtepæle
Finde midtpunkt Flisegulv Lygtepæle Antal diagonaler Vinkelsum Vinkelstørrelse Et lille geometrikursus Forudsætninger (aksiomer): Parallelle linjer skærer ikke hinanden uanset hvor meget man forlænger
Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.
Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer
OM KAPITLET ELEVFORUDSÆTNINGER MATEMATISKE UNDERSØGELSER
OM KAPITLET I dette kapitel om matematiske undersøgelser skal eleverne løse og undersøge problemer ved hjælp af matematik. Eleverne skal både undersøge rene matematiske problemer og hverdagsrelaterede
TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)
Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale
areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt
brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk
Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.
4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter
GEOMETRI og TRIGONOMETRI del 1
GEOMETRI og TRIGONOMETRI del 1 x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse EUKLIDS ELEMENTER... 3 Euklids sætninger fra 1. bog... 11 TREKANTER: Egenskaber og notation... 15 LIGEDANNEDE FIGURER...
Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal
Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Link Mål Kompetence mål: Modellering Færdighedsmål Eleven kan vurdere egne og andres modelleringsprocesser Videns mål Eleven har viden om
Affine transformationer/afbildninger
Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning
