Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =

Størrelse: px
Starte visningen fra side:

Download "Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx ="

Transkript

1 Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen ( ln x)q x p dx = q p+ delvis integrtion, TL s. 43, med u(x) = ( ln x) q og v (x) = x p.] (c) Vis ved induktion t for lle n =,, 2,... er ( ln x) n x p dx = n!. () (p + ) n+ Besvrelse: () Integrlet er ubestemt, idet integrnden ikke er defineret for x =. Vi vælger p > s > og smmenligner med xs dx som konvergerer ifølge TL Idet p > s gælder ( ln x) r x p /x s = ( ln x) r x p s for x + (TL 6.3.6), og grænsesmmenligningskriteriet giver derfor konvergens f integrlet. (b) Ved delvis integrtion fås for q og > ] ( ln x) q x p dx = [( ln x) q xp+ p + Idet p > vil ( ln ) q p+ p+ = ( ln ) q p+ p + + q p + q( ln x) q x p+ x p + dx ( ln x) q x p dx for, og så fås formlen. (c) Ld P n betegne udsgnet, t () gælder for et givet tl n. Det vises ved induktion t P n er snd for lle n. For n = ses ved elementær stmfunktionsbestemmelse t udsgnet xp dx = er sndt. p+ Vi ntger n og t P n er sndt, det vil sige, ( ln x) n x p dx = (n )! (p + ) n. (P n ) Vi skl vise t d gælder P n. Ifølge formlen fr (b) med q = n gælder ( ln x) n x p dx = n p + Heri indsættes P n og vi får (). Dermed er P n bevist ved induktion for lle n. ( ln x) n x p dx

2 Ld q >. Opgve 2 () Vis t rækken er konvergent. (qn + ) n+ (b) Ld h(x) = x q ln x hvis < x hvis x = Vis, t den følgende række er uniformt konvergent for x [, ]: n! (h(x))n. (c) Vis under nvendelse f potensrækken for eksponentilfunktionen smt ovenstående formel (), t der gælder: e h(x) dx = (qn + ) n+. Besvrelse: () Rækken er konvergent ifølge smmenligningskriteriet, idet (qn+) n+ (qn + ) n+ (q + ) n og er konvergent (TL 2..). (q+) n (b) Funktionen h er kontinuert idet x q ln x for x +. Den hr derfor en mksimumsværdi M over det begrænsede og fsluttede intervl [, ]. Rækken n! (h(x))n hr så mjorntrækken M n, som n! er konvergent (TL 2.8.2). Ifølge Weierstrss (TL 2.5.) er funktionsrækken derfor uniformt konvergent for x [, ]. (c) Vi nvender TL.4. (eller Sætning B fr Uge 2) på fsnitsfølgen for funktionsrækken fr (b), hvis sumfunktion netop er e h(x) ifølge TL D der er uniform konvergens fås e h(x) dx = ifølge () med p = qn. n! h(x) n dx = (qn + ) n+ 2

3 Vis t der gælder Opgve 3 x 2 = π ( ) n cos(nx) for lle x [ π, π]. Er rækken uniformt konvergent? Til beviset kn mn benytte (uden bevis) t funktionen x 2 cos(x) hr stmfunktionen 3( 2x cos(x) + ( 2 x 2 2) sin(x) ) for lle konstnter. n 2 Besvrelse: D funktionen f(x) = x 2 er stykvis differentibel og kontinuert, og opfylder f( π) = f(π), er den sumfunktion for sin Fourierrække ifølge JPS 3.5, og d f er lige er Fourierrækken en ren cosinusrække 2 + n cos(nx). Rækken er uniformt konvergent ifølge JPS 4.3 fordi f er stykvis C og kontinuert. Koefficienterne er givet ved for n og = π π n = x 2 cos(nx) dx π π = [ ( n 3 2nx cos(nx) + (n 2 x 2 2) sin(nx) )] π π = π n 3 4nπ( ) n = 4n 2 ( ) n x= π [ 3 x3] π x= π = 2 3 π2 for n =, som der står i opgven. 3

4 Opgve 4 () Ld k N og ld (c,..., c k ) være et sæt f positive tl c j enhver vektor z = (z,..., z k ) C k defineres >. For z = c z + + c k z k. Vis t er en norm på C k, og bestem c > og C > således t c z z C z for lle z E, hvor z betegner mksimumsnormen f z. Ld E = B(N, C) være vektorrummet f begrænsede funktioner f : N C, og ld c n være en konvergent række f positive tl c n >. For f E defineres f = c n f(n). (2) (b) Vis t er en norm på E, og t der findes en konstnt C > således t f C f u for lle f E, hvor f u betegner den uniforme norm f f. (c) Vis t der ikke findes nogen konstnt c > således t for lle f E. c f u f Ld ( n ) n N være en følge f komplekse tl n C. For hvert k N defineres en funktion g k E ved n hvis n k g k (n) = ellers. (d) Vis t (g k ) k N er en Cuchy følge i E med hensyn til hvis og kun hvis rækken c n n er bsolut konvergent. 4

5 Besvrelse: () Det er klrt t z for lle z C k og t λz = λ z for lle λ C. Hvis z = er c n z n = for lle n og så må z n = d c n >. For lle z, z E gælder z + z = = c n z n + z n c n z n + c n ( z n + z n ) c n z n = z + z. Altså er C k med et normeret vektorrum. Ld c = min k c n og C = k c n. For z C k vælges m fr,..., k} så z m = z. Så fås (b) For lle n gælder c z c m z m z = c n z n C z. c n f(n) c n f u Det følger derfor f smmenligningskriteriet TL t f < for lle f E og f = c n f(n) c n f u = C f u med C = c n. Det er klrt t f for lle f og t λf = λ f for lle λ C. Hvis f = er c n f(n) = for lle n og så må f(n) = d c n >. For lle f, g E og lle N N gælder c n f(n) + g(n) = c n ( f(n) + g(n) ) c n f(n) + c n g(n) f + g. hvorf det følger t f + g f + g. Altså er E med et normeret vektorrum. Uligheden f C f u blev vist ovenfor. 5

6 (c) Antg c f u f for lle f E, hvor c >. For hvert k N defineres e k E ved hvis n = k e k (n) = ellers. Det er klrt t e k E og e k u = for lle k. Endvidere er e k = c k. Med f = e k i ovenstående ulighed fås nu c c k for lle k. Idet divergenstesten TL 2..4 medfører t c k for k, fås c =, en modstrid. (d) Ld k l. Der gælder Altså er g l (n) g k (n) = g l g k = n hvis k < n l ellers. l n=k+ c n n. Ld s j = j c n n være fsnitsfølgen for c n n. D er s l s k = l n=k+ c n n. Altså er (g j ) j N en Cuchy følge med hensyn til hvis og kun hvis (s j ) j N er en Cuchy følge i R, og d R er fuldstændigt er det ækvivlent med t c n n er bsolut konvergent, dvs c n n konvergerer. 6

ANALYSE 1, 2014, Uge 3

ANALYSE 1, 2014, Uge 3 ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.

Læs mere

ANALYSE 1, 2013, Uge 2

ANALYSE 1, 2013, Uge 2 ANALYSE 1, 2013, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel Oversigt [S] 8.5, 8.6, 8.7, 8.0 Nøgleord og begreber Seks berømte potensrækker Potensrække Konvergensrdius Differentition og integrtion f potensrækker Tylor og McLurin rækker August 00, opgve 4 Den geometriske

Læs mere

Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8.

Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8. Anlyse Øvelser Rsmus Sylvester Bryder. og 5. oktober 3 Supplerende opgve Ld C([, b], C) betegne rummet f lle kontinuerte funktioner f : [, b] C, hvor < b, og definér et indre produkt på C([, b], C) ved

Læs mere

Besvarelse, Eksamen Analyse 1, 2013

Besvarelse, Eksamen Analyse 1, 2013 Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 23 Besvarelse, Eksamen Analyse, 23 Opgave Lad, for n N, funktionen f n : [, ) R være givet ved NB. Trykfejl. Burde være x. f n (x)

Læs mere

Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1

Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1 Analyse Reeksamen 00 Rasmus Sylvester Bryder 5. august 0 Opgave Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. ( ) n n +3n+7 n= n + For alle n N vil

Læs mere

Analyse 1, Prøve 4 Besvarelse

Analyse 1, Prøve 4 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 2011 1 Analyse 1, Prøve 4 Besvarelse Lad Opgave 1 (50%) M = {T R 2 T er en åben trekant} og lad A : M R være arealfunktionen, dvs.

Læs mere

Noget om Riemann integralet. Noter til Matematik 2

Noget om Riemann integralet. Noter til Matematik 2 Noget om Riemnn integrlet. Noter til Mtemtik 2 Arne Jensen Afdeling for Mtemtik og Dtlogi Institut for Elektroniske Systemer Alborg Universitetscenter Fredrik Bjers Vej 7 9220 Alborg Ø 4. pril 1991 Revideret

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

Formelsamling til Fourieranalyse 10. udgave

Formelsamling til Fourieranalyse 10. udgave Formelsmling til Fouriernlyse. udgve Kristin Jerslev og Steven Hyden 3. oktober 9 Her følger en formelsmling lvet til kurset Fouriernlyse på Arhus Universitet. Bemærk venligst, t smlingen indeholder sætninger

Læs mere

ANALYSE 1, 2014, Uge 5

ANALYSE 1, 2014, Uge 5 ANALYSE, 204, Uge 5 Afleveringsfrist for Prøve 2 er Tirsdag den 20/5 kl 0:5. Forelæsninger Tirsdag Vi går videre med Afsnit 4 om uniform konvergens af Fourierrækker, hvor hovedsætningen er Sætning 4.3.

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0 INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til

Læs mere

Om Riemann-integralet. Noter til Matematik 1

Om Riemann-integralet. Noter til Matematik 1 Om Riemnn-integrlet. Noter til Mtemtik 1 Jon Johnsen Institut for Mtemtiske Fg, Alborg Universitet Fredrik Bjers Vej 7G, 9220 Ålborg Ø 3. december 2001 1 Indledning Integrlregning går tilbge til Newtons

Læs mere

Analysens Fundamentalsætning

Analysens Fundamentalsætning Anlysens Fundmentlsætning Frnk Nsser 11. juli 2011 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Integration ved substitution og delvis (partiel) integration

Integration ved substitution og delvis (partiel) integration DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK INTEGRATION EFTERÅRET Integrtion ved sustitution og delvis (prtiel) integrtion Differentil- og integrlregningens hovedsætning lyder: Hvis ƒ er

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Analyse 1, Prøve 2 Besvarelse

Analyse 1, Prøve 2 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet maj Analyse, Prøve Besvarelse Opgave (3%) (a) (%) Bestem mængden af x R for hvilke rækken ( + (x) n ) er konvergent og angiv sumfunktionen

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for

Læs mere

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1 SEKTION 7 FOURIERANALYSE 7 Fouriernlyse Periodiske funktioner er vigtige i mnge smmenhænge, både videnskbeligt og teknisk Vi vil normlisere, så ntger, t perioden er π Disse funktioner er bedst nlyseret

Læs mere

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010 Mtemtikprojekt om Integrlregning Lvet f Arendse Morsing Gunill Olesen Julie Slvensky Michel Hnsen 15 Oktober 21 Indhold I Del 1................................ 3 I Generelt om stmfunktioner og integrler........

Læs mere

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2 Mt1GB Minilex Henrik Dhl, Hold 8 29. mj 2003 Indhold 1 Definitioner 2 2 Sætninger m.v. 18 2.1 Begrænsethed, åben/lukket..................... 18 2.2 Differentition............................ 18 2.3 Differentilligninger.........................

Læs mere

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1 1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Integralregning. Version juni Mike Vandal Auerbach

Integralregning. Version juni Mike Vandal Auerbach Integrlregning Version.0 27. juni 209 y f x Mike Vndl Auerch www.mthemticus.dk Integrlregning Version.0, 209 Disse noter er skrevet til mtemtikundervisningen på stx A- og B-niveu efter gymnsiereformen

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

Fremkomsten af mængdelæren. Stig Andur Pedersen

Fremkomsten af mængdelæren. Stig Andur Pedersen Fremkomsten f mængdelæren Stig Andur Pedersen 1 Fourier række for f(x)=x x n 1 ( 1) 2 sin( nx) n n= 1 sin(2 x) sin(3 x) sin(4 x) = 2 sin( x) + + 2 3 4 De første 15 led er tget med på kurven. 2 Fourierrække

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:

Læs mere

Stamfunktion & integral

Stamfunktion & integral PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Det dobbelttydige trekantstilfælde

Det dobbelttydige trekantstilfælde Det dobbelttydige trekntstilfælde Heine Strømdhl, Københvns Kommunes Ungdomsskoler Formålet med denne rtikel er t formulere en meget simpel grfisk løsningsmetode til det dobbelttydige trekntstilfælde med

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Beregning af bestemt integrale ved partiel integration og integration ved substitution:

Beregning af bestemt integrale ved partiel integration og integration ved substitution: Beregning f estemt integrle ved prtiel integrtion og integrtion ved sustitution: f John V. Petersen Prtiel integrtion Sætning : Prtiel integrtion... si. Løsning f integrle... si. Plot f løsningsrelet...

Læs mere

( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN

( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN Projekt 7.7 Simpsons formel Simpson vr søn f en selvlært væver, og skulle egentlig selv hve været en væver, men en solformørkelse vkte hns interesse for mtemtik og nturvidensk og mod lle odds lykkedes

Læs mere

Fundamentale begreber fra Analysen. Introduktion. De reelle tal. Carsten Lunde Petersen

Fundamentale begreber fra Analysen. Introduktion. De reelle tal. Carsten Lunde Petersen IMFUFA Carsten Lunde Petersen Fundamentale begreber fra Analysen Introduktion Disse noter udgør et meget ltreret udkik over de grundlæggende begreber i reel analyse. Noten indeholder meget lidt om det

Læs mere

Matematik A. Højere teknisk eksamen. Formelsamling til delprøve 1

Matematik A. Højere teknisk eksamen. Formelsamling til delprøve 1 Mtemtik A Højere teknisk eksmen Formelsmling til delprøve Mtemtik A Højere teknisk eksmen Formelsmling til delprøve Forfttere: Jytte Melin og Ole Dlsgrd April 209 ISBN: 978-87-603-3238-8 (web udgve) Denne

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

Oversigt [S] 4.5, 5.10

Oversigt [S] 4.5, 5.10 Oversigt [S] 4.5, 5.0 Nøgleord og begreber Ubestemte udtryk l Hospitals regel l Hospitals regel 2 Test l Hospitals regel Uegentlige integraler Test uegentlige integraler Uegentlige integraler 2 Test uegentlige

Læs mere

Integrationsteknikker

Integrationsteknikker Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Eksamen i Mat F, april 2006

Eksamen i Mat F, april 2006 Eksamen i Mat F, april 26 Opgave Lad F være et vektorfelt, givet i retvinklede koordinater som: Udregn F og F: F x F = F x i + F y j + F z k = F y = z 2 F z xz y 2 F = F x + F y + F z = + + x. F = F z

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

2. Fourierrækker i en variabel

2. Fourierrækker i en variabel .1. Fourierrækker i en variabel I Kapitel II 7 blev der indført, dels funktionsrummene L p (X, µ) (mere udførligt skrevet L p (X, E, µ)), dels rummene L p (X, µ), der fås af L p (X, µ) ved at funktioner

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD

Læs mere

INFINITESIMALREGNING del 2 Stamfunktioner og differentialkvotienter Regneregler Optimering Taylorrækker

INFINITESIMALREGNING del 2 Stamfunktioner og differentialkvotienter Regneregler Optimering Taylorrækker INFINITESIMALREGNING del Stmfunktioner og differentilkvotienter Regneregler Optimering Tylorrækker -klsserne Gmmel Hellerup Gymnsium Indholdsfortegnelse STAMFUNKTIONER... 3 REGNEREGLER... 9 AFLEDEDE FUNKTIONER...

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

Tallet π er irrationalt Jens Siegstad

Tallet π er irrationalt Jens Siegstad 32 Tallet π er irrationalt Jens Siegstad At tallet π er irrationalt har været kendt i pænt lang tid Aristoteles postulerede det da han påstod at diameteren og radius i en cirkel er inkommensurable størrelser

Læs mere

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene. MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)

Læs mere

1.1. n u i v i, (u, v) = i=1

1.1. n u i v i, (u, v) = i=1 1.1 1. Hilbert rum 1.1. Hilbert rum og deres geometri. Definition 1.1. Et komplekst vektor rum V kaldes et indre produkt rum (eller præ-hilbert rum), når det er forsynet med en funktion (, ): V V C, som

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

Hilbert rum. Chapter Indre produkt rum

Hilbert rum. Chapter Indre produkt rum Chapter 4 Hilbert rum 4.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... BRØER... LIGNINGER... 3 PARENTESER... 3 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Matematik 2 AN. Matematisk Analyse. Metriske rum. Christian Berg

Matematik 2 AN. Matematisk Analyse. Metriske rum. Christian Berg Matematik 2 AN Matematisk Analyse Metriske rum Christian Berg 1997 Matematisk Afdeling Universitetsparken 5 2100 København Ø c Matematisk Afdeling 1997 Forord Nærværende notehæfte er oprindelig skrevet

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( ) Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

9 Geodætiske kurver og Gauss-krumning

9 Geodætiske kurver og Gauss-krumning 9 Geodætiske kurver og Guss-krumning 9. Geodætiske kurver En ret linie i plnen fr punktet p til punktet q hr den egenskb t enhver nden kurve fr p til q hr kurvelængde som er mindst p q. Et stykke f en

Læs mere

Oversigt [S] 8.7, 8.8, 8.9

Oversigt [S] 8.7, 8.8, 8.9 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Potensrækker og opgaver Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger

Læs mere

Matematik 2 MA Matematisk Analyse. Kapitel V. Sædvanlige og partielle differentialligninger. Gerd Grubb

Matematik 2 MA Matematisk Analyse. Kapitel V. Sædvanlige og partielle differentialligninger. Gerd Grubb 1 Matematik 2 MA Matematisk Analyse 1994 95 Kapitel V. Sædvanlige og partielle differentialligninger Gerd Grubb 1 1 Matematik 2. Matematisk Analyse 1994-95 Kapitel V. Sædvanlige og partielle differentialligninger

Læs mere

UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0.

UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0. UGESEDDEL 9 LØSNINGER Sydsæter 531 Theorem 1 Sætning om implicitte funktioner for ligningen f(x, y) = 0 Lad f(x, y) være C 1 i mængden A R n og lad (x 0, y 0 ) være et indre punkt i A hvor f(x 0, y 0 )

Læs mere

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert. Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y). Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)

Læs mere