Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel
|
|
|
- Stine Mikkelsen
- 10 år siden
- Visninger:
Transkript
1 Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik, DTU 99. Teori: Anlyse,.-.3,.5, ppendiks B, , Indledning. Figur. Johnnes Kepler, Den tyske fysiker Johnnes Kepler ( 57 63), se fig., er nok mest kendt for sine stronomiske rejder, men hn hr også eskæftiget sig med mtemtik, herunder specielt eregninger voluminer f omdrejningslegemer. Resulttet f disse eregninger offentliggjorde hn i 65 i Linz i en rtikel med nvnet Nov Stereometri Doliorum Vinriorum, hvor Keplers ngiver en måde ( Keplers tønderegel), hvorved mn med tilnærmelse kn eregne voluminet f et vinfd. Forhistorien vr den, t Kepler lige vr levet gift for nden gng i 63. Efter rylluppet vr det svundet ind i vinkælderen, og d Kepler gerne vilde være en god husond, ønskede hn t få sin vinkælder fyldt op. Hn estilte derfor nogle vinfde og fik dem rgt ned i sin vinkælde. Nogle få dge senere nkom kømnden, der solgte Kepler vinfdene, for t måle volumenindholdet f fdene f hensyn til fregningen. Målingen foregik efter en metode, der fortrinsvis nvendtes i Østrig. En målestv lev stukket ind igennem spunshullet på en vintønde, der lå ned, indtil stven rmte unde f tønden i den fjerneste ende. Kømnden kunne derefter flæse rumindholdet på målestven, der vr forsynet med en kuisk skl, se fig.. Kepler vr skeptisk med hensyn til metodens nøjgtighed, og dette lev strten på Keplers undersøgelse f rumfnget f omdrejningslegemer. Figur. Vinopmåling
2 Integrtionsprincippet og Keplers tønderegel. side Integrtionsprincippet. Allerede Archimedes (87 f.kr. f.kr.) hvde estemt relet f l.. prlen og voluminet f visse omdrejningslegemer. Prolemet vr, t mn ikke hvde integrlregningen til rådighed. Den kom først i slutningen f 6- tllet med rejderne f Newton (643-77) og Leiniz (646 76). For t estemme et rel eller volumen, vr det derfor nødvendigt t dele legemet, mn etrgtede, op i små dellegemer, hvis reler eller voluminerne mn kendte på forhånd. Ved t lde dellegemerne live vilkårlige små og summere op over lle dellegemer fik mn så en edre og edre tilnærmelse til relet eller voluminet. Det er denne teknik, der senere liver til det vi klder infinitesimlregning, og som dnner grundlget for den mtemtiske nlyse. Teknikken kldes også for integrtionsprincippet, og den kn udstrækkes til estemmelse f størrelser som f. eks. mssecenter og inertimoment. Det vr imidlertid først med Riemnn (86-866), t mn fik defineret et mtemtisk set tilfredsstillende integrlegre, hvori integrlet lev opfttet som resulttet f en grænseovergng. I forindelse med estemmelse f et volumen V kn integrtionsprincippet udtrykkes:. Opdel figuren i små (infinitesimle) delfigurer, hvis volumen dv er kendt på forhånd (f.eks. cirkelskiver, cylinderskller, prismer), og hvis størrelse kun fhænger f en prmeter x.. Udtryk dernæst det infinitesimle volumen dv som funktion f x, d.v.s. på formen dv = f(x) dx 3. Udregn voluminet som integrlet V = dv = V f(x)dx Som eksempel på integrtionsprincippet vil vi først eregne rumfnget f indholdet f en fyldt vintønde. Vi ntger, t tønden hr form som et omdrejningslegeme, se fig. 3 og. Figur 3. Fyldt vintønde. Figur 3. Tværsnit f fyldt tønde.
3 Integrtionsprincippet og Keplers tønderegel. side 3 Vi ntger, t rdius r(x) f omdrejningslegemet på stedet x er opgivet for x. Vi enytter integrtionsprincippet og deler tønden op i cirkelskiver med tykkelsen dx. Rumfnget dv f en cirkelskive på stedet x og med tykkelsen dx er dv = π r(x) dx Det smlede volumen for x er d estemt ved. () V = π r(x) dx. Ud fr denne formel kn det smlede volumen f tønden estemmes. D mn ikke på Keplers tid hvde integrlregningen til rådighed, måtte mn enytte tilnærmelser. I nogle tilfælde kunne mn dog eregne et volumen ekskt ved t enytte en regel opstillet f Guldin ( ), og som kldes Guldins. regel. Guldin vr en Schweizisk urmger, der kendte Kepler og korresponderede med hm. Guldins. regel siger: Hvis en pln figur roteres om en kse i sin pln, er voluminet f det omdrejningslegeme, der fremkommer, produktet f figurens rel gnge den vej, som figurens tyngdepunkt hr evæget sig. Det er netop denne regel, som formel () udtrykker. I dg er det ikke nødvendigt t kende legemers tyngdepunkter for t finde et volumen. Ld os se på et konkret eksempel. Eksempel. Vi ntger, t tønden rdius er givet ved funktionen r(x) = + cos(x), x. d.v.s. tønden er eliggende for x. Det smlede volumen V findes f () til V = π ( + cos(x) ) dx = π [ 3 + sin() cos() + 4 sin() ],47. - Spørgsmålet er: Hvd gør vi nu, hvis legemet ikke er et omdrejningslegeme? For t esvre det spørgsmål, ser vi på en delvist fyldt tønde, som vist i fig. 4 og. Vi ntger som før, t rdius r(x) på stedet x er givet for x. Væskens højde over tøndens symmetrilinie kldes for d. Figur 4. Delvist fyldt vintønde. Figur 4. Tværsnit f delvist fyldt tønde.
4 Integrtionsprincippet og Keplers tønderegel. side 4 Vi enytter igen integrtionsprincippet og deler tønden op i skiver med tykkelsen dx. Skiverne, se figur 4, hr nu form f et cirkelfsnit. Rumfnget dv f en skive på stedet x og med tykkelsen dx er d dv = [ r(x) d rccos + d r(x) d r(x) ] dx. Det smlede volumen for x er d estemt ved. () V = [ r(x) d rccos + d r(x) r(x) d ] dx. Ld os se på eksemplet fr før. Eksempel. Vi ntger igen t tønden rdius er givet ved funktionen r(x) = + cos(x), x. Nu ntges tønden delvist fyldt med vin, og højden f vinens overflde i forhold til symmetrilinien er d =,5, se fig. 4 Det smlede volumen V findes f ( til V = [ r(x) d rccos + d r(x) d r(x) ] dx 4,35. Integrlet kn kun udregnes numerisk. Tønden er ltså lidt over hlvt fyldt. Det er kun i specielle tilfælde for funktionen r(x), t integrlerne i () og () kn udregnes nlytisk. Mn må derfor enytte numeriske metoder til estemmelse f volumen. Dette skl vi se på i næste fsnit. Keplers tønderegel. Vi ntger, t vi hr rugt integrtionsprincippet til t estemme et volumen V ved formlen (3) V = dv = f(x)dx, V hvor f(x) er en given funktion. For et omdrejningslegeme er f(x) = π r(x). For Kepler vr prolemet doelt. Dels kendte hn ikke tøndens form i detljer, d.v.s. hn kendte ikke funktionen r(x). Dels hvde hn et prolem med t finde relet under funktionen funktion π r(x). Lige siden oldtiden hvde mn dog kendt relet under prlen. Dette rel lev først udledt f Archimedes i året 5 f.kr. Derfor kunne Kepler enytte prlen som en tilnærmelse for funktionen π r(x). Opgven er nu numerisk t estemme relet under funktionen f(x) i intervllet x, idet f(x) tilnærmes med en prel p(x).
5 Integrtionsprincippet og Keplers tønderegel. side 5 Figur 5. Tilnærmelse f en funktion f(x) med en prel p(x) For t lette udregningerne forestiller vi os, t funktionen f(x) er givet i et intervl - h x h, der ligger symmetrisk omkring x =, se figur 5. Vi tilnærmer f(x) med en prel p(x), der går igennem punkterne (-h, f(-h)), (, f()) smt punktet (h, f(h) ), se figur 5. For simpelheds skyld etegner vi funktionsværdierne f(-h), f() og f(h) henholdsvis, y -, y og y. Et generelt udtryk for en prel p(x) er p(x) = c + c x + c x. Arelet under prlen i intervllet - h x h liver h 3 (4) A p = ( c + cx + c x ) dx = c h + c h h 3 Arelet A p fhænger kun f c og c, og det er ltså ufhængig f c. Vi lder nu prlen gå igennem punkterne (-h, y - ), (, y ) og (h,y ). Der må derfor gælde y - = c - c h + c h, y = c, y = c + c h + c h. Vi hr umiddelrt, t c = y. Adderes den første og sidste ligning, finder vi t + c h y y y = Indsættes dette udtryk smmen med ydtrykket for c i udtrykket (4) for A p, fås 4y + y + y 4y + y + y (5) A p = h = ( ) 3 6, hvor vi hr udtrykt relet ved den oprindelige intervllængde -. Formlen (5) kldes også Simpsons formel. Simpson(7 76) er mest kendt for sine rejder om interpoltion og numerisk integrtion.
6 Integrtionsprincippet og Keplers tønderegel. side 6 Fejlen R ved enyttelse f formlen (5) til estemmelse f integrlet f(x)dx kn vises t være (6) R = 5 f(x)dx ( ) (4) - Ap = - f ( ξ ) 88, < ξ <. Her er f (4) (ξ ) den 4. fledede f funktionen f(x) tget i et ukendt punkt x =ξ. Hr vi t gøre med en vintønde, der er rottionssymmetrisk, kn vi finde voluminet ved t enytte formel(), der siger V = π r(x) dx. Kender vi ikke r(x), kn vi forestille os, t vi måler tværsnitsrelerne f tønden A -, A og A i henholdsvis midten og i de to endepunkter f tønden. Voluminet f tønden vil d med tilnærmelse kunne skrives 4A + A + A (7) V kepler = ( ) 6, Keplers tøndeformel. Formlen er Keplers tøndeformel. Ud fr formel (6) kn fejlen ved t enytte tøndeformlen vurderes, idet f(x) sættet til f(x) = π r(x). Ld os til sidst vende tilge til eksempel, hvor vi i stedet enytter tøndeformlen til t finde et tilnærmet udtryk for indholdet. Eksempel 3. Vi ntger ligesom i eksempel, t tønden rdius er givet ved funktionen r(x) = + cos(x), x. d.v.s. tønden er eliggende for x. Arelerne A -, A og A er A - = A = π ( + cos() ) og A = π = 4π. Dette giver ifølge (7) V kepler = π ( 9 + cos () + cos() ) 3,74. fejl =,47 -,74 = -,97. Til vurdering f restleddet givet ved (6) hr vi f (4) (x) = π ( 6 cos (x) + cos(x) - 8 ), f (4) (x) π, -< x <. Herefter kn vi vurdere R til R < 5 π / Vi ser, t R.39 > fejl =,97.
INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0
INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til
( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN
Projekt 7.7 Simpsons formel Simpson vr søn f en selvlært væver, og skulle egentlig selv hve været en væver, men en solformørkelse vkte hns interesse for mtemtik og nturvidensk og mod lle odds lykkedes
Integralregning. 2. del. 2006 Karsten Juul
Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion
Matematisk modellering og numeriske metoder. Lektion 17
Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil
Integralregning. Version juni Mike Vandal Auerbach
Integrlregning Version.0 27. juni 209 y f x Mike Vndl Auerch www.mthemticus.dk Integrlregning Version.0, 209 Disse noter er skrevet til mtemtikundervisningen på stx A- og B-niveu efter gymnsiereformen
Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1
Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt
Projekt 7.8 To ligninger med to ubekendte
Projekt 78 To ligninger med to uekendte Den opgve t skulle løse to ligninger med to uekendte er vi stødt på i en række speciltilfælde under ehndlingen f vækstmodellerne: Funktionstype Ligningssystem Lineær
Lektion 7s Funktioner - supplerende eksempler
Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side
Integration ved substitution og delvis (partiel) integration
DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK INTEGRATION EFTERÅRET Integrtion ved sustitution og delvis (prtiel) integrtion Differentil- og integrlregningens hovedsætning lyder: Hvis ƒ er
Bogstavregning. for gymnasiet og hf Karsten Juul. a a
Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med
ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,
INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner
Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c
Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole
Elementær Matematik. Analytisk geometri
Elementær Mtemtik Anltisk geometri Ole Witt-Hnsen 0 Indhold. koordintsstemet.... Afstndsformlen.... Liniens ligning...4 4. Ortogonle linier...7 5. Liniers skæring. To ligninger med to uekendte....7 6.
Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul
Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.
Matematikkens sprog INTRO
Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.
1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).
Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter
TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.
TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn
Implicit differentiation Med eksempler
Implicit fferentition Implicit fferentition Indhold. Implicit fferentition.... Tngent til ellipse og hperel... 3. Prisme i hovedstillingen...3 3. Teoretisk rgument for hovedstillingen...4 Ole Witt-Hnsen
3. Vilkårlige trekanter
3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke
Projekt 10.3 Terningens fordobling
Hvd er mtemtik? Projekter: Kpitel 0 Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deducere sig til og konstruere sig til ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige,
Simple udtryk og ligninger
Simple udtryk og ligninger for gymnsiet og hf 0 Krsten Juul Indhold Rækkefølge f + og... Smle led f smme type... Gnge ind i prentes. del... Rækkefølge f og smt f + og... Gnge ind i prentes. del... Hæve
Elementær Matematik. Trigonometri
Elementær Mtemtik Trigonometri Ole Witt-Hnsen 11 Indhold 1. Vinkler...1. Sinus, osinus og tngens...3.1 Overgngsformler...4 3. Den retvinklede treknt...6 4. Den lmindelige treknt. Sinus og osinus reltionerne...8
Analysens Fundamentalsætning
Anlysens Fundmentlsætning Frnk Nsser 11. juli 2011 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Matematik B-A. Trigonometri og Geometri. Niels Junge
Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke
Formelsamling Matematik C Indhold
Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...
Eksponentielle Sammenhænge
Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....
Lektion 5 Det bestemte integral
f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem
Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion)
Mere end lot lektiehjælp Få topkrkter i din SRP 12: Hovedfsnittene i din SRP (Redegørelse, nlyse, diskussion) Hjælp til SRP-opgven Sidste år hjlp vi 3.600 gymnsieelever med en edre krkter i deres SRP-opgve.
Regneregler. 1. Simple regler for regning med tal.
Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,
Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010
Mtemtikprojekt om Integrlregning Lvet f Arendse Morsing Gunill Olesen Julie Slvensky Michel Hnsen 15 Oktober 21 Indhold I Del 1................................ 3 I Generelt om stmfunktioner og integrler........
Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:
Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.
ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG
ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...
Lektion 6 Bogstavregning
Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret
Implicit differentiation
Implicit differentition Implicit differentition Indhold. Implicit differentition.... Tngent til ellipse og hyperel... 3. Prisme i hovedstillingen...3 3. Teoretisk rgument for hovedstillingen...4 Ole Witt-Hnsen
Trigonometri. Matematik A niveau
Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den
Fejlforplantning. Landmålingens fejlteori - Lektion 9 - Repetition - Fejlforplantning. Kovariansmatrix. Kovariansmatrix
Fejlforplntning Lndmålingens fejlteori Lektion 9 Repetition - Fejlforplntning Ksper K Berthelsen - kk@mthudk http://peoplemthudk/ kk/undervisning/lf11 Institut for Mtemtiske Fg Alorg Universitet Lndmåling
Regneregler for brøker og potenser
Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit
Integralregning. Erik Vestergaard
Integrlregning Erik Vestergrd Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, Hderslev 4 Erik Vestergrd www.mtemtikfysik.dk Indholdsfortegnelse Indholdsfortegnelse. Indledning 4. Stmfunktioner 4. Smmenhængen
Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri
Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler
ANALYSE 1, 2014, Uge 3
ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.
MATEMATISK FORMELSAMLING
MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD
Beregning af bestemt integrale ved partiel integration og integration ved substitution:
Beregning f estemt integrle ved prtiel integrtion og integrtion ved sustitution: f John V. Petersen Prtiel integrtion Sætning : Prtiel integrtion... si. Løsning f integrle... si. Plot f løsningsrelet...
Kort om Potenssammenhænge
Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning
International økonomi
Interntionl økonomi Indhold Interntionl økonomi... 1 Bilg I1 Oversigt over smmenhæng mellem kompetencer og kernestof i 3 skriftlige eksmensopgver i Interntionl økonomi A.... 2 Bilg I2 Genrer i IØ fr oplæg
Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.
Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer
Trigonometri FORHÅNDSVIDEN
Trigonometri I dette kpitel skl du rejde med trigonometri. Ordet trigonometri stmmer fr græsk og etyder trekntsmåling. Den mtemtik, der ligger g trigonometrien, hr du llerede rejdet med. Det drejer sig
Projekt 6.5 Vektorers beskrivelseskraft
Hvd er mtemtik? ISBN 978877066879 Projekt 65 Vektorers eskrivelseskrft Indhold Vektorer i gymnsiet Linjestykker og prllelogrmmer Bevis inden for den klssiske geometri Bevis med nvendelse f vektorer 3 Digonlerne
Hvad ved du om mobning?
TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt
Formelsamling Mat. C & B
Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8
Spil- og beslutningsteori
Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst
Lektion 6 Bogstavregning
Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning
Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =
Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen (
UGESEDDEL 52. . Dette gøres nedenfor: > a LC
UGESEDDE 52 Opgve 1 Denne opgve er et mtemtisk eksempel på Ricrdo s én-fktor model, der præsenteres i Krugmn & Obstfeld kpitel 2 side 12-19. Denne model beskriver hndel som et udslg f komprtive fordele
Formelsamling Matematik C Indhold
Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...
Stamfunktion & integral
PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn
Elementær Matematik. Vektorer i planen
Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning
INFINITESIMALREGNING del 2 Stamfunktioner og differentialkvotienter Regneregler Optimering Taylorrækker
INFINITESIMALREGNING del Stmfunktioner og differentilkvotienter Regneregler Optimering Tylorrækker -klsserne Gmmel Hellerup Gymnsium Indholdsfortegnelse STAMFUNKTIONER... 3 REGNEREGLER... 9 AFLEDEDE FUNKTIONER...
Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave
Teknisk Mtemtik Formler Teknisk Mtemtik Formler Preen Mdsen 8. udge Teknisk mtemtik Formler er et prktisk opslgsærk, der gier et hurtigt oerlik oer lle formler fr læreogens enkelte kpitler. Ud oer formlerne
Vektorer. koordinatgeometri
Vektorer og koordintgeometri for gymnsiet, dge 5 Krsten Jl VEKTORER Koordinter til pnkt i plnen Koordinter til pnkt i rmmet Vektor: Definition, sprogrg, mm 4 Vektor: Koordinter 5 Koordinter til ektors
Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.
Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk
- 77 - i stedet for ( f ), så vi har, at f (x) = 6x, x R. Funktionen f
- 77 - Appendi : Den delt fledede f en funktin. Sm eken gælder der, t funktinen f() 3 er differentiel fr lle R, g t f () 3. Vi kn derfr til et vilkårligt punkt tilrdne differentilkvtienten f f i, hvrved
Integrationsteknikker
Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1
MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)
Silkeborg 09-0-0 MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Udrbejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger fejl i
Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2.
Differentil-kvotient Ld f være en funktion - f.eks. f (x) = 2x 2. Produkt og mrked - differentil og integrlregning Rsmus Wgepetersen Institut for Mtemtiske Fg Alborg Universitet Februry 14, 2014 Differentilkvotienten
Gymnasie-Matematik. Søren Toftegaard Olsen
Gmnsie-Mtemtik Søren Toftegrd Olsen Søren Toftegrd Olsen Skovvænget 6-B 7080 Børkop Gmnsie-Mtemtik. udgve, revision 0 ISBN 978-87-99996-0-0 VIGTIGT: Denne og må ikke sælges eller ændres; men kn frit kopieres.
Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner
Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....
MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)
Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger
Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til
Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle
1 Plan og rumintegraler
1 PLAN OG RUMINTEGRALER 1 1 Pln og rumintegrler Ligesom for funktioner f en vribel kn mn for kontinuerte funktioner f flere vrible definere deres integrle. Vi vil her kun beskæftige os med funktioner f
Potens regression med TI-Nspire
Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter
Det dobbelttydige trekantstilfælde
Det dobbelttydige trekntstilfælde Heine Strømdhl, Københvns Kommunes Ungdomsskoler Formålet med denne rtikel er t formulere en meget simpel grfisk løsningsmetode til det dobbelttydige trekntstilfælde med
Matematikkens mysterier - på et højt niveau. 3. Differentialligninger
Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5
Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel
Oversigt [S] 8.5, 8.6, 8.7, 8.0 Nøgleord og begreber Seks berømte potensrækker Potensrække Konvergensrdius Differentition og integrtion f potensrækker Tylor og McLurin rækker August 00, opgve 4 Den geometriske
Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler
Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel
Eksamensopgave august 2009
Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er
Differentialregning. integralregning
Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7
Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul
Bogstvregning En indledning for st og f. del 008 Krsten Juul ) )( ( ) ( ) ( Indold 0. Gnge to prenteser....,, osv... 7. Kvdrtsætninger... 0. Brøer. del... Bogstvregning. En indledning for st og f.. del.
Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum
Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3
ELEVER underviser elever En motiverende metode Drejebog med eksempler
ELEVER underviser elever En motiverende metode Drejeog med eksempler Lyngy Tekniske Gymnsium Introduktion Lyngy Tekniske Gymnsium, HTX, hr i smrejde med Udviklingslortoriet for pædgogisk og didktisk prksis
Krumningsradius & superellipsen
Krumningsrdius & suerellisen Side /5 Steen Toft Jørgensen Krumningsrdius & suerellisen Formålet med dette mini-rojekt er t erhverve mtemtisk viden om krumningsrdius f en kurve og nvende denne viden å det
