Lektion 5 Det bestemte integral
|
|
|
- Dagmar Holmberg
- 9 år siden
- Visninger:
Transkript
1 f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem to grfer
2 Det bestemte integrl Hvis f(x) er en kontinuert funktion defineret på et intervl og og b er to tl i det intervl, < b, så er det bestemte integrl f(x) dx relet f området mellem x-ksen og grfen y = f(x) begrænset f de lodrette linjer x = og x = b. Vi regner områder over x-ksen som positive og områder under x-ksen som negtive. I denne sitution er f(x) dx = A A 2 + A 3 A 4 + A 5 hvor A, A 3 og A 5 er relerne over x-ksen og A 2, A 4 reler under x-ksen. 2
3 Arelet f en kvrtcirkel Eksempel (Det bestemte integrl som et rel). x 2 dx = π 4, relet f en kvrt enhedscirkel. 2. ( x) dx = 2, (det negtive f) relet f en treknt under x-ksen. 3. k dx = k(b ). 4. Areler kn beregnes ved t inddele i strimler. Feks er x2 dx = lim n n i= n ( i n ) 2 = lim n n(n + )(2n + ) = lim n n 3 6 n 3 = lim n ( + /n) (2 + /n) 6 n i 2 i= = 2 6 = 3 Hmm, det virker lidt besværligt! x 3 dx = fordi grfen for y = x 3 er symmetrisk over y-ksen. 3
4 3 Middelværdisætningen Forestil dig t grfen forestiller en bølge. Når vndet er fldet til ro hr det en dybde et sted mellem den højeste bølgetop og den lveste bølgedl. Tllet b f(x) dx kldes for middelværdien for funktionen f(x) Sætning 2 En kontinuert funktion f(x), x b, ntger sin middelværdi: Der findes et tl c et sted mellem og b sådn t f(x) dx = f(c)(b ) For t indse dette skl vi bre vise t middelværdien ligger mellem mindstværdien, m, og størsteværdien, M; for d f(x) er kontinuert vil den ntge lle værdier mellem m og M. Men d f(x) netop ligger mellem m og M vil relet under grfen f(x) dx ligge mellem relet m(b ) og relet M(b ). Middelværdien ligger derfor mellem m og M. 4
5 Differentil- og integrlregingnens hovedsætning Sætning 3 Ld F (t) = t f(x) dx være funktionen som måler relet f området mellem grfen y = f(x) og x-ksen og x = og x = t.. Funktionen F (t) er differentibel med differentilkvotient F (t) = f(t). 2. Hvis G(t) er en nden funktion så G (t) = f(t), så er G(t) = F (t) + C. Sætningen siger, for det første, t enhver kontinuert funktion er den fledte funktion f en differentibel funktion, enhver kontinuert funktion hr et (ubestemt) integrl. For det ndet: Kender vi bre et integrl til den kontinuerte funktion f(x), d får vi enhvert ndet integrl ved blot t lægge en konstnt til. 5
6 . Differentilkvotienten F (t) er den øjeblikkelige reltive vækst lim h F (t + h) F (t) h f F (t). Forskellen i tælleren F (t+h) F (t) = t+h t f(x) dx = t+h t f(x) dx f(x) dx er relet mellem de lodrette linjer x = t og x = t + h. Middelværdisætningen siger t dette rel er lig med f(c h )h for et tl c h mellem t og t + h. Altså er F (t + h) F (t) f(c lim = lim h )h h h h h = lim f(c h ) = f(x) h fordi c h nærmer sig x og f(c h ) nærmer sig f(x) når h bliver meget lille. 2. Ld G(t) være en nden funktion hvis fledte også er f(t). Så er den fledte f forskellen (G(t) F (t)) = G (t) F (t) = f(t) f(t) = og ltså er G(t) F (t) konstnt. 6
7 Beregning f bestemte integrler Sætning 4 Ld F (x) være en et integrl til f(x), dvs F (x) = f(x). Så er f(x) dx = F (b) F () Skl du beregne det bestemte integrl f(x) dx gør følgende:. Find en funktion F (x) så F (x) = f(x) (F (x) = f(x) dx) 2. Beregn F (b) F () (skrives tit [F (x)] b ) Vi hr nemlig F (t) = t f(x) dx + C hvor C er en konstnt. Altså er F (b) F () = ( f(x) dx + C) ( f(x) dx + C) = f(x) dx fordi f(x) dx = og C C =. 7
8 Eksempel 5 (Beregning f bestemte integrler). Ved omvendt substution fndt vi i Lektion 4 x 2 dx = 2 x x rcsin x Altså er 2 x x rcsin x] ( rcsin rcsin ) = 2 π 2 = π 4 x 2 dx = [ som i Ek- = 2 som i Eksempel. 2. ( x) dx = [ 2 x2] sempel x 2 dx = [ 3 x 3] 2 = 2 = = π/2 sin x dx = [ cos x ] π/2 = ( ) ( ) =. 5. +x 2 dx = [ rctn x ] = rctn rctn = π x 3 dx = [ 4 x 4] =. 7. I Lektion 2 så vi t dx d rcsin x =. x 2 Altså er /2 dx = [ rcsin x ] /2 x 2 rcsin 2 = π 6. 8 =
9 Regneregler. f(x) dx = 2. f(x) dx = b f(x) dx (Enstemmig vedtgelse) 3. f(x) dx + c b f(x) dx = c f(x) dx 4. kf(x) dx = k f(x) dx 5. (f(x)+g(x)) dx = f(x) dx+ g(x) dx Eksempel 6 (Brug f regneregler) (x+) 2 dx (x+) 3 dx = x+ x (x+) 3 dx (x+) 3 dx = 9
10 Arelet mellem to grfer Sætning 7 Antg t funktionen f(x) ligger over funktionen g(x), dvs f(x) g(x) for lle x. D er det bestemte integrl (f(x) g(x)) dx lig med relet f området mellem y = f(x), y = g(x), x =, x = b. Hæver vi begge de to funktioner et godt stykke over x-ksen, ser vi t relet mellem de to grfer er lig med relet under y = f(x) minus relet under y = g(x), eller lig med f(x) dx g(x) dx = (f(x) g(x)) dx hvilket vr påstnden. Eksempel 8 (Arel mellem to kurver) De to grfer y = x og y = x 3 skærer hinnden i x = og x =. Arelet f området mellem de to grfer mellem disse to skæringspunkter er (x x3 ) dx = [ 2 x ] 4 x4 = 2 4 = 4.
11 Opgver til Lektion 5. Find middelværdien f f(x) = x 4, x [, 2]. 2. Find middelværdien f f(x) = x, x [, 4]. 3. Find 2 (x 5 ) dx. 4. Find (x 3 + 2) 2 dx. 5. Find π sin x cos x dx. 6. Find relet f området fskåret f linjen y = x og prblen y = 6 x Find relet f en cirkel med rdius R. 8. Find relet under en bue på grfen for sinus funktionen. 9. Et bdekr er ved t blive fyldt med vnd. Til tiden t (i minutter) løber der 3t
12 liter pr. minut ned i krret. Hvor meget vnd løber der ned i bdekrret fr t = minutter til t = 2 minutter?. (Eksmen pril 2 Opgve ) Find den ekskte værdi f det bestemte integrl 5x 2 x 3 2 dx. Argumenter for t dyrs overflde er proportionl med l 2 og dets volumen med l 3, hvor l er det længden. Hvis en fisk vokser fr 4 cm til 5 cm, hvd sker der så med dens vægt? 2. (Store fisk svømmer hurtigere end små - men hvor meget?) En svømmende fisk yder en effekt W = CRV 2 som er proportionl med vndmodstnden, R, og kvdrtet på hstigheden, V. Ld os ntge t vndmodstnden er proportionl med fiskens overflde og dens mksimleffekt med dens volumen (muskelmsse). Gør rede for t topfrten vokser proportionlt med l hvor l er længden.
Lektion 5 Det bestemte integral
a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal
Stamfunktion & integral
PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn
INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0
INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til
MATEMATISK FORMELSAMLING
MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD
Integration ved substitution og delvis (partiel) integration
DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK INTEGRATION EFTERÅRET Integrtion ved sustitution og delvis (prtiel) integrtion Differentil- og integrlregningens hovedsætning lyder: Hvis ƒ er
Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til
Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle
Lektion 7s Funktioner - supplerende eksempler
Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side
Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010
Mtemtikprojekt om Integrlregning Lvet f Arendse Morsing Gunill Olesen Julie Slvensky Michel Hnsen 15 Oktober 21 Indhold I Del 1................................ 3 I Generelt om stmfunktioner og integrler........
Eksamensspørgsmål: Potens-funktioner
Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for
Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til
Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle
Lektion 6 Logaritmefunktioner
Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi
Opgave 1 ( Toppunktsformlen )
Opgve 1 ( Toppunktsformlen ) Et nengrspolynomium er givet ve f x x 2 b x c. For t fine toppunktet vil vi først ifferentiere f x Derefter løser vi ligningen f ' x x b f ' x 0 x b 0 x b D f ' x x b er en
Formelsamling Matematik C Indhold
Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...
Noget om Riemann integralet. Noter til Matematik 2
Noget om Riemnn integrlet. Noter til Mtemtik 2 Arne Jensen Afdeling for Mtemtik og Dtlogi Institut for Elektroniske Systemer Alborg Universitetscenter Fredrik Bjers Vej 7 9220 Alborg Ø 4. pril 1991 Revideret
Beregning af bestemt integrale ved partiel integration og integration ved substitution:
Beregning f estemt integrle ved prtiel integrtion og integrtion ved sustitution: f John V. Petersen Prtiel integrtion Sætning : Prtiel integrtion... si. Løsning f integrle... si. Plot f løsningsrelet...
Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.
Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk
1 Plan og rumintegraler
1 PLAN OG RUMINTEGRALER 1 1 Pln og rumintegrler Ligesom for funktioner f en vribel kn mn for kontinuerte funktioner f flere vrible definere deres integrle. Vi vil her kun beskæftige os med funktioner f
Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel
Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,
Integralregning. 2. del. 2006 Karsten Juul
Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion
STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER
STUDENTEREKSAMEN NOVEMBER-DECEMBER 007 007-8-V MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Tirsdg den 18 december 007 kl 900-1000 BESVARELSEN AFLEVERES KL 1000 Der
Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.
Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:
Integralregning. Version juni Mike Vandal Auerbach
Integrlregning Version.0 27. juni 209 y f x Mike Vndl Auerch www.mthemticus.dk Integrlregning Version.0, 209 Disse noter er skrevet til mtemtikundervisningen på stx A- og B-niveu efter gymnsiereformen
Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:
Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.
Formelsamling Matematik C Indhold
Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...
Formelsamling Mat. C & B
Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8
Differentialregning. integralregning
Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7
Analysens Fundamentalsætning
Anlysens Fundmentlsætning Frnk Nsser 11. juli 2011 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Lukkede flader med konstant krumning
Lukkede flder med konstnt krumning Hns Anton Slomonsen Arhus Universitet Mrch 13, 2015 En flde i rummet B A giver nledning til to mål for fstnden mellem to punkter A og B på flden: - længden f den rette
Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =
Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen (
MATEMATIK B-NIVEAU STX081-MAB
MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet
... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner
POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt
Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler
Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel
Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1
Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt
Matematik A. Højere teknisk eksamen. Formelsamling til delprøve 1
Mtemtik A Højere teknisk eksmen Formelsmling til delprøve Mtemtik A Højere teknisk eksmen Formelsmling til delprøve Forfttere: Jytte Melin og Ole Dlsgrd April 209 ISBN: 978-87-603-3238-8 (web udgve) Denne
Matematik B-A. Trigonometri og Geometri. Niels Junge
Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke
Matematisk modellering og numeriske metoder. Lektion 17
Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil
TAL OG BOGSTAVREGNING
TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,
Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m. areal: 5 5 = 25 cm 2 omkreds: 5+5+5+5 = 20 cm. areal: 8 5 = 40 dm 2
geometri exempler 4 m 3 m rel: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m 5 m 5 m rel: 5 5 = 25 m 2 omkreds: 5+5+5+5 = 20 m 8 dm 5 dm rel: 8 5 = 40 dm 2 8 dm 5 mm 4 mm 1 2 rel: 4 (5+9) = 28 mm 2 9 mm 7 km rel:
ANALYSE 1, 2014, Uge 3
ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.
Trigonometri. Matematik A niveau
Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den
Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.
Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer
Arealer under grafer
HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens
Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul
Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.
Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2
Mt1GB Minilex Henrik Dhl, Hold 8 29. mj 2003 Indhold 1 Definitioner 2 2 Sætninger m.v. 18 2.1 Begrænsethed, åben/lukket..................... 18 2.2 Differentition............................ 18 2.3 Differentilligninger.........................
( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN
Projekt 7.7 Simpsons formel Simpson vr søn f en selvlært væver, og skulle egentlig selv hve været en væver, men en solformørkelse vkte hns interesse for mtemtik og nturvidensk og mod lle odds lykkedes
Matematikkens sprog INTRO
Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.
Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2.
Differentil-kvotient Ld f være en funktion - f.eks. f (x) = 2x 2. Produkt og mrked - differentil og integrlregning Rsmus Wgepetersen Institut for Mtemtiske Fg Alborg Universitet Februry 14, 2014 Differentilkvotienten
Formelsamling Mat. C & B
Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... 1 BRØER... PARENTESER... 3 PROCENT... 4 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...
1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).
Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter
Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11
Formelsmling Mt. C BRØER... LIGNINGER... PARENTESER... RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... VILÅRLIG TREANT... Sinusreltionerne:... Cosinusreltionerne:...
Differentiation af Logaritmer
Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014
Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: [email protected] Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning
ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,
INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner
Eksamensopgave august 2009
Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er
Lektion 9 Statistik enkeltobservationer
Lektion 9 Statistik enkeltobservationer Middelværdi med mere Hyppigheds- og frekvens-tabeller Diagrammer Hvilket diagram er bedst? Boxplot Lektion 9 Side 1 Når man skal holde styr på mange oplysninger,
ANALYSE 1, 2013, Uge 2
ANALYSE 1, 2013, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består
Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks
Formelsmling for mtemtik niveu B og A på højere hndelseksmen Appendiks April Mtemtik B Procentregning Procentvis vækst Værdien f en given vriel x liver ændret fr x til x 1. Den %-vise vækst eregnes ved:
Grundlæggende funktioner
Grundlæggende funktioner for A-niveu i st Udgve 5 018 Krsten Juul Grundlæggende funktioner for A-niveu i st Procent 1. Procenter på en ny måde... 1. Vækstrte... 3. Gennemsnitlig procent... Lineær vækst
Linjer på skift. Figurer. Format 5. Nr. 15. a a Tegn AB, BC, AE, CD og CF, GH, GI. b Tegn de to parallelle linjestykker, der kan tegnes til GH.
Linjer på skift Nr. 15 Tegn B, BC, E, CD og CF, GH, GI. Tegn de to prllelle linjestykker, der kn tegnes til GH. c Hvd hedder de to linjestykker? d Tegn det vinkelrette linjestykke til GH, der endnu ikke
Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8.
Anlyse Øvelser Rsmus Sylvester Bryder. og 5. oktober 3 Supplerende opgve Ld C([, b], C) betegne rummet f lle kontinuerte funktioner f : [, b] C, hvor < b, og definér et indre produkt på C([, b], C) ved
Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010
Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor
Eksponentielle Sammenhænge
Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....
Om Riemann-integralet. Noter til Matematik 1
Om Riemnn-integrlet. Noter til Mtemtik 1 Jon Johnsen Institut for Mtemtiske Fg, Alborg Universitet Fredrik Bjers Vej 7G, 9220 Ålborg Ø 3. december 2001 1 Indledning Integrlregning går tilbge til Newtons
Integralregning. Erik Vestergaard
Integrlregning Erik Vestergrd Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, Hderslev 4 Erik Vestergrd www.mtemtikfysik.dk Indholdsfortegnelse Indholdsfortegnelse. Indledning 4. Stmfunktioner 4. Smmenhængen
Integrationsteknikker
Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1
Elementær Matematik. Analytisk geometri
Elementær Mtemtik Anltisk geometri Ole Witt-Hnsen 0 Indhold. koordintsstemet.... Afstndsformlen.... Liniens ligning...4 4. Ortogonle linier...7 5. Liniers skæring. To ligninger med to uekendte....7 6.
Lektion 6 Bogstavregning
Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret
Matematik A Matematik kompendium til HTX 3år
Mtemtik A Mtemtik kompendium til HTX år Skrevet f Jco Lrsen og Mrtin Gyde Poulsen.år HTX Slgelse Udgivet f De Nturvidenskelige Side Indholdsfortegnelse StuGuide 4 Differentilregning 4 Integrlregning 4
Formelsamling til Fourieranalyse 10. udgave
Formelsmling til Fouriernlyse. udgve Kristin Jerslev og Steven Hyden 3. oktober 9 Her følger en formelsmling lvet til kurset Fouriernlyse på Arhus Universitet. Bemærk venligst, t smlingen indeholder sætninger
Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden.
Efterbehndlingsrk C Dæmonen Nedenfor er vist to grfer for bevægelsen i Dæmonen. Den første grf viser hvor mnge gnge du vejer mere eller mindre end din normle vægt. Den nden grf viser højden. Spørgsmål
Løsning af præmie- og ekstraopgave
52 Læserbidrag Løsning af præmie- og ekstraopgave 23. årgang, nr. 1 Martin Wedel Jacobsen Både præmieopgaven og ekstraopgaven er specialtilfælde af en mere generel opgave: Hvor mange stykker kan en n-dimensionel
gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper
gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution
Afstand fra et punkt til en linje
Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold
Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x).
Uden hjælpemidler Opgave 8.00 Funktionen f(x) er bestemt ved skitse af grafen for f(x). f ( x) = x 3 4x. På figuren ses en Grafen skærer førsteaksen i punkterne P(,0), O(0,0) og Q(,0). Sammen med førsteaksen
Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000.
Tldiktt Nr. Timillioner 0.000.000 Millioner.000.000 Hundredetusinder.000 Tlhus Titusinder 0.000 Tusinder.000 Hundreder Tiere 0 Enere Prktivitet. Træk - kort i skjul fr et lmindeligt kortspil. Læg dem på
MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)
Silkeborg 09-0-0 MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Udrbejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger fejl i
1. Andalusien - en provins i Spanien
1. Andlusien - en prvins i Spnien Andres g hns fmilie skl pa ferie i Andlusien. I et rejsektlg finder de frskellige plysninger. Digrmmet viser fr hver maned, hvr mnge dge det regner mere end 1 mm i Mlg'
3. Vilkårlige trekanter
3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke
Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion
1 Indledning Dette afsnit omhandler første delprøve, den uden hjælpemidler. Dette afsnit bygger på vejledningen til lærerplanen og lærerplanen for matematik b-niveau, samt eksamensopgaverne fra 2014-2012,
MATEMATISK FORMELSAMLING
MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig
Implicit differentiation
Implicit differentition Implicit differentition Indhold. Implicit differentition.... Tngent til ellipse og hyperel... 3. Prisme i hovedstillingen...3 3. Teoretisk rgument for hovedstillingen...4 Ole Witt-Hnsen
Matematikkens mysterier - på et højt niveau. 3. Differentialligninger
Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5
