Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03
|
|
|
- Christoffer Bonde
- 10 år siden
- Visninger:
Transkript
1 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos x er på formen f(x) g(x) med. f og g mindst 2 gange kontinuert differentiable, 2. 0 = f(x) = g(x) = f (x) = g (x),. g, g og g nulpunktsfrie på [, ] \ {0} 4. f (0) = 2 og g (0) = følger det af l hôspitals regel (Th. 4.8) at e x2 cos x = 2x e x2 sin x = (2 + 4x 2 ) e x2 cos x b) En hurtig afprøvning viser at for n =, 2 er sin x n sin n x =. = 2 = 2. I det generelle tilfælde er der flere forskellige metoder hvoraf jeg vil vise 2. Først den frække: sin x n sin xn x n sin ( xn x ) n sin n = x x n sin n = x x n sin x sinx hvor den kendte grænseværdi = (Exc vi.c)) samt kontinuitet af x n er x benyttet.
2 Alternativt kan l hôspitals regel benyttes sin x n sin n x = nx n cos x n n sin n x cos x = cos x n ( x ) n = cos x sin x sin xn f(x) idet udtrykket er på formen med f og g mindst 2 gange kontinuert sin n x g(x) differentiable, 0 = f(x) = g(x), g og g er nulpunktsfrie på [, ] \ {0}. Ved tredie lighedstegn er kontinuiteten af cos samt x m, m = n, n benyttet sammen med den kendte sinx grænseværdi =. x Opgave 2 a) Idet funktionen x log p for ethvert p R er positiv og kontinuert på intervallet [, [ og derfor specielt lokalt integrabel på dette interval ifølge Th. 5.0, skal vi jvf. Def. 5.8 blot undersøge for hvilke p b b x log p dx <? Ved substitutionen (jvf variabel skifte Sætningen Th 5.4) u = log og dermed du = finder vi b dx x x log p dx = = = b x=b u p du x= { [ p log p ] b p [log log ] b p = { p (log p log b log p log ) p log log log b log log log p = p log p log p > p < p = Her af ses at x log p er ugentlig Riemann integrabel på intervallet [, [ hvis og kun hvis p >. b) Kan løses analogt til a) eller ved at benytte substitutionen (jvf variabel skifte Sætningen Th 5.4) u = /x, du = dx/x 2 : / /b x log p dx = 2 b u log u log p log u du
3 Hvoraf ses at for hvert p er / 0 x log p dx = x log p dx. Heraf sluttes jvf. a) at x log p er uegentlig Riemann integrabel på intervallet ]0, /] hvis og kun hvis p >. c) Idet funktionen x log p er positiv for alle p og x > e samt aftagende for tilstrækkeligt store x (for fast p) følger det af integral kriteriet, Th. 6.2 (eller side i de udleverede noter) samt a) at n log n log p log n n= er konvergent hvis og kun hvis p >. Idet log log 2 < 0 er første led (n = 2) i summen n log n log p log n n=2 kun defineret for p Z hvorfor summen er veldefineret og konvergent for p >, p N. Opgave a) Jeg vil benytte mig af følgende Lemma Lad f : [a, b] R være en kontinuert voksende funktion og lad E [a, b] være en vilkårlig ikke tom delmængde da er sup x E f(x) = f(sup x) = f(sup E). x E Bevis : Lad s = sup E. Da f er voksende har vi for alle x E : f(x) f(s), hvorfor f(s) sup x E f(x). Med henblik på den modsatte ulighed lad ɛ > 0 være vilkårlig og vælg δ > 0 så x [a, b] : x s < δ f(x) f(s) < ɛ. Ifølge approximations egenskaben for supremum Th..20 findes der x E med s δ < x s og dermed med f(s) ɛ < f(x) f(s). Da denne ulighed holder for alle ɛ > 0 er f(s) sup x E f(x) ifølge Th.,9. q.e.d. Lad nu (x n ) n N [a, b] være en vilkårlig følge. Vi skal i det følgende bruge
4 definitionen af sup, i.e. sup x n = sup k n x k. Vi har f( sup x n ) = f( sup x k ) k n kontinuitet af f = f(sup x k ) Lemma med E = {x k k n} = k n sup k n def. af sup = sup f(x k ) f(x n ) b) Et eksempel på at betingelsen kontinuert ikke kan undværes: Lad x 0 x < f(x) = /2 x = + x < x 2 og lad (x n ) n N [0, 2] \ {} være en vilkårlig følge, som konvergerer mod. Da er sup x n = hvorfor f( sup x n ) = /2 som er forskellig fra sup f(x n ) Mere konkret hvis x n = + /n er sup f(x n ) = 2 og hvis x n = /n er sup f(x n ) =. Et eksempel på at betingelsen voksende ikke kan undværes: Lad f(x) = x : [, ] [, ] og lad x n = ( ) n. Da er = sup x n = sup f(x n ) f( sup x n ) = f() =. Opgave 4 Idet e x = x n n! for alle x R, får vi for ligeledes alle x R: f(x) = π e x2 /2 = ( ) n x 2n π 2n n!. Den angivne række er derfor Mclaurinrækken for f jvf. Th 7.9 og Def Af Th 7.2 følger da at F (x) = x 2 + f(t)dt = 2 + ( ) n x 2n+ π 2n n! (2n + ). 0 for alle x R og dermed er denne række Mclaurinrækken for F. 4
5 b) Det blev under a) vist at rækken for F konvergerer for alle x R. Alternativt kan rækkens konvergensradius beregnes til R = sup a n = /n ( ) n 2n+ π 2 n n!(2n+) =. Heraf følger også at rækken for F konvergerer for alle x R. c) Idet rækken for F kun indeholder ulige potenser af x (x 2n+ ) er restledene R 2k (x) = R 2k+ (x) = F (x) (/2 + = n=k k ( ) n x 2n+ π 2n n! (2n + ) ( ) n x 2n+ π 2n n! (2n + ) ) for k. Igen på grund af den oprindelige række og dermed restrækkerne kun indeholder ulige potenser af n er rækkerne altenerende for alle x. Størrelsen af restledet kan derfor vurderes ved det først bortkastede led jvf Th 6.8 eller de udleverede noter. Mere præcist har R 2k (x) samme fortegn som ( )k x 2k+ π 2 og er nummerisk k k! (2k+) mindre end eller lig den nummeriske værdi af dette led. Det følger heraf at den største nummeriske fejl der begås ved at approximere F på intervallet [, ] med Taylor polynomiet P 2(k ) (x) = P 2k (x) = /2 + k ( ) n x 2n+ π 2n n! (2n + ) er begrænset af den nummeriske værdi af det først bortkastede led taget i intervalendepunkterne: x [, ] : R 2k (x) R 2k () π 2k k! (2k + ) Ved beregning på lommeregner eller computer fås: k = 2 : R 2k (x) 0, 04 > 0, 00 k = : R 2k (x) 0, 007 0, 00 Heraf sluttes at de fire første led i rækken for F, i.e. (/2 + x/ π x /6 π + x 5 /40 π) skal medtages for at opnå en præcission på 0 på 5
6 intervallet [, ]. d) På basis af argumentationen i c) har vi vurderingen x [, ] : R 2k (x) R 2k () 2k+ π 2k k! (2k + ) Ved beregning på lommeregner eller computer fås: k = 8 : R 2k (x) 7, 0 6 > 0 6 k = 9 : R 2k (x) 9, Heraf sluttes at de 20 første led i rækken for F, i.e. (P 2 8 (x) = P 6 (x)) skal medtages for at opnå en præcission på 0 6 på intervallet [, ]. Opgave 5 a) Idet x, y E : f(x) f(y) L x y, hvor L > 0, kan vi til et vilkårligt givet ɛ > 0 vælge δ = ɛ/l > 0. Derved har vi x, y E, x y < δ f(x) f(y) L x y < Lδ = ɛ. b) Sætning Lad f n : E R, n N være en følge af L-Lipschitz funktioner. Hvis følgen {f n } n N konvergerer punktvis mod en funktion f : E R, da er f også L- Lipschitz. Bevis : Lad x, y E være vilkårlige. Idet f n konvergerer punktvis mod f og den nummeriske værdi, er kontinuert følger det af Def. 7. og Cor. 2.6 at f n (x) f n (y) f(x) f(y). Da endvidere hver f n er L-Lipschitz har vi for alle n N: f n (x) f n (y) L x y. Af Th. 2.7 følger da at f(x) f(y) L x y. q.e.d. 6
7 c) Med f n (x) = x n og dermed f n(x) = nx n får vi af middelværdisætningen, Th. 4.5.ii x, y [0, ] : x n y n = nz n (x y), hvor z ]x, y[ [0, ]. Af trekantsuligheden fås da umiddelbart at x n y n n. Det ses også at f n ikke er L-Lipschitz for noget L < n, ved f.eks. at vælge y = og se på en følge (x n ) som konvergerer mod. Da den punktvise grænsefunktion f(x) = x n = { 0 0 x <, x =. ikke er kontinuert i er f specielt ikke uniformt kontinuert og derfor heller ikke Lipschitz ifølge a). Dette strider selvfølgelig ikke imod sætningen da hvert f n godt nok er Lipschitz, men følgen ikke er ligeligt Lipschitz, dvs. der findes ikke en fælles Lipschitz konstant for alle f n. Faktisk viser bemærkningen ovenfor at den optimale Lipschitz konstant L n for f n er n, som går mod uendelig når n går mod uendelig. 7
Oversigt [S] 4.5, 5.10
Oversigt [S] 4.5, 5.0 Nøgleord og begreber Ubestemte udtryk l Hospitals regel l Hospitals regel 2 Test l Hospitals regel Uegentlige integraler Test uegentlige integraler Uegentlige integraler 2 Test uegentlige
Besvarelse, Eksamen Analyse 1, 2013
Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 23 Besvarelse, Eksamen Analyse, 23 Opgave Lad, for n N, funktionen f n : [, ) R være givet ved NB. Trykfejl. Burde være x. f n (x)
Fundamentale begreber fra Analysen. Introduktion. De reelle tal. Carsten Lunde Petersen
IMFUFA Carsten Lunde Petersen Fundamentale begreber fra Analysen Introduktion Disse noter udgør et meget ltreret udkik over de grundlæggende begreber i reel analyse. Noten indeholder meget lidt om det
Kalkulus 2 - Grænseovergange, Kontinuitet og Følger
Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning
En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby
24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder
Hilbert rum. Chapter 3. 3.1 Indre produkt rum
Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E
af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning
EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens
MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel
MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter
Analyse 1, Prøve 4 Besvarelse
Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 2011 1 Analyse 1, Prøve 4 Besvarelse Lad Opgave 1 (50%) M = {T R 2 T er en åben trekant} og lad A : M R være arealfunktionen, dvs.
MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 10. september Department of Mathematics University of Copenhagen
MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 10. september 2018 Oversigt Relle tal Notation Tal Største og mindste element, mindste overtal og største undertal
Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at
Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn
MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen
MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største
Oversigt [S] 8.7, 8.8, 8.9
Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Potensrækker og opgaver Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger
Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium
Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium
Taylor s approksimationsformler for funktioner af én variabel
enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier
Mat H /05 Note 2 10/11-04 Gerd Grubb
Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med
Taylor s approksimationsformler for funktioner af én variabel
enote 4 1 enote 4 Taylor s approksimationsformler for funktioner af én variabel I enote 19 og enote 21 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier i
Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1
Analyse Reeksamen 00 Rasmus Sylvester Bryder 5. august 0 Opgave Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. ( ) n n +3n+7 n= n + For alle n N vil
Matematisk modellering og numeriske metoder. Lektion 8
Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er
Konvergens i L 1 -forstand. Definition af L 1 -seminorm. Topologi i pseudometrisk rum. Seminorm til norm
Definition af L 1 -seminorm Konvergens i L 1 -forstand Lad (X, E, µ) være et målrum. Husk at L(µ) er et reelt vektorrum. Vi definerer f 1 = f dµ for f L Definition En følge af funktioner f 1, f 2, L siges
Pointen med Differentiation
Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
MM502+4 forelæsningsslides
MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for
Hilbert rum. Chapter Indre produkt rum
Chapter 4 Hilbert rum 4.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E
= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).
Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)
ANALYSE 1, 2014, Uge 5
ANALYSE, 204, Uge 5 Afleveringsfrist for Prøve 2 er Tirsdag den 20/5 kl 0:5. Forelæsninger Tirsdag Vi går videre med Afsnit 4 om uniform konvergens af Fourierrækker, hvor hovedsætningen er Sætning 4.3.
Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).
Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x
Analyse 1. Mads Friis Anders Friis Anne Ryelund. 25. maj 2018
Analyse 1 Mads Friis Anders Friis Anne Ryelund 25. maj 2018 Indhold Introduktion Aksiomer og den matematiske metode Formalistisk struktur Mængder Introduktion Definitioner Delmængder Fællesmængde og foreningsmængde
Funktionsundersøgelse. Rasmus Sylvester Bryder
Funktionsundersøgelse Rasmus Sylvester Bryder 7. november 2008 Dette projekt aeveres i forbindelse med LA T EX 2ε-kurset vejledningsuge 2, 2008-09 på KU; til projektet benyttes noter givet til opgaveløsning.
Eksamen 2014/2015 Mål- og integralteori
Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt
Differentiation. Frank Nasser. 11. juli 2011
Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
2. Fourierrækker i en variabel
.1. Fourierrækker i en variabel I Kapitel II 7 blev der indført, dels funktionsrummene L p (X, µ) (mere udførligt skrevet L p (X, E, µ)), dels rummene L p (X, µ), der fås af L p (X, µ) ved at funktioner
ANALYSE 1, 2014, Uge 3
ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.
Taylors formel. Kapitel Klassiske sætninger i en dimension
Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f
Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser
Analyse 2 Øvelser Rasmus Sylvester Bryder 24. og 27. september 203 Bevis af Fatous lemma (Theorem 9.) Hvis (u j ) j er en følge af positive, målelige, numeriske funktioner (dvs. med værdier i [, ]) over
Mujtaba og Farid Integralregning 06-08-2011
Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation
matx.dk Differentialregning Dennis Pipenbring
mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten
Eksamensnoter til Analyse 1
ksamensnoter til Analyse 1 Martin Geisler [email protected] Sommer 23 Indledning Disse noter gennemgår de 26 spørgsmål stillet til den mundtlige eksamen i Analyse 1 ved Aarhus Universitet sommeren 23.
Funktionsrum. Kapitel 1. 1.1 Funktionsrummet L = L(X, E, µ)
Kapitel Funktionsrum. Funktionsrummet L = L(X, E, µ) For et vilkårligt målrum (X,E,µ) er mængdenl=l(x,e,µ) afµ-integrable funktioner f :X R et reelt vektorrum ifølge Theorem 7.3 i [EH]. Hvis vi indfører
Gamle eksamensopgaver (MASO)
EO 1 Gamle eksamensopgaver (MASO) Opgave 1. (Vinteren 1990 91, opgave 1) a) Vis, at rækken er divergent. b) Vis, at rækken er konvergent. Opgave 2. (Vinteren 1990 91, opgave 2) Gør rede for at ligningssystemet
Analyse 1, Prøve 2 Besvarelse
Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet maj Analyse, Prøve Besvarelse Opgave (3%) (a) (%) Bestem mængden af x R for hvilke rækken ( + (x) n ) er konvergent og angiv sumfunktionen
Punktmængdetopologi. Mikkel Stouby Petersen. 1. marts 2013
Punktmængdetopologi Mikkel Stouby Petersen 1. marts 2013 I kurset Matematisk Analyse 1 er et metrisk rum et af de mest grundlæggende begreber. Et metrisk rum (X, d) er en mængde X sammen med en metrik
Her skal du lære om 1. Talfølge og talrække 2. Afsnitssum 3. Konvergens 4. Konvergente rækker har små led 5. Regneregler
Oversigt [S] 8.2 Her skal du lære om. Talfølge og talrække 2. Afsnitssum 3. Konvergens 4. Konvergente rækker har små led 5. Regneregler Calculus - 2003 Uge 4. - Uendelig række Definition Givet en talfølge
PeterSørensen.dk : Differentiation
PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3
1.1. n u i v i, (u, v) = i=1
1.1 1. Hilbert rum 1.1. Hilbert rum og deres geometri. Definition 1.1. Et komplekst vektor rum V kaldes et indre produkt rum (eller præ-hilbert rum), når det er forsynet med en funktion (, ): V V C, som
Skriftlig eksamen - med besvarelse Topologi I (MM508)
INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen - med besvarelse Topologi I (MM508) Mandag d. 14. januar 2007 2 timer med alle sædvanlige hjælpemidler tilladt. Opgavesættet
Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet
Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt
Gult Foredrag Om Net
Gult Foredrag Om Net University of Aarhus Århus 8 th March, 2010 Introduktion I: Fra Metriske til Topologiske Rum Et metrisk rum er en mængde udstyret med en afstandsfunktion. Afstandsfunktionen bruges
Noter til Computerstøttet Beregning Taylors formel
Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også
Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1
1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy
Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen
Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er
GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f
GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar
Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner
t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54
Slide 1/54 Indhold 1 2 3 4 5 Slide 2/54 Indhold 1 2 3 4 5 Slide 3/54 1) Hvad er et aksiom? Slide 4/54 1) Hvad er et aksiom? 2) Hvorfor har vi brug for aksiomer? The Monty Hall Problem Slide 4/54 1) Hvad
MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel
Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen
Differentiabilitet. f(h) = f(x 0 +h) f(x 0 ). y = f(x) f(h) df(h) Figur 1: Tangent, tilvækst og differential. lim. df(h) = f (x 0 )h.
Differentiabilitet 1 Funktioner af én reel variabel Tilvækstfunktionen f med udgangspunkt i x 0 er en reel funktion af tilvæksten : f() = f(x 0 +) f(x 0 ). y = f(x) Tangent (x 0,f(x 0 )) df() f() x 0 x
Partielle afledede og retningsafledede
Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen
Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen
Oversigt [S] 5.2, 5.4, 12.1
Oversigt [S] 5.2, 5.4, 12.1 Nøgleord og begreber Bestemt integral Areal iemann summer Volumen Dobbelt integral Test dobbelt integral iemann dobbeltsummer Nyttige regneregler for integral Test integral
Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015
Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1
Differential- regning
Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7
Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6
Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter
Noget om Riemann integralet. Noter til Matematik 2
Noget om Riemnn integrlet. Noter til Mtemtik 2 Arne Jensen Afdeling for Mtemtik og Dtlogi Institut for Elektroniske Systemer Alborg Universitetscenter Fredrik Bjers Vej 7 9220 Alborg Ø 4. pril 1991 Revideret
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra
Integralregning Infinitesimalregning
Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement
Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt
Oversigt [S] 5., 5.3, 5.4,.,. Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 6 Uge 39.
Differentialregning. Ib Michelsen
Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af
13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b
3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det
ANALYSE 1, 2013, Uge 2
ANALYSE 1, 2013, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består
Differentiation af Potensfunktioner
Differentiation af Potensfunktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
Lokalt ekstremum DiploMat 01905
Lokalt ekstremum DiploMat 0905 Preben Alsholm Institut for Matematik, DTU 6. oktober 00 De nition Et stationært punkt for en funktion af ere variable f vil i disse noter blive kaldt et egentligt saddelpunkt,
Tallet π er irrationalt Jens Siegstad
32 Tallet π er irrationalt Jens Siegstad At tallet π er irrationalt har været kendt i pænt lang tid Aristoteles postulerede det da han påstod at diameteren og radius i en cirkel er inkommensurable størrelser
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:
Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt
Oversigt [S] 5.2, 5.3, 5.4, 2., 2.2 Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 26
Supplerende note om Hilbertrum og Banachrum
Supplerende note om Hilbertrum og Banachrum Jimi Lee Truelsen Om Noten Vi vil i denne note uddybe nogle af emnerne fra de første 3 apitler af [Ve] og komme med nogle eksempler. Det drejer sig især om begreberne
MATEMATIK B. Videooversigt
MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.
MM501 forelæsningsslides
MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele
Ang. skriftlig matematik B på hf
Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet
Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)
Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer
Foldningsintegraler og Doobs martingale ulighed
Foldningsintegraler og Doobs martingale ulighed N.J. Nielsen Indledning I dette notat vil vi vise en sætning om foldningsintegraler, som blev benyttet trin 2 i onstrutionen af Itointegralet, gennemgå esempel
