Sandsynlighedsregning

Størrelse: px
Starte visningen fra side:

Download "Sandsynlighedsregning"

Transkript

1 Mogens Bladt www2.imm.dtu.dk/courses/ September, 2007

2 Betinget sandsynlighed ud fra proportioner Vi husker på definitionen IP(A B) = IP(A B). IP(B) Betragt en befolkning bestående af N personer. N F er farveblinde og N K er kvinder. Lad F være hændelsen, at en tilfældigt udvalgt person er farveblind. Lad K være hændelsen, at en tilfældigt udvalgt person er kvinde. Så er IP(F ) = N F N og IP(K) = N K N.

3 Betinget sandsynlighed ud fra proportioner Betragt nu udelukkende den kvindelige del af befolkning. Hvis M K er delmængden af kvinder og M F er delmængden af farveblinde, så er M K M F delmængden af farveblinde kvinder. Det er klart, at N K = #M K og N F = #M F. Definer N F K = #M F M K. Sandsynligheden for at en tilfældigt valgt kvinde er farveblind er N F K = N F K /N IP(F K) = = IP(F K). N K N K /N IP(K)

4 Betinget sandsynlighed ud fra proportioner Betragt familier med nøjagtigt to børn. Vores udfaldsrum er Ω = {dd, dp, pd, pp}, d=dreng, p=pige. Vi antager, at hvert udfald har sandsynlighed 1/4. Lad B være hændelsen at der er en dreng i familien og A at familien har har to drenge. Hvad er sandsynligheden for at familen har to drenge givet at der er en dreng i familien? Vi skal udregne IP(A B). Nu er A B = {dd} og B = {dp, pd, dd}. Derfor er IP(A B) = IP(A B) IP(B) = 1/4 1/4+1/4+1/4 = 1 3.

5 Betinget sandsynlighed ud fra proportioner Betragt nu en tilfældigt udvalgt dreng der kommer fra en familie med to børn. Her er udfaldsrummet mængden af drengebørn. Lad B være hændelsen, at drengen kommer fra en familie med to børn og A hændelsen for at det andet barn er en dreng. IP(A) = 1 2 og uafhængig af B. Derfor er IP(A B) = IP(A B) IP(B) = IP(A)IP(B) IP(B) = IP(A) = 1 2. Morale: man skal have fuldstændigt styr på formuleringen af problemet.

6 Bayes formel Det er klart, at Derfor er IP(B A)IP(A) = IP(A B) = IP(A B)IP(B). IP(B A) = IP(A B)IP(B). IP(A) Specielt hvis B 1 B 2... B n = Ω er en inddeling af Ω (disjunkte) så er følger af loven om total sandsynlighed og dermed IP(A) = IP(A B 1 )IP(B 1 ) IP(A B n )IP(B n ) IP(B i A) = IP(A B i )IP(B i ) IP(A B 1 )IP(B 1 ) IP(A B n )IP(B n ).

7 En anvendelse af Bayes formel En blodtest for en bestemt sygdom kan enten være positiv eller negativ. 95% med sygdommen testes positive. 2% uden sygdommen testes positive. 1% af befolkningen har sygdommen. Lad A være hændelsen, at der testes positivt og lad B være hændelsen at man har sygdommen. IP(A B) = 0.95, IP(A B c ) = 0.02, IP(B) = B, B c er en inddeling af Ω. Derfor er IP(B A) = = IP(A B)IP(B) IP(A B)IP(B) + IP(A B c )IP(B c ) %.

8 Lidt om kombinatorik Vi har n elementer a 1,..., a n hvorfra der udtages r < n elementer (a j1,..., a jr ). A er hændelsen, at alle de udtagne elementer er forskellige. Så er n(n 1)(n 2)...(n r + 1) IP(A) = n r = (n) r n r. n bolde placeres tilfældigt i n urner. Sandsynligheden for at alle urner vil indeholde en bold er (n) n n n = n! n n. Denne størrelse er forholdsvis lille: hvis n = 7 så er sandsynligheden = 1.5%. Hvis der i en by sker 7 uheld i løbet af en uge så er sandsynligheden for at der skete en hver dag kun ca. 1.5%. Tilfældige hændelser klumper mere sammen end man umiddelbart kunne tro.

9 Lidt om kombinatorik En elevator med 7 passagerer stopper ved 10 etager. Hvad er sandsynligheden p for at der højst stiger en passager ud på hver etage? Løsning: p = (10) = 10 7 = 6.048%. Fødselsdagsproblemet: Hvad er sandsynligheden p r for at r tilfældige personer alle har forskellige fødselsdage? De r personers fødselsdage udgør en tilfældig stikprøve at r datoer af årets 365 datoer. Sandsynligheden for alle datoer er forskellige er p r = (365) r 365 r. Hvor mange personer skal der være i et venteværelse for at sandsynligheden for at mindst to har samme fødselsdag overstiger 50%?

10 Lidt om kombinatorik Sandsynligheden for at mindst to har samme fødselsdag er 1 p r (sandsynligheden for komplementærhændelsen). r sandsynlighed % % % % % % % % I dette kursus med ca. 130 indskrevne er sandsynligheden for at mindst to har samme fødselsdag: %.

11 Multiplikationsregelen for hændelser Betragt n hændelser A 1, A 2,..., A n. Så er IP(A 1 A 2... A n ) = IP(A 1 )IP(A 2 A 1 )IP(A 3 A 1 A 2 ) IP(A n A 1 A 2... A n 1 ). Tilbage til fødselsdagsproblemet: Lad A n være hændelsen, at alle n fødselsdage er forskellige. Så er A r A r 1... A 2. D.v.s. A k = A 2 A 3... A k. IP(A 2 ) = = IP(A j+1 A 2... A j ) = IP(A j+1 A j ) = 365 j 365 = 1 j 365. Så er IP(A r ) = IP(A 2... A r ) = ( 1 1 ) ( 1 2 ) ( 1 r )

12 Uafhængighed Vi har defineret to hændelser A og B som værende uafhængige hvis IP(A B) = IP(A)IP(B). Dette er for ikke trivielle hændelser med IP(A) > 0 og IP(B) > 0 ækvivalent med IP(A B) = IP(A) og IP(B A) = IP(B). Første definition er den bedste da den også virker når IP(A) = 0 eller IP(B) = 0. Eksempel: Vi trækker et kort fra et spil kort. Lad A være hændelsen, at kortet vi trækker er et es. Lad B være hændelsen, at kortet vi trækker er en spar.

13 Uafhængighed Er A og B uafhængige? Sandsynligheden for at trække et es er 4 52 = Sandsynligheden for at trække en spar er = 1 4. D.v.s. IP(A) = 1 13 og IP(B) = 1 4. A B er hændelsen at vi trækker spar es. Sandsynligheden for dette er 1 52 = IP(A B). Så er IP(A B) = IP(A)IP(B) og dermed er A og B usafhængige.

14 Uafhængighed Betragt familier med 3 børn. Udfaldsrummet er så Ω = {ddd, ddp, dpd, pdd, dpp, pdp, ppd, ppp}. Vi antager, at sandsynligheden at hvert udfald i Ω er 1 8. Lad A være hændelsen, at der er højst een pige i familien. Lad B være hændelsen, familien har børn af begge køn. A består af {ddd, ddp, dpd, pdd}, så IP(A) = 4 8 = 1 2. B består af {ddp, dpd, pdd, dpp, pdp, ppd}, så IP(B) = 6 8 = 3 4. A B består af {ddp, dpd, pdd}, så IP(A B) = 3 8. Idet IP(A B) = 3 8 = = IP(A)IP(B), så er A og B uafhængige.

15 Uafhængighed Betragt familier med 2 børn. Udfaldsrummet er så Ω = {dd, dp, pd, pp}. Vi antager, at sandsynligheden at hvert udfald i Ω er 1 4. Lad A være hændelsen, at der er højst een pige i familien. Lad B være hændelsen, familien har børn af begge køn. A består af {dd, dp, pd}, så IP(A) = 3 4. B består af {dp, pd}, så IP(B) = 2 4 = 1 2. A B består af {dp, pd}, så IP(A B) = 1 2. Idet IP(A B) = = IP(A)IP(B), så er A og B ikke uafhængige.

16 Uafhængighed Betragt familier med 4 børn. Udfaldsrummet er så Ω = {dddd, dddp, ddpd, ddpp, dpdd, dpdp, dppd, dppp, pddd, pddp, pdpd, pdpp, ppdd, ppdp, pppd, pppp}. Vi antager, at sandsynligheden at hvert udfald i Ω er Lad A være hændelsen, at der er højst een pige i familien. Lad B være hændelsen, familien har børn af begge køn. A består af {dddd, dddp, ddpd, dpdd, pddd}, så IP(A) = B består af Ω\{dddd, pppp}, så IP(B) = = 7 8. A B består af {dddp, ddpd, dpdd, pddd}, så IP(A B) = 4 16 = 1 4. Idet IP(A B) = = IP(A)IP(B), så er A og B ikke uafhængige.

17 Uafhængighed Hvis A og B er uafhængige, så burde A og B c også være det. Er dette korrekt? Da B B c = Ø så er også (A B) (A B c ) = Ø. Envidere er (A B) (A B c ) = A (B B c ) = A Ω = A. Så følger, at IP(A) = IP(A B) + IP(A B c ). D.v.s. IP(A B c ) = IP(A) IP(A B). A,B uafhængige medfører så, at IP(A B) = IP(A)IP(B) og dermed IP(A B c ) = IP(A) IP(A)IP(B) = IP(A)(1 IP(B)) = IP(A)IP(B c )., d.v.s. A og B c er uafhængige. Tilsvarende følger også, at A c og B er uafhængige og at A c, B c er uafhængige.

18 Uafhængighed Kast to terninger. Lad A=første terning slår ulige, B=anden terning slår ulige og C=summen er ulige (hvilket vil sige at een slår lige og den anden ulige). Udfaldsrummet er {(1, 1), (1, 2),..., (6, 5), (6, 6)} (36 muligheder) og vi antager, at alle udfald er lige sandsynlige og dermed A og B er tydeligt uafhængige med sandsynligheden 1 2 hver. Hvis A og B indtræffer, så kan C ikke indtræffe. Hvis A og B c indtræffer, så indtræffer C også. A, B og C er parvis uafhængige (overvej!) På den anden side set er IP(A B C) = 0 IP(A)IP(B)IP(C). Det sidste må kræves for at opnå tre uafhængige hændelser.

19 Definition af uafhængighed n hændelser A 1,...,A n er uafhængige hvis der gælder følgende: IP(A i A j ) = IP(A i )IP(A j ) IP(A i A j A k ) = IP(A i )IP(A j )IP(A k ) IP(A 1 A 2... A n ) = IP(A 1 )IP(A 2 ) IP(A n ) hvor 1 i < j < k <... n.

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 1.7-1.8 Fødselsdagseksemplet, fra sidst Eksperimenterikkealleerligesandsynlige Diskrete sandsynlighedsfordelinger -Definition af sandsynligheder - Regneregler Hvad er sandsynligheder?

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 7. September, 2007 Hvad er sandsynlighedsregning? Formel matematisk måde til at håndtere tilfældigheder. Dybest set en formalisering af udregninger med proportioner.

Læs mere

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder Dagens program Afsnit 2.1-2.3 Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder 1 Stokastiske variable (diskrete) Et eksperiment med usikkerhed beskrives

Læs mere

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment

Læs mere

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N.

Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N. Dagens program Afsnit 1.4-1.6 Kombinatorik - Permutationer - Kombinationer Udtagelse af stikprøver - Population - Med og uden tilbagelægning Eksempler 1 Sandsynligheder Udfaldsrum Ω = {ω 1,..., ω N } hvor

Læs mere

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1 Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april 2009 1/28 Landmålingens

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/15 Hvad skal vi lave i dag? Definition af sandsynlighedsrum. Egenskaber ved Sandsynlighedsmål. (Kap. 3). Fødselsdagsproblemet (supplerende eksempel 3.1). Betingede sandsynligheder og uafhængighed

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning Udfaldsrum og hændelser Udfald e:resultatetafetforsøg. Udfaldsrum S: Mængden af de mulige udfald af forsøget. Hændelse A: En delmængde af udfaldsrummet. Tilfældigt fænomen S e (eks.)

Læs mere

Uafhængighed af hændelser

Uafhængighed af hændelser Uafhængighed af hændelser Uafhængighed af to hændelser A og B kaldes uafhængige hændelser hvis P A B P A P B Kaldes også den specielle multiplikationsregel. Så gælder både P A B P A og P B A P B. Bemærk

Læs mere

m = 0,15 22,5 + 0, , , , ,05 90 = 61,9år år år år år 26,67% 40% 26,67% 6,67%

m = 0,15 22,5 + 0, , , , ,05 90 = 61,9år år år år år 26,67% 40% 26,67% 6,67% Kapitel 9 Øvelse 9.1 4 1 = = 11%. 36 9 a. Den gennemsnitlige levealder er hvor gamle folk i gennemsnit er når de dør. For grupperede observationer bruger vi en antagelse om, at gennemsnitsalderen for et

Læs mere

Sandsynlighed. for matc i stx og hf Karsten Juul

Sandsynlighed. for matc i stx og hf Karsten Juul Sandsynlighed for matc i stx og hf 209 Karsten Juul . Udfald Vi drejer den gule skive om dens centrum og ser hvilket af de fem felter der standser ud for den røde pil. Da skiven sidst blev drejet, var

Læs mere

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

Produkt og marked - betinget sandsynlighed

Produkt og marked - betinget sandsynlighed Produkt og marked - betinget sandsynlighed Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 12, 2019 1 / 11 Tænkeboks opgave i Ingeniøren Se webside https://ing.dk/artikel/taenkeboks-sandsynligheden-fejlved-positiv-test-221355

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ JLJ Nanostatistik: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/nanostatistik/ p. 1/16 Højder

Læs mere

Projektopgave til Mat2SS. Espen Højsgaard (CPR xxxx) Rune Højsgaard (CPR xxxx)

Projektopgave til Mat2SS. Espen Højsgaard (CPR xxxx) Rune Højsgaard (CPR xxxx) Projektopgave til MatSS Espen Højsgaard (CPR 04038-xxxx) Rune Højsgaard (CPR 090678-xxxx) 1 1 Samme sandsynlighed for drengefødsel Vi har som udgangspunkt for løsning af opgaven brugt følgende tabeller,

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

TØ-opgaver til uge 46

TØ-opgaver til uge 46 TØ-opgaver til uge 46 Først laver vi en liste over de ligninger med mere i [ITP], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Sætning 3.1, ligning (3.3) på side 7. [3]: Sætning 3.1, ligning (3.4)

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske

Læs mere

Modul 3: Sandsynlighedsregning

Modul 3: Sandsynlighedsregning Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 3: Sandsynlighedsregning 3.1 Sandsynligheder................................... 1 3.2 Tilfældig udtrækning fra en mængde........................

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/34 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/29 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

TØ-opgaver til uge 45

TØ-opgaver til uge 45 TØ-opgaver til uge 45 Først laver vi en liste over de ligninger med mere i [IPT], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Ligning (2.6) på side 5. [3]: Sætning 3.1, ligning (3.3) på side 7.

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg. Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22

Statistik. Hjemmeside:  kkb. Statistik - lektion 1 p.1/22 Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: kkb@math.aau.dk

Læs mere

DIGITALMIXINGRESHAPED

DIGITALMIXINGRESHAPED DGALMXNGRESHAPED ALLEN&HEAH D M R pd W b g d m m md b 1969W w wd m mp b b m bd w w bg p Qm b d gd b d d pm m C w G B d d ddd m GLDd L d m m d d p g g d g b b d d b d p m m m dd p Q m p d m g w d mp d p

Læs mere

Kombinatorik og Sandsynlighedsregning

Kombinatorik og Sandsynlighedsregning Kombinatorik Teori del 1 Kombinatorik er en metode til at tælle muligheder på. Man kan f.eks. inden for valg til en bestyrelse eller et fodboldhold, kodning af en lås, valg af pinkode eller telefonnummer,

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24.

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. 10. 10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. Bestem udfaldsrummet for lykkehjulet. 10.2 En tegnestift Du putter en tegnestift i et raflebæger, ryster det godt og smider

Læs mere

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Vigtigste nye emner i 2.1, 2.2 og 2.5

Læs mere

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Vigtigste nye emner i.,. og.5 Sandsynlighedsregning. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Siene Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Binomialfordelingen

Læs mere

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, Marts Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, Marts Kombinatorik Noter om kombinatorik, Kirsten Rosenkilde, Marts 006 Kombinatorik Disse noter er en introduktion til kombinatorik og starter helt fra bunden, så en del af det indledende er sikkert kendt for dig allerede

Læs mere

Bygning 1, Etage 03. M1 - Aktiv sengeplads. M3 - Aktivt badeværelse. M5 Aktivt birum. M7 Afstilling. O3 begrænset trådløs dækning.

Bygning 1, Etage 03. M1 - Aktiv sengeplads. M3 - Aktivt badeværelse. M5 Aktivt birum. M7 Afstilling. O3 begrænset trådløs dækning. Bygning 1, Etage 03 Bygning 1, Etage 04 Bygning 1, Etage 05 Bygning 1, Etage 06 Bygning 1, Etage 07 Bygning 1, Etage 08 Bygning 1, Etage 09 Bygning 1, Etage 10 Bygning 1, Etage 11 Bygning 1, Etage 12 Bygning

Læs mere

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling Disrete fordelinger Fire vigtige disrete fordelinger: 1. Uniform fordeling (disret) 2. Binomial fordeling 3. Hyper-geometris fordeling 4. Poisson fordeling 1 Uniform fordeling Definition Esperiment med

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Præcision og effektivitet (efficiency)?

Præcision og effektivitet (efficiency)? Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet

Læs mere

Forelæsning 2: Kapitel 4, Diskrete fordelinger

Forelæsning 2: Kapitel 4, Diskrete fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Test nr. 4 af centrale elementer 02402

Test nr. 4 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 4 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

En Introduktion til Sandsynlighedsregning

En Introduktion til Sandsynlighedsregning En Introduktion til Sandsynlighedsregning 9. Udgave Michael Sørensen 11. juli 2008 0 Forord Til 2. udgave Disse forelæsningsnoter trækker i betydelig grad på noter udarbejdet af en række kolleger. Det

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag     susanne Statistik og Sandsynlighedsregning 1 Repetition MS kapitel 1 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Hvad er sandsynlighed? - beskriver systemer

Læs mere

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434)

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Opgave Vi kan selv vælge, om vi vil arbejde med ordnet eller uordnet udtagelse, hvis vi blot sikrer, at vi er konsekvente i vores valg,

Læs mere

En Introduktion til Sandsynlighedsregning

En Introduktion til Sandsynlighedsregning En Introduktion til Sandsynlighedsregning 4. Udgave Michael Sørensen 26. juni 2003 0 Forord Til 2. udgave Disse forelæsningsnoter trækker i betydelig grad på noter udarbejdet af en række kolleger. Det

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Eksempel 1.1: kvalitetskontrol

Eksempel 1.1: kvalitetskontrol Idag 1. Introduktion til statistik: Eksempel 1.1 og 1.2 fra WMMY samt andre eksempler. 2. Sandsynlighedsregning: udfaldsrum, hændelser, regning med sandsynligheder. 1/17 Eksempel 1.1: kvalitetskontrol

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable:

Læs mere

Statistik og Databehandling N: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/kurser/ statdatabehandling/f06/

Statistik og Databehandling N: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/kurser/ statdatabehandling/f06/ Statistik og Databehandling N: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/kurser/ statdatabehandling/f06/ Jens Ledet Jensen Statistik og Databehandling N: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/statdatabehandling/f06/

Læs mere

Aarhus Universitet 5. februar Meddelelse 2

Aarhus Universitet 5. februar Meddelelse 2 fdeling for Teoretisk Statistik IOSTTISTIK Institut for Matematiske Fag Preben læsild arhus Universitet 5. februar 2003 Meddelelse 2 Forelæsningerne i uge 6 (3-7.2) Ved forelæsningen den 4.2 gav Frank

Læs mere

Allan C. Malmberg CHANCE OG RISIKO. Kan det virkelig passe?

Allan C. Malmberg CHANCE OG RISIKO. Kan det virkelig passe? Allan C. Malmberg CHANCE OG RISIKO Kan det virkelig passe? INFA 2006 Allan C. Malmberg CHANCE OG RISIKO Kan det virkelig passe? Faglige udfordringer med løsninger INFA 2006 Seneste publikationer af samme

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Sandsynlighed og kombinatorik

Sandsynlighed og kombinatorik Sandsynlighed og kombinatorik Indholdsfortegnelse... 1 Simpel sandsynlighed... 2 Kombinatorik... 4 Sandsynlighed ved hjælp af kombinatorik... 7 Udregningsark... 8 side 1 Simpel sandsynlighed 1: Du kaster

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable: udfald

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Tegn og gæt gennemsnittet

Tegn og gæt gennemsnittet Tegn og gæt gennemsnittet Nr. Gruppeaktivitet. Kast en -sidet terning. Terningeslaget angiver et gennemsnit. Tegn gennemsnittet med to eller tre forskellige søjler på kopiarket, og giv arket videre til

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for i dag: Kvantitative metoder Beskrivende statistik og analyse af kvalitatitive data 1. februar 007 Test i multinomialfordelingen: Q-testet (BL.13.1-) Opsamling fra sidste gang To eksempler To-dimensionale

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

4 Oversigt over kapitel 4

4 Oversigt over kapitel 4 IMM, 2002-09-14 Poul Thyregod 4 Oversigt over kapitel 4 Introduktion Hidtil har vi beskæftiget os med data. Når data repræsenterer gentagne observationer (i bred forstand) af et fænomen, kan det være bekvemt

Læs mere

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14 Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 3 Januar 2011, kl. 9 13 Alle sædvanlige hjælpemidler

Læs mere

Løsning af præmieopgaven: Famøs årgang 22, nr. 1

Løsning af præmieopgaven: Famøs årgang 22, nr. 1 26 Opgaveløsninger Knæk og bræk Løsninger til sidste bloks opgaver Sune Precht Reeh Jeg antager som udgangspunkt at pinden i opgaverne er uden tykkelse og er formet som et ret linjestykke af længde l.

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Tidlige eksempler. Susanne Ditlevsen Institut for Matematiske Fag susanne

Tidlige eksempler. Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning Repetition Statistik Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne New England Journal of Medicine gav i 2000 et

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Beskrivende statistik og analyse af kvalitatitive data 12. februar 2007 Kvantitative metoder 2: F3 1 Program for i dag: Test i multinomialfordelingen: Q-testet (BL.13.1-2) Opsamling

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Når alle spillere har lagt et kort, går stikket til den spiller, der har lagt det kort, der har højest værdi.

Når alle spillere har lagt et kort, går stikket til den spiller, der har lagt det kort, der har højest værdi. Klør er trumf. Hjerter er trumf. Es har den laveste værdi, 7 har den højeste. Spar er trumf. Es har den laveste værdi, 7 har den højeste. Es har den højeste værdi, 7 har den laveste. Es har den højeste

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

2011.09.20 lth@campus.dk

2011.09.20 lth@campus.dk 2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk

Læs mere

Hypotesetests, fejltyper og p-værdier

Hypotesetests, fejltyper og p-værdier Hypotesetests, fejltyper og p-værdier Søren Højsgaard Institut for Matematiske Fag, Aalborg Universitet October 25, 2018 Søren Højsgaard Institut for Matematiske Fag, Aalborg Hypotesetests, Universitet

Læs mere