Sandsynlighedsregning

Størrelse: px
Starte visningen fra side:

Download "Sandsynlighedsregning"

Transkript

1 Mogens Bladt www2.imm.dtu.dk/courses/ September, 2007

2 Hvad er sandsynlighedsregning? Formel matematisk måde til at håndtere tilfældigheder. Dybest set en formalisering af udregninger med proportioner. Føles oftest svært ved første kontakt idet det er en væsentligt anden måde at tænke på. Intuition er et vigtigt hjælpemiddel i al matematik men kan være svær at få styr på i sandsynlighedsregningen. Derfor er en formalisering af sandsynlighedsbegrebet nœdvendigt.

3 ens anvendelser Pålidelighedsanalyse. Dimensionering af systemer (kø systemer; telekommunikation; trafik) Matematisk statistik (det omvendte af sandsynlighedsregning ) Finansiering (modellering af prisfastsættelsesmodeller, optioner, rentemodeller etc.) Markedsanalyser (stikprøveudtagning: meningsmålinger og markedsundersøgelser) Biologi, medicin og genetik. Aktuar videnskab (forsikringsberegninger)

4 Dette kursus Er en intuitiv introduktion til sandsynlighedsregningen. Vi lægger dermed vægt på forståelse af færdigheder indenfor anvendelser og udregninger af konkrete sandsynligheder. En dybere forståelse af sandsynlighedsregningens grundlag er ikke tilsigtet. Grundlag for kurser i matematisk statistik.

5 Kursus form 2 45 min forelæsning: 8-8:45 og 9-9:45 2 timers øvelser 2-3 timer til læsning, studie, forståelse 2-3 timers arbejde med opgaver og eksempler Introduktionsskrivelse på hjemmeside Ugentlige forslag til ekstra/hjemme opgaver Løsninger til de fleste opgaver på hjemmeside, kort løsning til opgaver med ulige numre i lærebogen Transparenter tilgængelige på hjemmeside (tilstræbes)

6 Grundlæggende begreber: Udfaldsrum og hændelser. Manipulation med hændelser: komplementer, snit og forening. Basale antagelser (axiomer): sandsynligheden for den sikre hændelse er 1, sandsynligheden for den umulige hændelse er 0 samt additivitet i sandsynlighed af foreningen af hændelser der udelukker hinanden. Det vigtige (og svære) begreb : betinget sandsynlighed. Uafhængige hændelser.

7 Udfaldsrum Eksperiment: kast med mønt. Mulige udfald: plat eller krone. Vi kan således definere hændelser ω 1 =plat og ω 2 =krone. Udfaldsrummet (eng: sample space) er defineret som mængden af alle hændelser: Ω = {ω 1, ω 2 } = {plat, krone}. Kast med en terning: mulige udfald 1,2,3,4,5 og 6. Derfor Ω = {1, 2, 3, 4, 5, 6}. Fødsel af børn. Mulige udfald: dreng eller pige. Derfor Ω = {dreng, pige}. Morgendagens aktiekurs. Her er Ω = [0, ) eller måske Ω = {0, 1 8, 2 8,...}.

8 Hændelser Hændelser er delmængder af Ω. Tag terningekast: Ω = {1, 2, 3, 4, 5, 6}. Så er en hændelse. A = {2, 4, 6} Ω A er den hændelse at vi kaster et lige antal øjne. Nogle gange skriver vi A = {antal øjne i et terningekast er lige}. Hvis vi ikke ved andet om terningen så må vi antage at alle udfald er lige sandsynlige.

9 Sandsynligheder Sandsynligheden for den sikre hændelse A = Ω er 1. Vi skriver dette som IP(Ω) = 1. Sandsynligheden for den umulige eller tomme hændelse er 0. Vi lader Ø betragte den umulige hændelse og vi skriver IP(Ø) = 0. Den umulige hændelse har man brug for ved manipulation af hændelser: f.eks. hændelsen at vi slår lige og 1 samtidig er umulig. Axiom: Hvis A og B er hændelser så at A B = Ø sætter vi IP(A B) = IP(A) + IP(B).

10 Sandsynligheder I terningekast antager vi at IP(ω i ) = 1 6, ω i = i, i = 1, 2,..., 6, hvor Ω = {ω 1, ω 2, ω 3, ω 4, ω 5, ω 6 }. Hvad er sandsynligheden for at vi slår lige? A = {2, 4, 6} = {ω 2, ω 4, ω 6 }. Så er IP(A) = IP(ω 2 ) + IP(ω 4 ) + IP(ω 6 ) = = 1 2. Generelt: Hvis alle udfald er lige sandsynlige saa er IP(A) = #A #Ω.

11 Uafhængige hændelser To hændelser A og B siges at være uafhængige hvis IP(A B) = IP(A)IP(B). Hvad er sandsynligheden for at slå to seksere i to slag med en terning? Vi antager, at udfaldet af det første slag ikke har indflydelse på udfaldet i det andet slag. Lad A = {udfaldet af første kast er 6 } og B = {udfaldet af andet kast er 6 }. Så er IP(A B) = IP(A)IP(B) = = 1 36.

12 Lidt mere kompliceret udfaldsrum... Betragt to kast med terning. Så er udfaldsrummet Ω = {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} = {(1, 1), (1, 2),..., (1, 6), (2, 1),...,, (6, 5), (6, 6)} Betragt hændelsen A at vi slår mindst lige så meget anden gang som første gang. Så er A = {(1, 1), (1, 2),..., (1, 6), (2, 2),..., (2, 6),..., (6, 6)}. Alle udfald er lige sandsynlige (= 1/36) så IP(A) = #A #Ω = =

13 Stikprøveudtagning med tilbagelægning En bestand af hjorte mærkes. 100 tilfældige hjorte blev mærket. Ved en jagt blev der skudt 170 hjorte. Af disse var 25 mærkede. Sandsynligheden for at skyde en mærket hjort kan så antages 25 at være ca På denne måde kan man estimere bestanden af hjorte: hvis de 100 mærkede udgør %, = 14.7%. så er den totale bestand givet ved

14 Basale regneregler med sandsynligheder Vi benævner A c = Ω\A komplementet til A, i.e. x A c hvis og kun hvis x / A. IP(A c ) = 1 IP(A). Dette ses meget let: A og A c er disjunkte (A A c = Ø) og Ω = A A c. Dermed er 1 = IP(Ω) = IP(A A c ) = IP(A) + IP(A c ). Lad A og B være vilkårlige hændelser. Så er IP(A B) = IP(A) + IP(B) IP(A B).

15 Basale regneregler med sandsynligheder Grønt område = A B c, blåt område = B A c og gult område =A B. Alle områder er disjunkte, så IP(A B) = IP(A B c ) + IP(B A c ) + IP(A B). På den anden side set: IP(A) = IP(A B c )+IP(A B) og IP(B) = IP(B A c )+IP(A B).

16 Tilbage til hjortene... Af de 680 formodede dyr er 300 hjorte og 380 hinder. Hvad er sandsynligheden for at et tilfældigt skudt dyr enten er mærket eller hind? Lad A = {dyret er mærket} og B = {dyret er hind}. Vi ønsker at beregne IP(A B). IP(A) = 0.147, IP(B) = og IP(A B) = IP(A)IP(B) = IP(A B) = IP(A) + IP(B) IP(A B) = =

17 Betingede sandsynligheder Lad A, B Ω være hændelser så at IP(B) > 0. Da definerer vi den betingede sandsynlighed af A givet B ved IP(A B) = IP(A B). IP(B) IP(B) normaliserer B til at være et nyt udfaldsrum. IP(A B) er sandsynligheden for a A og B indtræffer. Hvis vi normaliserer med B så antager at B er indtruffet. Hvis hændelserne er uafhængige så er IP(A B) = IP(A B) IP(B) = IP(A)IP(B) IP(B) = IP(A).

18 Loven om total sandsynlighed Lad B 1,..., B n være en inddeling af Ω is disjunkte hændelsere Så er IP(A) = IP(A (B 1... B n )) = IP((A B 1 ) (A B 2 )... (A B n )) = IP(A B 1 ) + IP(A B 2 ) IP(A B n ) = IP(A B 1 )IP(B 1 ) + IP(A B 2 )IP(B 2 ) IP(A B n )IP(B n )

19 Betingede sandsynligheder Vi skyder 2 hjorte. Hvad er sandsynligheden for at nummer to er mærket? Dette afhænger jo af om den første vi skyder var mærket eller ej. Lad A være hændelsen, at den første hjort er mærket. Så er B 1 = A og B 2 = A c en inddeling af Ω. IP(A) = og IP(Ac ) = = Lad B være hændelsen, at den anden hjort er mærket. IP(B A) = og IP(B Ac ) = Så er IP(B) = = 5 34.

20 Pålidelighedsanalyse Betragt to komponenter i en maskine som begge er nødvendige for at maskinen virker. Lad A i,y i = 1, 2 være hændelsen at komponent i virker i et år. Hvad er sandsynligheden for at maskinen går i stykker inden der er gået et år? Maskinen går i stykker hvis enten A c 1 eller Ac 2 indtræffer (eller begge!). D.v.s. hvis A c 1 Ac 2 indtræffer. Men nu er A c 1 Ac 2 = (A 1 A 2 ) c (overvej!). Hvis komponenterne fungerer uafhængigt af hinanden, så er IP(A c 1 A c 2) = IP((A 1 A 2 ) c ) = 1 IP(A 1 A 2 ) = 1 IP(A 1 )IP(A 2 ).

21 Pålidelighedsanalyse Hvis maskinen fungerer hvis blot ét at komponenterne fungerer (e.g. i computere ) saa skitsere vi det som et parrallelt forløb. Lad A i,y i = 1, 2 være hændelsen at komponent i virker i et år. Hvad er sandsynligheden for at maskinen går i stykker inden der er gået et år? Nu er hændelsen vi søger A c 1 Ac 2 = (A 1 A 2 ) c.

22 Pålidelighedsanalyse Så er IP(A c 1 A c 2) = IP((A 1 A 2 ) c ) = 1 IP(A 1 A 2 ) = 1 IP(A 1 ) IP(A 2 ) + IP(A 1 A 2 ) = (1 IP(A 1 ))(1 IP(A 2 )).

23 Oversigt over de vigtigste begreber Sandsynligheder er tal mellem 0 og 1 defineret på hændelser og symboliseres ved et IP. Formelt er IP : rummet af hændelser [0, 1], IP(A) [0, 1]. A 1,..., A n disjunkte, så er IP( n i=1 A i) = n i=1 IP(A i). IP(Ω) = 1, IP(Ø) = 0. IP(A c ) = 1 IP(A). Hvis alle udfald er lige sandsynlige it et endeligt udfaldsrum (e.g. terningekast eller plat og krone) så er IP(A) = #A #Ω.

24 Oversigt over de vigtigste begreber Betingede sandsynligheder IP(A B) for IP(B) > 0: IP(A B) = IP(A B). IP(B) ens vigtigste sætning: Loven om total sandsynlighed IP(B) = n IP(B A i )IP(A i ). i=1 Almindelige regler for manipulation med hændelser: A (B C) = (A B) (A C). (A B) c = A c B b. (A B) c = A c B c

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 14. September, 2007 Betinget sandsynlighed ud fra proportioner Vi husker på definitionen IP(A B) = IP(A B). IP(B) Betragt en befolkning bestående af N personer.

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning Udfaldsrum og hændelser Udfald e:resultatetafetforsøg. Udfaldsrum S: Mængden af de mulige udfald af forsøget. Hændelse A: En delmængde af udfaldsrummet. Tilfældigt fænomen S e (eks.)

Læs mere

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment

Læs mere

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former.

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. Statistisk sandsynlighed Her finder man sandsynligheden for en hændelse ved at kigge på en

Læs mere

TØ-opgaver til uge 45

TØ-opgaver til uge 45 TØ-opgaver til uge 45 Først laver vi en liste over de ligninger med mere i [IPT], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Ligning (2.6) på side 5. [3]: Sætning 3.1, ligning (3.3) på side 7.

Læs mere

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag [email protected] Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Lidt historisk om chancelære i grundskolen

Lidt historisk om chancelære i grundskolen Lidt historisk om chancelære i grundskolen 1976 1.-2.klassetrin Vejledende forslag til læseplan:.det tilstræbes endvidere at eleverne i et passende talmaterialer kan bestemme for eksempel det største tal,

Læs mere

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1 Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april 2009 1/28 Landmålingens

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Mattip om. Statistik 2. Tilhørende kopier: Statistik 3, 4 og 5. Du skal lære om: Faglig læsning. Chance og risiko. Sandsynlighed

Mattip om. Statistik 2. Tilhørende kopier: Statistik 3, 4 og 5. Du skal lære om: Faglig læsning. Chance og risiko. Sandsynlighed Mattip om Statistik Du skal lære om: Faglig læsning Kan ikke Kan næsten Kan Chance og risiko Sandsynlighed Observationer, hyppighed og frekvens Gennemsnit Tilhørende kopier: Statistik, og mattip.dk Statistik

Læs mere

Kombinatorik og Sandsynlighedsregning

Kombinatorik og Sandsynlighedsregning Kombinatorik Teori del 1 Kombinatorik er en metode til at tælle muligheder på. Man kan f.eks. inden for valg til en bestyrelse eller et fodboldhold, kodning af en lås, valg af pinkode eller telefonnummer,

Læs mere

TØ-opgaver til uge 46

TØ-opgaver til uge 46 TØ-opgaver til uge 46 Først laver vi en liste over de ligninger med mere i [ITP], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Sætning 3.1, ligning (3.3) på side 7. [3]: Sætning 3.1, ligning (3.4)

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: [email protected] Dagens emner Stokastiske variable: udfald

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

Modul 3: Sandsynlighedsregning

Modul 3: Sandsynlighedsregning Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 3: Sandsynlighedsregning 3.1 Sandsynligheder................................... 1 3.2 Tilfældig udtrækning fra en mængde........................

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434)

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Opgave Vi kan selv vælge, om vi vil arbejde med ordnet eller uordnet udtagelse, hvis vi blot sikrer, at vi er konsekvente i vores valg,

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning En note om sandsynlighedsregning. Den er tænkt som supplement til Vejen til Matematik B2. Henrik S. Hansen, Sct. Knud Version 2.0 Indhold Indledning... 1 Sandsynlighedsregning...

Læs mere

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig

Læs mere

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24.

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. 10. 10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. Bestem udfaldsrummet for lykkehjulet. 10.2 En tegnestift Du putter en tegnestift i et raflebæger, ryster det godt og smider

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske

Læs mere

Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N.

Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N. Dagens program Afsnit 1.4-1.6 Kombinatorik - Permutationer - Kombinationer Udtagelse af stikprøver - Population - Med og uden tilbagelægning Eksempler 1 Sandsynligheder Udfaldsrum Ω = {ω 1,..., ω N } hvor

Læs mere

Sandsynlighed. for matc i stx og hf Karsten Juul

Sandsynlighed. for matc i stx og hf Karsten Juul Sandsynlighed for matc i stx og hf 209 Karsten Juul . Udfald Vi drejer den gule skive om dens centrum og ser hvilket af de fem felter der standser ud for den røde pil. Da skiven sidst blev drejet, var

Læs mere

Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22

Statistik. Hjemmeside:  kkb. Statistik - lektion 1 p.1/22 Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: [email protected]

Læs mere

Undervisningsplan 7. klasse august 2016 Kursus: Matematik. Emne: We are all mad Kombinatorik og sandsynlighed Faglige mål:

Undervisningsplan 7. klasse august 2016 Kursus: Matematik. Emne: We are all mad Kombinatorik og sandsynlighed Faglige mål: Undervisningsplan 7. klasse august 2016 Kursus: Matematik Emne: We are all mad Kombinatorik og sandsynlighed Faglige mål: - Tælletræ - Matrix - Sandsynlighedsmodeller - Forskellen på statistisk og kombinatorisk

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 3 Januar 2011, kl. 9 13 Alle sædvanlige hjælpemidler

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Plan. Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser. Materiale mm.

Plan. Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser. Materiale mm. Institut for Matematiske Fag Plan Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser Helle Sørensen Eftermiddagen vil være bygget om 3 4 eksempler: A. B. Random

Læs mere

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Statistik og sandsynlighed Statistik handler om at beskrive og analysere en stor mængde data. som I eller andre har indsamlet. Det kan fx være tal, der fortæller om, hvor mange lynnedslag der er i Danmark

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Sandsynlighed og kombinatorik

Sandsynlighed og kombinatorik Sandsynlighed og kombinatorik Simpel sandsynlighed... 94 Kombinatorik... 95 Sandsynlighed og kombinatorik... 97 Kombinatorik og kugletrækning... 97 Kombinatorik og sandsynlighedsregning Side 93 Sandsynlighedsregning

Læs mere

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg. Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder

Læs mere

En Introduktion til Sandsynlighedsregning

En Introduktion til Sandsynlighedsregning En Introduktion til Sandsynlighedsregning 4. Udgave Michael Sørensen 26. juni 2003 0 Forord Til 2. udgave Disse forelæsningsnoter trækker i betydelig grad på noter udarbejdet af en række kolleger. Det

Læs mere

Tue Tjur: Hvad er tilfældighed?

Tue Tjur: Hvad er tilfældighed? Tue Tjur: Hvad er tilfældighed? 16. 19. september 1999 afholdtes i netværkets regi en konference på RUC om sandsynlighedsregningens filosofi og historie. Som ikke specielt historisk interesseret, men nok

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Spil. Chancer gennem tællemetoder. Chancelære: MI 82 INF. INFA-Chancelæreserien:

Spil. Chancer gennem tællemetoder. Chancelære: MI 82 INF. INFA-Chancelæreserien: INFA-Chancelæreserien: Chancer gennem eksperimenter Chancer gennem optællinger CHANCETRÆ - Chancer gennem beregninger SPIL - Chancer gennem tællemetoder LOD - Chancer gennem simuleringer KUGLE - Chancer

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 1.7-1.8 Fødselsdagseksemplet, fra sidst Eksperimenterikkealleerligesandsynlige Diskrete sandsynlighedsfordelinger -Definition af sandsynligheder - Regneregler Hvad er sandsynligheder?

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning Statistik Introduktion Deskriptiv statistik Sandsynslighedregning Introduktion Kasper K. Berthelsen, Institut f. Mat. Fag 8 Kursusgange Individuel mundtlig eksamen (7-skala) Udgangspunkt i opgaver Software:

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

J E T T E V E S T E R G A A R D

J E T T E V E S T E R G A A R D BINOMIALT EST J E T T E V E S T E R G A A R D F I P B I O L O G I M A R S E L I S B O R G G Y M N A S I U M D. 1 3. M A R T S 2 0 1 9 K A L U N D B O R G G Y M N A S I U M D. 1 4. M A R T S 2 0 1 9 HVEM

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Sandsynlighedsregning & Statistik

Sandsynlighedsregning & Statistik Sandsynlighedsregning & Statistik for matematikstuderende Jørgen Larsen 2006 Roskilde Universitet Teksten er sat med skriften Kp-Fonts ved hjælp af KOMA- Script og LATEX. Tegningerne er fremstillet med

Læs mere

Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher

Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher Kursus 02323: Introducerende Statistik Forelæsning 12: Forsøgsplanlægning Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]

Læs mere

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM FORMÅL - BEKENDTGØRELSEN STX MATEMATIK A Kompetencer anvende simple statistiske eller sandsynlighedsteoretiske modeller

Læs mere

Allan C. Malmberg CHANCE OG RISIKO. Kan det virkelig passe?

Allan C. Malmberg CHANCE OG RISIKO. Kan det virkelig passe? Allan C. Malmberg CHANCE OG RISIKO Kan det virkelig passe? INFA 2006 Allan C. Malmberg CHANCE OG RISIKO Kan det virkelig passe? Faglige udfordringer med løsninger INFA 2006 Seneste publikationer af samme

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation

Læs mere

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen 1 Velkommen til kurset Teoretisk Statistik Lærer: Niels-Erik Jensen Plan for i dag: 1. Eks: Er euro'en skæv? 4. Praktiske informationer 2. Eks: Regressionsmodel (kap. 1) 5. Lidt om kursets indhold 3. Hvad

Læs mere