Matematik: Struktur og Form Spænd. Lineær (u)afhængighed
|
|
|
- Birgitte Andreasen
- 8 år siden
- Visninger:
Transkript
1 Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Martin Raussen Department of Mathematical Sciences Aalborg University / 8
2 Linearkombinationer. Spænd Definition Givet et antal vektorer a1,..., ap Rn. En vektor v = c1 a1 + + cp ap Rn, ci R, kaldes en linearkombination af vektorerne a1,..., ap Rn. Vektorernes spænd er mængden af alle deres linearkombinationer: Span{a1,..., ap } := {c1 a1 + + cp ap ci R} Rn. Eksempler 1. a 6= 0 Span{a} = {ca c R} Rn vektorer på en linje gennem Origo med retning a. 2. Span{a1, a2 } = {c1 a1 + c2 a2 c1, c2 R} vektorer i en plan med retningsvektorer a1, a2 med mindre a1 og a2 ligger på én linie. Bemærk: en hel plan, ikke bare en kvadrant! 2/8
3 Spænd. Vektor -og matrixligninger. Ligningssystemer Alt hænger sammen! Givet vektorer a1,..., ap, b Rm. De første vektorer danner en (m p )-matrix A = [a1,..., ap ]. Følgende statements er ensbetydende: Spænd b Span{a1,..., ap } Vektorligningen Der findes en løsning x1,..., xp til vektorligningen x1 a1 + + xp ap = b Matrixligningen Ax = b har en løsningsvektor x Rp Ligningssystemet med udvidet matriks [A b] = [a1... ap b] er konsistent. 3/8
4 Matrixligningen Ax = b Udspænder (søjle)vektorerne hele Rm? En løsning x = [x1,..., xn ] til matrixligningen Ax = b med matrix A = [a1,..., an ] svarer til en løsning af vektorligningen x1 a1 + + xn an = b en løsning af det lineære ligningssystem med totalmatrix [A b]. Udspænder (søjle)vektorerne hele Rm? Matrixligningen har en løsning for alle vektorer b Rm hvis og kun hvis Ligningssystemet med totalmatrix [A b] har en løsning for alle b Rm der efter en rækkereduktion af koefficientmatricen A findes Pivoter i hver række ranga = m. Specielt: Når n < m kan vektorerne a1,..., an ikke uspænde hele Rm! 4/8
5 Lineær (u)afhægnighed Definition Definition En ligning x1 v1 + + xp vp = 0 med reelle tal xi kaldes en afhængighedsrelation mellem vektorerne v1,..., vp i Rn. En mængde vektorer {v1,..., vp } kaldes lineært afhænging hvis de tillader en ikke-triviel afhængighedsrelation, dvs. en hvor ikke alle xi er lig med 0. Mængden kaldes lineært uafhængig hvis den eneste afhængighedsrelation mellem dem er givet ved den trivielle relation x1 = = xp = 0. Betydning Lineært afhængige vektorer udspænder mindre end deres antal berettiger til. Ikke-trivelle afhængighedsrelationer fører til spild. Spændet af lineært uafhængige vektorer er maksimalt stort i forhold til antal af vektorerne. Hver vektor i spændet er entydig linearkombination af disse vektorer. 5/8
6 Lineær (u)afhægnighed En opskrift Hvordan afgør man om en mængde {v1,..., vp } af vektorer i Rn er lineært afhængig eller uafhængig? Opskrift 1. Dan matricen A = [v1,..., vp ] med vektorerne som søjlevektorer. 2. Rækkereduktion til echelonform. 3. Hvis alle søjler er Pivotsøjler, så er vektorererne lineært uafhængige ellers lineært afhængige. Hvorfor? x1 v1 + + xp vp = 0 Ax = 0 med xt = [x1,, xp ]. En ikke-triviel afhængighedsrelation svarer altså til en ikke-triviel løsning af ligningssystemet givet ved matrixligningen Ax = 0: mindst en fri variabel! 6/8
7 Lineær uafhængighed Nogle kriterier Hvis 0-vektoren er indeholdt i en mængde vektorer, så er denne mængde altid lineært afhængig. En mængde af p vektorer i Rn er altid lineært afhængig såfremt p >n flere vektorer end dimensionen. En mængde af vektorer i Rn er lineært afhængig hvis og kun hvis en af vektorerne er linearkombination af de andre. Med andre ord: En mængde af vektorer i Rn er lineært afhængig hvis og kun hvis man kan fjerne en eller flere vektorer uden at spændet bliver mindre. Den er lineær uafhængig hvis fjernelse af en af vektorerne altid fører til et mindre spænd. 7/8
8 Rang af en matrix Vigtige interpretationer Definition Rangen af en m n matrix A = antal af Pivotsøjler. Nullitet (defekt) = antal søjler uden Pivot. Rangkriterier A har rang m Ax = b er konsistent for alle b Rm ; As søjlevektorer udspænder hele Rm ; en Pivotposition i hver række. A har rang n Ax = b har højst en løsning for et b Rm ; As søjlevektorer er lineært uafhængige; en Pivotposition i hver søjle. rang(a) = m = n (for en kvadratisk matrix A): For hver vektor b Rm har matrixligningen Ax = b netop én løsning. 8/8
Lineær algebra: Spænd. Lineær (u)afhængighed
Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1
Matematik og FormLineære ligningssystemer
Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix
Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet
Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem
Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer
Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 12 Matrixmultiplikation Am n = [aij ], Bn
Kursusgang 3 Matrixalgebra Repetition
Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem
Lineær Algebra, kursusgang
Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.
Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller
Lineær algebra: Matrixmultiplikation. Regulære og singulære
Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =
Lineære ligningssystemer og Gauss-elimination
Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g
Matematik for økonomer 3. semester
Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben
Lineær algebra 1. kursusgang
Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra
3.1 Baser og dimension
SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V
Oversigt [LA] 6, 7, 8
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
Ligningssystemer - nogle konklusioner efter miniprojektet
Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax
Tidligere Eksamensopgaver MM505 Lineær Algebra
Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................
To ligninger i to ubekendte
Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over
Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2
Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket
Oversigt [LA] 11, 12, 13
Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar
Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3
Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte
Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.
Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,
Kursusgang 3 Matrixalgebra Repetition
Kursusgang 3 Repetition - [email protected] http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix
Prøveeksamen A i Lineær Algebra
Prøveeksamen A i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Der må gøres brug af bøger, noter mv Der må ikke benyttes lommeregner,
Modulpakke 3: Lineære Ligningssystemer
Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system
Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018
Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra
(Prøve)eksamen i Lineær Algebra
(Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.
Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017
Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra
Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ
Lineær Algebra - Beviser
Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner
Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet 6. januar,
Oversigt [LA] 6, 7, 8
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen
Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første
Vektorrum. enote Generalisering af begrebet vektor
enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske
Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016
Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet
Eksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 4. januar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider
Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning
Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis
To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra
Lineær algebra Kursusgang 6
Lineær algebra Kursusgang 6 Mindste kvadraters metode og Cholesky dekomposition Vi ønsker at finde en mindste kvadraters løsning til det (inkonsistente) ligningssystem hvor A er en m n matrix. Ax = b,
Egenværdier og egenvektorer
1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.
Module 1: Lineære modeller og lineær algebra
Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........
Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion
Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar
Eksamen i Lineær Algebra
Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede
Besvarelser til Lineær Algebra Reeksamen August 2016
Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)
SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige
Lineær algebra: Lineære afbildninger. Standardmatricer
Lineær algebra: Lineære afbildninger. Standardmatricer Institut for Matematiske Fag Aalborg Universitet 2011 Lineære afbildninger En afbildning T : R n R m fra definitionsmængden R n ind i dispositionsmængden
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 05 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en
Lineær Algebra eksamen, noter
Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,
MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen
MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible
Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers
Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse
Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018
Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version
Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Opgaven består af et antal delopgaver Disse er af varierende omfang Der er også en
2010 Matematik 2A hold 4 : Prøveeksamen juni 2010
1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik
DesignMat Uge 11. Vektorrum
DesignMat Uge 11 (fortsat) Forår 2010 Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation med skalar. (fortsat) Lad L betegne R eller C. Lad V være en
Lineære ligningssystemer
enote 6 1 enote 6 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.
Diagonalisering. Definition (diagonaliserbar)
1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og
Eksamen i Lineær Algebra
Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede
Egenværdier og egenvektorer
enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier
Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Fredag
Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016
Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.
Symmetriske matricer
Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A
Symmetriske og ortogonale matricer Uge 7
Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji
MATRICER LINEÆRE LIGNINGER
MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 6. udgave 2016 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler dels med regnemidler.
Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2
Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet
Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider
Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1
Besvarelse af Eksamensopgaver Juni 5 i Matematik H Opgave De fire vektorer stilles op i en matrix som reduceres: 4 4 4 8 4 4 (a) Der er ledende et-taller så dim U =. Som basis kan f.eks. bruges a a jfr.
Reeksamen i Lineær Algebra
Reeksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Torsdag den 8. august, 2. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede
LinAlgDat 2014/2015 Google s page rank
LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en
Lineær algebra: Egenværdier, egenvektorer, diagonalisering
Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix
Lineære Afbildninger. enote 8. 8.1 Om afbildninger
enote 8 enote 8 Lineære Afbildninger Denne enote undersøger afbildninger mellem vektorrum af en bestemt type, nemlig lineære afbildninger Det vises, at kernen og billedrummet for lineære afbildninger er
MATRICER LINEÆRE LIGNINGER
MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler
Carl Friedrich Gauß ( ), malet af Christian Albrecht Jensen. Lineær algebra. Ib Michelsen
Carl Friedrich Gauß 777 8, malet af Christian Albrecht Jensen Lineær algebra Ikast Ikast Version Hæftet her skal ses som et supplement til Klaus Thomsens forelæsninger på Aarhus Universitet og låner flittigt
Modulpakke 3: Lineære Ligningssystemer
Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis
Eksamen i Lineær Algebra
Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. februar, 3. Kl. 9-3. Nærværende eksamenssæt består af 9 nummererede
D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley;
LINEÆR ALGEBRA 2. februar 2007 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; man kan også anvende Third Edition (men ej anden
