8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL
DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x + 3 = 2x + 15 169 x = 13 5 = 1 x 2(x + 5) = 4 KLASSE PRINTARK GYLDENDAL 2
DIGITALE VÆRKTØJER A1.2 SORTER LIGNINGER 2x + 24 = 8x 15 2x + 4 3 = 7x 3 2 x 5 3 + 5x 3 4 = 15 2x + x 2 5 = x 2 + 7 x 2 = 2x + 3 x + 5 = x 25 7 KLASSE PRINTARK GYLDENDAL 3
DIGITALE VÆRKTØJER A2 HVORDAN LØSER DU BEDST OPGAVEN? A Tegn et kvadrat med sidelængden 7. B Mål længden af diagonalen. C Find omkredsen. D Find arealet. A Tegn en skitse med mål af et værelse, som har form som et rektangel, og som måler 3,2 meter i længden og 2,4 meter i bredden. B Find arealet af værelset. A Tegn et parallelogram som har arealet 24. B Find omkredsen af parallelogrammet. A Tegn en retvinklet trekant med sidelængderne 3, 4 og 5. B Find omkredsen af trekanten. C Find arealet af trekanten. D Mål vinklernes størrelse. A Tegn en ligesidet trekant med sidelængden 10. B Tegn en cirkel, som går gennem trekantens hjørner. C Find omkredsen af cirklen. A Tegn en skitse af en terning, som er klippet op, så man kan se alle seks kvadratiske grundflader, som terningen består af. Der behøver ikke være mål på din skitse A Tegn en skitse med mål af en kasse set forfra, fra siden og oppefra. Kassen måler 75 cm i længden, 35 cm i bredden og 40 cm i højden. B Find kassens rumfang. A Tegn en cirkel med et areal mellem 40 og 45 cm 2. B Hvad er længden af radius? C Hvor stor er cirklens omkreds? A Tegn et rektangel, hvor længden af en diagonal er 5 cm. B Hvor lange er siderne i rektanglet? C Hvad er rektanglets areal? A Tegn en skitse med mål af, hvordan en palle set oppefra kan pakkes med fladskærmstv. En palle måler 120 cm x 80 cm. Fladskærmstv er i papkasser, som måler 100 cm i længden, 10 cm i bredden og 58 cm i højden. KLASSE PRINTARK GYLDENDAL 4
PLANGEOMETRI AX BEGREBER OG GIVNING A Tegn en stump-, spids- og retvinklet trekant, der alle har arealet 27. B Tegn to forskellige højder i hver trekant. A Undersøg, om man kan tegne en retvinklet og ligesidet trekant. ligebenet trekant. B Forklar forskellen på en ligesidet og en ligebenet trekant. A Hvad er gradtallet for vinkel A, B og C i trekant ABC, hvor b = 4? B Forklar forskellen på en ligesidet og en ligebenet trekant. A Tegn en DEF, hvor D = 135 og E = 18,5. B Tegn en ny trekant, der er kongruent med DEF. C Tegn en ny trekant, der er ligedannet, men ikke kongruent med DEF. A Tegn mindst fem forskellige polygoner. Bestem vinkelsummen for hver figur. B Hvad er vinkelsummen i en n-kant? A Tegn en trekant, og tegn dens medianer. B Beskriv, hvad en median i en trekant er. A Tegn en trekant, og tegn dens midtpunktstransversaler. B Beskriv, hvad en midtpunktstransversal er. A Undersøg, om to trekanter altid er ligedannede, hvis de er ligesidede. ligebenede. har samme omkreds. har samme vinkler. KLASSE PRINTARK GYLDENDAL 5
PLANGEOMETRI UX SØMBRÆTPAPIR KLASSE PRINTARK GYLDENDAL 6
PLANGEOMETRI UX.1 FIRKANTER OG TESSELERING KLASSE PRINTARK GYLDENDAL 7
PLANGEOMETRI UX.2 FIRKANTER OG TESSELERING KLASSE PRINTARK GYLDENDAL 8
PLANGEOMETRI AX.1 HØJDEMÅLINGER Find to forskellige ting, som I i gruppen ønsker at finde højden på, fx træ, husmur, flagstang, elmast eller lignende. Del jer i to mindre grupper, hvor hver gruppe finder højden på de to genstande med to forskellige metoder. Det vil sige, at de to genstande måles ved hjælp af alle fire metoder. I kan evt. filme, hvordan I foretog målingerne. Metode 1: Brug solen I kan kun bruge denne metode, når solen skinner. Det skal ligeledes være muligt at se, hvor fx træets skygge rammer. Sæt en pind eller en tommestok lodret i jorden og mål længden. Mål derefter længden på skyggen af den lodrette pind. Til slut måles længden på skyggen fra træet. Nu kan træets højde beregnes ved at bruge ligedannede trekanter. Metode 2: Brug jeres højde Den ene person lægger sig på jorden og kigger præcist hen over hovedet på en kammerat og op på toppen af træet. Kamme ratens højde, afstanden fra træet til kammeraten og afstanden fra den liggende persons øje. Med disse informationer kan træets højde beregnes ved at bruge de to ligedannede trekaner. KLASSE PRINTARK GYLDENDAL 9
PLANGEOMETRI AX.2 HØJDEMÅLINGER Metode 3: Brug et klinometer I kan bestemme højden af fx et træ ved at bruge et klinometer og et målebånd eller tommestok. Et klinometer er et instrument, der kan måle vinklen mellem vandret og et sigtepunkt. Klinometeret holdes i hånden mens I sigter på træets top og aflæser sigtevinklen v. I skal måle den lodrette højde fra klinometeret til jorden og den vandrette afstand fra klinometeret til træet. Så kan I tegne situationen i et bestemt længdeforhold og måle højden af træet på tegningen. Metode 4: Brug en målepind I skal bruge en pind, der har mindst samme længde som armen på den, der måler. Pinden holdes lodret ud i strakt arm, så det lodrette stykke på pinden har samme længde som armen. Stå foran træet, så pinden (toppen af pinden og lige over, hvor hånden holder i pinden) netop dækker træet. Mål afstanden fra den der måler og hen til træet, så har I højden på træet. I nogle af metoderne kan I finde højden ud fra jeres målinger, og i andre er I nødt til, efter I har foretaget jeres målinger, at lave en tegning i et bestemt målestoksforhold, og derefter ved at måle på tegningen finde frem til, hvor højt fx træet er. KLASSE PRINTARK GYLDENDAL 10
PLANGEOMETRI EX.1 BEGREBER OG FAGORD PLANGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Topvinkler Ligedannethed Pythagoras læresætning Matematisk bevis KLASSE PRINTARK GYLDENDAL 11
PLANGEOMETRI EX.2 BEGREBER OG FAGORD PLANGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Ensliggende vinkler Pythagoræiske tripler Kongruens KLASSE PRINTARK GYLDENDAL 12
PLANGEOMETRI EX.3 EGENSKABER VED KVADRAT ABCD A F C I O P G M J H N L K B E D KLASSE PRINTARK GYLDENDAL 13
RUMGEOMETRI AX.1 RUMLIGE FIGURER A B C D E F G H I KLASSE PRINTARK GYLDENDAL 14
RUMGEOMETRI AX.2 RUMLIGE FIGURER J K L M N O KLASSE PRINTARK GYLDENDAL 15
RUMGEOMETRI UX.1 CIRKELUDSNIT KLASSE PRINTARK GYLDENDAL 16
RUMGEOMETRI UX.2 CIRKELUDSNIT KLASSE PRINTARK GYLDENDAL 17
RUMGEOMETRI UX.3 CIRKELUDSNIT KLASSE PRINTARK GYLDENDAL 18
RUMGEOMETRI EX.1 BEGREBER OG FAGORD RUMGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Massefylde Udfoldninger Rumdiagonaler KLASSE PRINTARK GYLDENDAL 19
RUMGEOMETRI EX.2 BEGREBER OG FAGORD RUMGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Rumfang Overfladeareal Pythagoras KLASSE PRINTARK GYLDENDAL 20