Algoritmer og Datastrukturer 2 (Sommer 2004)

Størrelse: px
Starte visningen fra side:

Download "Algoritmer og Datastrukturer 2 (Sommer 2004)"

Transkript

1 Algoritmer og Datastrukturer 2 (Sommer 2004) 1a n = rk + 2. m = 2k + 2(r 1)(k 1). Dijkstra: O(m log n) = O((2k + 2(r 1)(k 1))log(rk + 2)) = O(rk log(rk)). 1b 2 / 1 t / 1 3 / s 0 / 0 På grafen er angivet Dijkstra s afstand / rigtige afstand. 1c Da en kryds-graf er acyklisk, kan de korteste afstande fra s til alle knuder findes vha. DAGshortestPath [GT, Algoritme 7.9] i tid O(n + m). Da m 2n er dette O(n). 2a Bellman-Ford: O(nm) = O((rk + 2)(2k + 2(r 1)(k 1) + 1)) = O(r 2 k 2 ). 2b Lad G være grafen G med kanten (t, s) fjernet. Afstanden fra u til v i grafen G kan beregnes som d G (u, v) = min{d G (u, v), d G (u, t) + w(t, s) + d G (s, v)}. Da G er en DAG, kan vi bruge DAGshortestPath [GT, Algoritme 7.9] to gange for at finde den kortest vej fra hhv. u og s til alle øvrige knuder i O(n + m) tid. De korteste afstande fra u kan nu beregnes i O(1) for hver af de n knuder vha. den nævnte formel. Da m 2n bliver den totale tid O(n). 2c Kør algoritmen fra 2b n gange, en gang for u værende hver af de n knuder. Da algoritmen fra 2b tager tid O(n), bliver den totale tid O(n 2 ). 3a i 1, j n while i < j fjern letteste kant e fra cycklen (u, v i, w, v j, u) if e incident til v i then i i + 1 else j j 1 Hver iteration af while-løkken fjerner en af de 2n kanter, dvs. O(n) iterationer der hver tager O(1) tid da man kun betragter 4 kanter i hver iteration while-løkken. 1

2 4a k \ s S 1 S S S S 2 S S S S S S 3 S S S S S 4b procedure B(n, N) for k = 0 to n for s = 0 to N A[k, s] false if k = 0 then if s = 0 then A[k, s] true else if x k = 1 then if s > 0 and A[k 1, s 1] then A[k, s] true else p x k while p s if A[k 1, s p] then A[k, s] true p p x k return A[n, N] Da while-løkken forøger p med en faktor x k i hver iteration, gennemløbes denne højest log xk s log 2 N gange. De to for-løkker giver total tid O(nN log N). 4c Den sidste linie i pseudo-koden til 4b erstattes med nedenstående. Som argumenteret i 4b gentages while-løkken højest log 2 N gange, dvs. total yderligere tid i forhold til 4b er O(n log N). Den totale tid forbliver O(nN log N). if A[n, N] then s N for k = n downto 1 i 1, p x k while A[k 1, s p] = false i i + 1, p p x k d k i, s s p return d 1,...,d k else return Der findes ingen løsning 2

3 5a a a b a c # a c a b a b $ a b a b $ a b a c # a c a b a b $ a b $ a c a b a b $ a c # a c a b a b $ b a b $ b a c # a c a b a b $ b $ c a b a b $ c # a c a b a b $ # a c a b a b $ $ 5b a abac#acabab$ b c a $ abab$ #acabab$ b$ c#acabab$ b$ b c #acabab$ $ a $ abab$ #acabab$ c#acabab$ 5c Givet to strenge S 1 og S 2, hvor S 1 + S 2 = n, konstuer suffix-træet for S = S 1 #S 2 $ i O(n) tid ifølge antagelsen. I et postorder gennemløb af suffix-træet marker bladene S 1 eller S 2 hvis de svarer til suffixer startende i hhv. S 1 eller S 2. Indre knuder markeres S 1 og/eller S 2 hvis mindst et af børnene er markeret S 1 og/eller S 2. I et preorder gennemløb beregn for hver knude længden af strengen fra roden til og med knuden. Husk knuden svarende til den længste streng hvor knuden er markeret både S 1 og S 2. For knuden med det længste suffix i både S 1 og S 2 retuneres strengen. Foruden konstruktionen af suffix-træet, så tager både preorder og postorder gennemløbet tid O(n), så den totale tid bliver O(n). 3

4 Algoritmer og Datastrukturer 2 (Sommer 2005) 1a n = k + 2. m = 2k + 1. Kruskal: O(m log n) = O((2k + 1)log(k + 2)) = O(k log k). 1b Lad knuder fra venstre-mod-højre være v 1, v 2,..., v n, og lad G i bestå af delgrafen indeholdende knuderne v 1, v 2,..., v i, dvs. de i 2 første trekanter. Først konstrueres i O(1) tid et MST for G 3 ved at fjerne den tungeste kant fra den venstre trekant. Herefter konstrueres for i = 3, 4, 5,..., n 1 et MST for G i+1 ud fra et MST for G i. For G i huskes den tungeste kant e i MSTet på stien mellem v i 1 og v i. MST for G i+1 konstrueres nu ved et af følgende to tilfælde: a) Hvis w(v i, v i+1 ) max(w(e), w(v i 1, v i+1 )), så tilføjes (v i 1, v i+1 ) til MST og e sættes til den tungeste af kanterne e og (v i 1, v i+1 ). b) Hvis w(v i, v i+1 ) < max(w(e), w(v i 1, v i+1 )), så tilføjes (v i, v i+1 ) til MST. Hvis w(v i 1, v i+1 ) < w(e) fjernes e fra MST og (v i 1, v i+1 ) tilføjes. Til sidst sættes e til (v i, v i+1 ) v 2 v 4 v 6 v 8... v i 1 v i+1 v 1 v 3 v 5 v 7... e v i Tid: O(n) da vi bruger tid O(1) på hver af de k trekanter, og n = k c En simpel cykel identificeres entydigt ved knuden v i længst til venstre og knuden længst til højre v j. Vi betegner cyklen C i,j, f.eks er nedenstående C 8,15. v 2 v 4 v 6 v 8 v 10 v 12 v 14 v 16 v 18 v 20 v 22 v 1 v 3 v 5 v 7 v 9 v 11 v 13 v 15 v 17 v 21 v 23 Vi finder den letteste simple cykel ved at kigge på G 3, G 4,..., G n som i spørgsmål 1b), hvor man husker a) hvad den letteste simple cykel er i G i, og b) den letteste simple cykel i G i der indeholder v i. Den letteste simple cykel i G i+1 indeholdende v i+1 er enten trekanten C i 1,i+1 eller den letteste simple cykel C k,i i G i indeholdende v i hvor man fjerne kanten (v i 1, v i ) og tilføjer (v i 1, v i+1 ) og (v i, v i+1 ), i.e. C k,i+1. For hver af de nævnte cykeler huskes den første og sidste knude og vægten af cyklen. Disse kan vedligeholdes i O(1) tid når man går fra G i til G i+1. 1

5 2a n = st 4 m = 2st s t 4 Dijkstra: O(m log n) = O(st log(st)) 2b 2c Lav den tilsvarende orienterede graf, hvor knuder af graf 4 erstattes af 8 knuder, jvf. opgave 2b. Udfør et DFS (eller BFS) gennemløb fra hver af de 8 knuder der repræsenterer startknuden u. Hvis og kun hvis mindst ét af de otte gennemløb når en af de 8 knuder der repræsenterer v, så kan v nås fra u uden venstre sving. Da den nye graf har højst 8n knuder og højst 12n kanter, tager algoritmen tid O(n). 2d Lav en orienteret graf som i 2c, hvor alle kanter har vægt 0, og tilføj kanter svarende til venstre sving som har vægt 1. Kør Dijkstra s algoritme på den resulterende graf med hver af de 8 knuder repræsenterende startknuden u. Den fundne sti fra en knude repræsenterende u til en knude repræsenterende v med korteste afstand s, vil have netop s venstre sving og være en sti der har færrest mulige venstresving. Da grafen har højst 8n knuder og 16n kanter tager Dijkstra s algoritme O(n log n) tid, og den totale tid bliver O(n log n) (den totale tid kan reduceres til O(n) da alle kanter har vægt 0 eller 1, hvilket medfører at prioritetskøen altid kun kan indeholde to forskellige prioriteter). v v

6 3a for i = 1 to n B(i, i) 0 y min y i y max y i for j = i + 1 to n if y j < y min then y min y j if y j > y max then y max y j B(i, j) (x j x i ) (y max y min ) Tid: O(n 2 ) 3b s t c Beregn B(i, j) for alle i, j i tid O(n 2 ) (spørgsmål a) for t = 1 to n A(1, t) B(1, t) for s = 2 to k A(s, 1) B(1, 1) for t = 2 to n A(s, t) A(1, 1) + B(2, t) for i = 3 to t if A(s, t) > A(s 1, i 1) + B(i, t) then A(s, t) A(s 1, i 1) + B(i, t) return A(k, n) Tid: O(n 2 + n + k n n) = O(k n 2 ) = O(n 3 ) da vi kan antage k < n (for k n er A(k, n) = 0) 3

7 4a Søg efter S i strengen SS vha. KMP algoritmen. Hvis S forekommer på en position i, 2 i S, så er S = rotation i 1 (S), se eksempel hvor S = rotate 4 (S). Da KMP tager tid O(n + m), bliver tiden O( SS ) = O(n). SS i a b c d a b c d a b c d a b c d S a b c d a b c d 4b abaaaba abaaaba abaaaba abaaaba 4c aaaba$ aabaaaba$ aabaabaaaba$ aaba$ abaaaba$ abaabaaaba$ abaabaabaaaba$ aba$ a$ baaaba$ baabaaaba$ baabaabaaaba$ ba$ $ aba$ aba$ a ba a $ baaaba$ aba$ aba$ a ba $ ba $ a $ baa baaaba$ aba$ aba$ a $ baa baaaba$ 4d Hvis P forekommer som rotate i (P) i S på position j, så forekommer rotate i (P) på position i 1 og 2m+j i PPS$. I suffix-træet findes der så en knude v hvor strengen stavet ned til v er rotate i (P), og bladende svarende til suffixerne af PPS$ startende i position i 1 og 2m + j er i v s undertræ. 1 i 1 m 1 + 2m 2m + j P P S rotate i (P) rotate i (P) For at afgøre om P forekommer som rotation i S bygges suffix-træet for PPS$, og alle knuder annoteres med om der i deres undertræ findes 1) blade der er suffixer startende i position i hvor 2 i m og 2) blade der er suffixer startende i position j hvor 1 + 2m j. Der returneres at P forekommer som rotation i S hvis der findes en knude der er mareket både 1) og 2) og hvor strengen fra roden ned til knuden har længde m. Da annoteringen kan foretages i tid O(n) ved et postorder gennemløb af suffix-træet har vi total tid: O(2m + n) = O(n). 4

8 Ð ÓÖ ØÑ Ö Ó Ø ØÖÙ ØÙÖ Ö ¾ ËÓÑÑ Ö ¾¼¼ µ ½ ÒØ Ð ÒÙ Ö Ò ¾Ø ½º ÒØ Ð ÒØ Ö Ñ Øº ÃÖ٠г Ð ÓÖ ØÑ Ç Ø ÐÓ Øµº ½ Ð ÓÖ ØÑ ËÐ Ø Ò ØÙÒ Ø ÒØ Ú Ö ØÖ Òغ Ì ÀÚ Ö ÒØ ØÖ Ø ÔÖ Ò Ò Ú Ø Ç Ñµ Ç Òµ Ñ ¾Òº ½ Ð ÓÖ ØÑ Ò Ø Ñ Ò ÑÙÑ Ù Ô Ò Ò ØÖ ÓÖ Ø Ö ÒعØÖ Ø Ù Ò Ò ØÖ ÒØ Ú º Ð Ó¹ Ö ØÑ Ò Ö ½ º Ä Ú Ë ÓÖ Ø Ò Ø Ò Ë Ö Ù Ø Ð Ú ÓÑ Ò ÓÐ Ö ÒØ Ò Ù Úµº ÁÒ Ø Ò ØÖ ÒØ Ù Úµº ÖÒ Ò ØÙÒ Ø ÒØ Ö Ý Ð Ò Ö Ø Ö Ù Úµ Ó Ëº Ì Ç Òµ ½ Ó Ë Ø Ö Ø Ç Ñµ Ç Òµº ¾ Ð ÓÖ ØÑ Í Ö ØÖ ³ Ð ÓÖ ØÑ Ô ÝÒÐ Ö Ò Ñ ÓÑ Ð Ó ÚÓÖ Ð ÓÖ ØÑ Ò ÒÚ Ò Ö Ø ÖÖ Ý ÓÑ ÔÖ ÓÖ Ø Ø º Ì Ç Ñ Ò ¾ µ Ç Ò ¾ µº ¾ Ð ÓÖ ØÑ Í Ö ØÖ ³ Ð ÓÖ ØÑ Ô ÝÒÐ Ö Ò Ñ Ø ÓÑ Ð Ó ÚÓÖ Ð ÓÖ ØÑ Ò ÒÚ Ò Ö Ø ÖÖ Ý ÓÑ ÔÖ ÓÖ Ø Ø º Ê ØÙÒ Ö Ò ÖÓ ÓØ Ö Ö ÓÖØ Ø Ø Ò Ø Ð Øº Ì ÒØ Ð ÒÙ Ö Ò ¼ Ò ½ Ó ÒØ Ð ÒØ Ö Ñ ¼ Ç Ò µ ¾ µ Ú º Ø Ç Ñ ¼ Ò ¼¾ µ Ç Ò µ ¾ µº ¾ Á ÈÐ Ö Òµ ÒÙ Ö Ô Ò Ö Ð ÓÑ ÐÐ Ò Ò¹ Ò Òº ËÝÒÐ Ö Ò Ö Ò ¾ µ ÒØ Öº Á ÑÔÐ Ø Ö Ö ÙÒ Ò ÔÓÐÝ ÓÒ Ñ Ò Ö Ö Ò ÔÓÐÝ ÓÒ¹ ÔÙÒ Ø Ö Ö Ð Ö Ô Ò Ö Ð Ó ÓÑ ÐÐ Ò Ò Ò Òº Ø ½

9 ½ ¾ Í µ ¼ ½ ½ ¾ ½ ¾ Ð ÓÖ ØÑ Í ½µ ¼ ÓÖ ¾ ØÓ Ò Í µ Í ½µ Ü Ü ½ Ï µ ¾ ÓÖ ¾ ØÓ ½ Í µ Ñ Ò Í µ Í µ Ü Ü Ï µ ¾ Ì Ç Ò ¾ µ Ò Ò Ö ÓֹРÒÒ ÑÐ Ò Ò ÓÖ Ú ÖØ º Í Ö Ð ÓÖ ØÑ Ò Ö Ó Ð ÔÖÓ ÙÖ Ò Ö ÔÓÖØ Òµº Ð ÓÖ ØÑ ÔÖÓ ÙÖ Ö ÔÓÖØ µ ½ Ø Ò Ù Ö Ú Ü ½ Ö ØÙÖÒ ÓÖ ½ ØÓ ½ Í µ Í µ Ü Ü Ï µ ¾ Ø Ò Ö ÔÓÖØ µ Ù Ö Ú Ü Ö ØÙÖÒ Ì Ç Ò ¾ µ Ö Ö Ò Ö ÙÖ Ú Ð ÓÖ Ö Ø Ò Ó ÓÖ¹Ð Ò Ø Ö ÙÖ ÚØ Ð Ø ÒÒ ÑÐ Ò Ò º ØÖ Ò ÔÓ Ø ÓÒ ¹ ½ ½ Ð ÓÖ ØÑ ÀÚ Ò Ñ ½ Ö ÔÔÓÖØ Ö Ò Ò ÓÖ ÓÑ Ø Ö º ÐÐ Ö Ö ÃÅÈ Ð ÓÖ ØÑ Ò Ñ Ì Ó È º ÓÖ ½ ¾ Ñ Ö ÃÅÈ Ñ Ì Ó È Ñ Ø Ø Ø Ò ÖÒ Øº ÌÓØ ÐØ Ö ÃÅÈ Ñ ½ Ò º Ì Ç ÑÒµ Ú ÖØ Ø Ñ ½ ÖÙ ÃÅÈ Ø Ö Ø Ç Òµº ¾

10 Ý Ø ÙÆÜ ØÖ ÓÖ Ì º Ë Ø Ö È ÙÆÜ ØÖ Øº ÓÖ ½ ¾ Ñ Ø Ö È Ñ Ø Ø Ø Ò ÖÒ Ø ÙÆÜ ØÖ Øº Å Ö Ö ÙÒ Ò ÒÙ Ö ÐÐ Ö ÖÒ Ò ÚÓÖ ØÙ ÐÐ ÒØ Ö Ö Ö Ò Ø Ðµº Ä ÙÆÜ ØÖ Ø ÒÒ Ñ Ó Ö ÔÔÓÖØ Ö ÐÐ Ð ÚÓÖ Ö Ö Ò Ñ Ö Ö Ø ÓÖ Öº Ì Ç Òµ ÓÖ Ø ÓÒ ØÖÙ Ö ÙÆÜ ØÖ Ø Ç Ñµ ÓÖ Ú ÖØ Ñ ½ Ò Ò Ö ÙÆÜ ØÖ Ø Ó Ç Òµ ÓÖ Ö ÔÔÓÖØ Ö Ò Òº ÌÓØ ÐØ Ç Ò Ñ ¾ µº Ð ÓÖ ØÑ µ Ë Ø Ö È Ì µ ÓÖ ½ ¾ Ñ Ì Ø Ö È Ñ Ø Ø Ø Ò ÖÒ Ø µ ÓÖ ÐÐ Ô Ö µ ÚÓÖ ½ Ñ Ì Ø Ö È Ñ Ø Ø Ó Ø Ø Ò ÖÒ Øº ÀÚ Ö Ò Ò Ò Ð Ú Ñ ÒØ Ò ÃÅÈ ÐÐ Ö Ò Ò Ò Ø ÓÖÙ Ö Ò Ø ÙÆÜ ØÖ ÓÖ Ì º Ì Î ÖÙ ÃÅÈ Ç ÒÑ ¾ µ ÐÐ Ö Ú ÖÙ Ø ÙÆÜ ØÖ Ç Ò Ñ µº

11 Algoritmer og Datastrukturer 2 (Sommeren 2007) Opgave 1 Spørgsmål a: Antal knuder: n = k l. Antal kanter: m = k (l 1) + l (k 1) = 2lk l k. Dijkstra s algoritme: O(kl log(kl)). Spørgsmål b: Korteste vej fra P til E: P Q R Ŝ ˆN O J E Vægt: = 17 Spørgsmål c: Korteste vej uden to sving: P Q R Ŝ N I ˆD C ˆB G ˆL M N Ô J E Vægt: = 37 Spørgsmål d: En løsning er at repræsentere hver knude som 12 knuder, der repræsenterer de sidste to skridt taget man er kommet fra til en givet knude. Knuden H bliver til følgende 12 knuder, hvor pilene indikerer de sidste to skridt taget. H 1 : H 2 : H 3 : H 4 : H 5 : H 6 : H 7 : H 8 : H 9 : H 10 : H 11 : H 12 : Så knuden H 1 repræsenterer at man er gået to gange til højre, og derfor nu kan gå hvorhen man vil. Lad O være knuden over H, U knuden under H, L knuden til venstre for H, og R knuden til højre for H. Fra H 1 kan man gå til O 2 man kan gå til R 1 og til U 3. Fra knuden H 2 kan man gå til O 7. Fra knude H 3 kan man gå til U 10. Og så fremdeles. Hvis den nederste venstre knude betegnes s så findes en kortest sti ved at køre Dijkstra s algoritme med s 1 og s 7 som start knuder. Udførselstid for Dijkstra på denne graf bliver O(lk log(lk)) da hver knude skaleres til O(1) knuder. 1

12 Opgave 2 Spørgsmål a: V 1 = {A, E, J, K} V 2 = {B, C, D, F, G, H, I} Spørgsmål b: Vælg en tilfældig knude s. Lav DFS gennemlæøb af grafen startende i s. Lad V 1 være knuder med en lige dybde i DFS træet og V 2 knuder med en ulige dybde i DFS træet. Grafen er todelt hvis og kun hvis der ikke findes en kant der forbinder to knuder med lige dybde i DFS træet eller to knuder med ulige dybde. Løses med DFS i tid O(m). Opgave 3 Spørgsmål a: Minimum udspændende træ: (B, C), (A, C), (F, H), (D, F), (B, D), (G, H),(A, I), (J, K),(E, G), (E,J) Vægt: 56 Spørgsmål b: Givet G = (V, E) og MST(G). Hvis e MST(G) gøres intet. Ellers fjern e fra MST(G). Lav DFS fra en knude u i MST(G) og marker alle knuder der findes med V 1. Lad V 2 være resten. V 1 og V 2 definerer et snit(opdeling). Skan E og find kant e mellem V 1 og V 2 med mindst vægt. Indsæt e i MST(G). Udførselstid O(m). Opgave 4 Spørgsmål a: Tabel: L(i, j)

13 Spørgsmål b: Følgende pseudkode skulle du: Maketable(S,T) for i=0 to m for j=0 to n if (i = 0) L[i,j] := j else if (j = 0) L[i,j] := i else if (x_i!= y_j) L[i,j] := 1 + min{l[i-1,j],l[i,j-1]} else L[i,j] := 1 + L[i-1,j-1] return L[m,n] Udførselstid for Maketable: O(n m) Spørgsmål c: Følgende metode tager tabellen L lavet i opgave b: og tallene n, m. Print(L,i,j) if (i = 0 and j = 0) return if (i = 0) write(y_1,...y_j) return if (j = 0) write(x_1,...x_i) return if (x _i!= y_j) if (1 + L[i-1,j] = L[i,j]) Print(L,i-1,j) write(x_i) else Print(L,i,j-1) write(y_j) else Print(L,i-1,j-1) write(x_i) Udførselstid for Print(L,m,n): O(n + m) Samlet udførselstid: O(n m) Opgave 5 Spørgsmål a: Suffixerne i sorteret orden: 3

14 Streng Start Index ANANAS 2 ANAS 4 AS 6 BANANAS 1 NANAS 3 NAS 5 S 7 Det giver suffix array: Spørgsmål b: Suffix-træ: 2,2 1,7 3,4 7,7 3,4 7,7 5,7 5,7 5,7 7,7 Spørgsmål c: To løsninger: 1) Den letteste. Iterer over alle delstrenge af S af længde k. Der er n k+1 af dem. For hver kør Knuth-Morris-Pratt algorithmen og tæl alle forekomster. Returner den der forekommer flest gange. Udførselstid: O(n 2 ). 2) Den hurtigste. Lav suffixtræ for S i O(n) tid. For alle knuder i træet hvor stien fra roden til og med knuden repræsenterer en streng af længde k eller mere. Tæl antal blade i undertræet. Returner for den knude, der har flest blade under sig, de k første tegn langs stien fra roden til knuden. Alt dette kan klares i et konstant antal lineære gennemløb af træet. Udførselstid O(n). 4

Ë Ö ØÐ Ñ Ò ÙØÓÑ ØØ ÓÖ Ó Ö Ò Ð Å½ µ ÁÒ Ø ØÙØ ÓÖ Å Ø Ñ Ø ² Ø ÐÓ ËÝ Ò ÍÒ Ú Ö Ø Ø ß Ç Ò ÍÒ Ú Ö Ø Ø Ä Ö Ò ½ º ÒÙ Ö ¾¼¼ ÐÐ Ú ÒÐ ÐÔ Ñ Ð Ö Ð Ö Ó ÒÓØ Ø Ö Øºµ Ñ

Ë Ö ØÐ Ñ Ò ÙØÓÑ ØØ ÓÖ Ó Ö Ò Ð Å½ µ ÁÒ Ø ØÙØ ÓÖ Å Ø Ñ Ø ² Ø ÐÓ ËÝ Ò ÍÒ Ú Ö Ø Ø ß Ç Ò ÍÒ Ú Ö Ø Ø Ä Ö Ò ½ º ÒÙ Ö ¾¼¼ ÐÐ Ú ÒÐ ÐÔ Ñ Ð Ö Ð Ö Ó ÒÓØ Ø Ö Øºµ Ñ Ë Ö ØÐ Ñ Ò ÙØÓÑ ØØ ÓÖ Ó Ö Ò Ð Å½ µ ÁÒ Ø ØÙØ ÓÖ Å Ø Ñ Ø ² Ø ÐÓ ËÝ Ò ÍÒ Ú Ö Ø Ø ß Ç Ò ÍÒ Ú Ö Ø Ø Ä Ö Ò ½ º ÒÙ Ö ¾¼¼ ÐÐ Ú ÒÐ ÐÔ Ñ Ð Ö Ð Ö Ó ÒÓØ Ø Ö Øºµ ÑØ ÖÙ ÐÓÑÑ Ö Ò Ö Ö Ø ÐРغ Ñ Ò ØØ Ø Ø Ö ÓÔ Ú Ö Ô ÒÙÑÑ

Læs mere

ÌÖÝ Ø ÁÅÅ ÌÍ

ÌÖÝ Ø ÁÅÅ ÌÍ Ö ÑÑ Ò Ò Ò ØÚÖ Ò Ö Å Ò À Ò Ò ½ Ä Æ ¾¼¼ ÃË Å ÆËÈÊÇ ÃÌ Æʺ ½»¼ ÁÅÅ ÌÖÝ Ø ÁÅÅ ÌÍ ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ö Ú Ø ÓÑ ÐÙØØ Ò ÔÖÓ Ø ÓÖ ÓÔÒ Ð Ú Ð Ò Ò ¹ Ö Ö Ò Ö ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Øº ÇÔ Ú Ò Ö Ù ÖØ Ô ÁÒ Ø ØÙØ ÓÖ ÁÒ ÓÖÑ Ø

Læs mere

ÒØÖÓÔÝ Ó Ò Ò ÂÈ Ø ÐÐ Ñ ÓÑÔÖ ÓÒ Â Ò ÎÓ Ð Ò Ë ÔØ Ñ Ö ¼Ø ¾¼½½ ½» ½

ÒØÖÓÔÝ Ó Ò Ò ÂÈ Ø ÐÐ Ñ ÓÑÔÖ ÓÒ Â Ò ÎÓ Ð Ò Ë ÔØ Ñ Ö ¼Ø ¾¼½½ ½» ½ ÒØÖÓÔÝ Ó Ò Ò ÂÈ Ø ÐÐ Ñ ÓÑÔÖ ÓÒ Â Ò ÎÓ Ð Ò Ë ÔØ Ñ Ö ¼Ø ¾¼½½ ½» ½ ÒÓ Ò Ò Ò Ö Ð ÒÓ Ò Ò Ò Ö Ð ¾» ½ ÖÓÑ Ù ÑÔÐ Ò ÌÖ Ò ÓÖÑ Ø ÓÒ ÒØÓ ³ Ö ÓÐÓÖ Ô» ½ ÖÓÑ Ù ÑÔÐ Ò ÌÖ Ò ÓÖÑ Ø ÓÒ ÒØÓ ³ Ö ÓÐÓÖ Ô Ê ÙØ ÓÒ Ó Ô Ø Ð Ö ÓÐÙØ

Læs mere

deta = A = deta = a 11 deta 11 a 12 det A 12 + a 13 deta 13 deta = deta = 1(0 2) 5(0 0) + 0( 4 0) = 2 deta = a i,j deta i,j

deta = A = deta = a 11 deta 11 a 12 det A 12 + a 13 deta 13 deta = deta = 1(0 2) 5(0 0) + 0( 4 0) = 2 deta = a i,j deta i,j Ä Ò Ò ØÖ Ø ÓÖ Ñ Ò ÓÔ Ú Ö Ä Ú Ø ÓÖÑ Ð Ø Ö Ó Ì ÓÑ Â Ò Ò ÓÒØ ÒØ ½ Ø ÖÑ Ò ÒØ Ö ½º½ Í Ú Ð Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º½ ÑÔ Ð Í Ú Ð Ò Ø ÓÖ

Læs mere

ÁÒ ØÖÙØ ÓÒ Ë Ø Ö Ø ØÙÖ ÁÒØÖÓ ÙØ ÓÒ ÁÒ ØÖÙØ ÓÒ Ë Ø ÁÒØ Ö ØÛ Ò Ó ØÛ Ö Ò Ö Û Ö Ú Ð ØÓ ÔÖÓ Ö ÑÑ Ö ËØ Ô ØÓ Ò ÁÒ ØÖÙØ ÓÒ Ë Ø ÓÖ Ú Ò Óѹ ÔÙØ Ö Û Ø Ø Ú Ð Ð ÐØ

ÁÒ ØÖÙØ ÓÒ Ë Ø Ö Ø ØÙÖ ÁÒØÖÓ ÙØ ÓÒ ÁÒ ØÖÙØ ÓÒ Ë Ø ÁÒØ Ö ØÛ Ò Ó ØÛ Ö Ò Ö Û Ö Ú Ð ØÓ ÔÖÓ Ö ÑÑ Ö ËØ Ô ØÓ Ò ÁÒ ØÖÙØ ÓÒ Ë Ø ÓÖ Ú Ò Óѹ ÔÙØ Ö Û Ø Ø Ú Ð Ð ÐØ ÁÒ ØÖÙØ ÓÒ Ë Ø Ö Ø ØÙÖ ÁÒØÖÓ ÙØ ÓÒ ÁÒ ØÖÙØ ÓÒ Ë Ø ÁÒØ Ö ØÛ Ò Ó ØÛ Ö Ò Ö Û Ö Ú Ð ØÓ ÔÖÓ Ö ÑÑ Ö ËØ Ô ØÓ Ò ÁÒ ØÖÙØ ÓÒ Ë Ø ÓÖ Ú Ò Óѹ ÔÙØ Ö Û Ø Ø Ú Ð Ð ÐØ ÖÒ Ø Ú Ò ØÓ ÐØ ÖÒ Ø Ú Ò ÕÙ ÒØ Ø Ú Ñ Ø Ó ÓÛ Ó Ø ÓÑÔ

Læs mere

½ Ë Ë ÔÐ Ý Ñ Ò Ö ÔÖÓ Ö ÑÑ Ö Ò µ ÔÖÓ Ö Ñ ÐÓ ÓÙØÔÙØ Ú Ò Ù Ö Ö ÔÖÓ Ù Ö ÖØ Ò ÐØ Ø Ó ÙÑ ÒØ Ö Ë Ë Æ Ä ËÌ Ñ ÒÙ» Ñ ¹ÓÖ ÒØ Ö Ø ÓÚ Ö Ý Ò Ò Ö Ú Ö Ó Ö Ö ÔÖÓ Ö ÑÑ

½ Ë Ë ÔÐ Ý Ñ Ò Ö ÔÖÓ Ö ÑÑ Ö Ò µ ÔÖÓ Ö Ñ ÐÓ ÓÙØÔÙØ Ú Ò Ù Ö Ö ÔÖÓ Ù Ö ÖØ Ò ÐØ Ø Ó ÙÑ ÒØ Ö Ë Ë Æ Ä ËÌ Ñ ÒÙ» Ñ ¹ÓÖ ÒØ Ö Ø ÓÚ Ö Ý Ò Ò Ö Ú Ö Ó Ö Ö ÔÖÓ Ö ÑÑ Ð Ø Ø Ø ¾º ÔØ Ñ Ö ¾¼¼ ÄÝÒ ÙÖ Ù Ë Ë Ò ÐÝ Ø ÁÒ Ð Ò Ò Ø Ð ÔÖÓ ÙÖ Ö Ö Ò Ù ØÞ¹Â Ö Ò Ò Ó Ø Ø Ø Ð Ò ÁÒ Ø ØÙØ ÓÖ ÓÐ ÙÒ Ú Ò Ã Ò ÚÒ ÍÒ Ú Ö Ø Ø ¹Ñ Ð Ó Ø Øº Ùº ØØÔ»» Ø ºÔÙ ÐØ º Ùº»» м ¾ ½ Ë Ë ÔÐ Ý Ñ Ò Ö ÔÖÓ Ö ÑÑ

Læs mere

ÇÚ Ö Ø ½ ¾ ÀÝÔÓØ Ø Ø ¹ Ò Ö Ô Ø Ø ÓÒ ÀÝÔÓØ Ø Ø Ó ÓÒ Ò ÒØ ÖÚ ÐÐ Ö ËØÝÖ Ó Ø ÔÖ Ú Ø ÖÖ Ð ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÒ Ñ Ò Ø ÑÔ Ð ½ Ò Ö Ð ÓÖÑÙÐ Ö Ò Å Ò Ø Ú Ö Ò Å Ù Ò

ÇÚ Ö Ø ½ ¾ ÀÝÔÓØ Ø Ø ¹ Ò Ö Ô Ø Ø ÓÒ ÀÝÔÓØ Ø Ø Ó ÓÒ Ò ÒØ ÖÚ ÐÐ Ö ËØÝÖ Ó Ø ÔÖ Ú Ø ÖÖ Ð ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÒ Ñ Ò Ø ÑÔ Ð ½ Ò Ö Ð ÓÖÑÙÐ Ö Ò Å Ò Ø Ú Ö Ò Å Ù Ò ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò Ã Ô Ø Ð Ó ËØ Ø Ø ÓÖ ØÓ ÒÒ Ñ Ò Ø º ¹ º º½¹ º µ Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å

Læs mere

ÇÚ Ö Ø ½ ÈÖ Ø ÁÒ ÓÖÑ Ø ÓÒ ¾ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ËÓ ØÛ Ö Ê Ö Ú Ò Ø Ø Ø Æ Ð Ø Ð Ö Ö Ñ Ø ÐÐ Ò Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð

ÇÚ Ö Ø ½ ÈÖ Ø ÁÒ ÓÖÑ Ø ÓÒ ¾ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ËÓ ØÛ Ö Ê Ö Ú Ò Ø Ø Ø Æ Ð Ø Ð Ö Ö Ñ Ø ÐÐ Ò Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò ½ ÁÒØÖÓ Ó Ö Ú Ò Ø Ø Ø Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½¼ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ

Læs mere

q 1 q 2 x 1 x 2. E(x, p, X, P) = 1 2M P x X.

q 1 q 2 x 1 x 2. E(x, p, X, P) = 1 2M P x X. ÁÒ Ð Ò Ò ËØ Ð Ø Ø Ý ÑÓ ÐÐ Ö Â Ò È Ð Ô ËÓÐÓÚ Å Ò ÙÐÐ Ñ ØÖÓ Ø Ø Ö Ò Ú Ö ÓÖ Ö Ö Ñ ÒÖ Ñ Ò ÓÑ Ø Ö Ø Ó Ø Ö Ð Ú Ö Ø ÐÐ Ø Ô Ö ÑÐ Ø Ò Ù ÓÖ Ð Ö Ú Ù ÒØÐ ÓÖ Ö Ø Ö Ó Ö Ø Ø Ø Ö Ö ÒÓ Ø Ò ÓÖ Ö ÐÐ Ö Ú Ð Ò ÓÖØÐÐ Ú Ø Ö Ñ

Læs mere

ÁÒ ÓÐ ½ ÇÔÖ Ø Ò ÖÙÔÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½ ÑÖ º º º º º º º º º º º º º º º º º º º º º º

ÁÒ ÓÐ ½ ÇÔÖ Ø Ò ÖÙÔÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½ ÑÖ º º º º º º º º º º º º º º º º º º º º º º ËÎÆ Ò Ë e Î e Æ Å ÒÙØ ÆÓØ Ø Ø Ð Å ¾ ÖÙÒ Î Ú Ð ÖÚ ¼ Ñ º Ùº ÁÅ Ë Í Ç Ò º ÒÓÚ Ñ Ö ¾¼¼ ÁÒ ÓÐ ½ ÇÔÖ Ø Ò ÖÙÔÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½ ÑÖ º º º º º º

Læs mere

ŠРº Â Ö Ò Ò À ÖØÞ ÔÖÙÒ ¹ÊÙ ÐÐ Ö Ñ Ö Ñ Ò ÔÖÓ Ø Ì Ò Ö ÙÖ Ø ÓØÓÑ ØÖ ÃÙ Ð Ó Ñ Ö ¾¼¼ ÈÖ Á Ø ÖØ Ò ½ ¼¼ Ø ÐÐ Ø Ú ØÖÓÒÓÑ Ö Ò Ð Ø Ð Ú Ø ÙØÖÓÐ Ø Ñ Ò ÑÐ Ò Ö Ø ÖÒ Ö Ò Ö ÓÑ Ö Ö Ð Ø Ú Ñ Ò ØÙ Ô ØÖ Ð Ð Ö Ø Ò Ó ÔÓ

Læs mere

Sommeren 2001, opgave 1

Sommeren 2001, opgave 1 Sommeren 2001, opgave 1 Vi antager at k 3, da det ellers er uklart hvordan trekanterne kan sættes sammen i en kreds. Vi ser nu at for hver trekant er der en knude i kredsen, og en spids. Derfor er n =

Læs mere

ÁÒØÖÓ Ù Ø ÓÒØ Ð Ö Ó Ø Ò ÐÐÙ ØÖ Ø ÓÒ ÖÑ Å Ø ÈÓ Ø ÓÖ Ö Ã¹ÌÍ ÅÓÖØ ÒÀ Ö ½¾º ÔÖ Ð¾¼¼¼ ½ ÀÚ ÖÅ Ø ÈÓ Ø Å Ø ÈÓ Ø Ö ØÔÖÓ Ö ÑÑ Ö Ò ÔÖÓ ¹ Ö ØÔÅ Ø ÓÒغ ØÅ Ø ÈÓ Ø¹ÔÖÓ Ö Ñ Ö ÒÓÔ Ö ØØ Ð Ø Ò Ö Ö Ò ÐÐ Ö Ö ÙÖ Öº Å Ø ÈÓ

Læs mere

ÇÚ Ö Ø ½ ¾ ÅÓØ Ú Ö Ò ÑÔ Ð Ø Ñ ØÓÖ ÓÖ Ú Ö Ò Ö χ 2 ¹ ÓÖ Ð Ò Ò ÃÓÒ Ò ÒØ ÖÚ Ð ÓÖ Ò Ú Ö Ò ÀÝÔÓØ Ø Ø Ú Ö Ò Ö Ì Ø Ò Ú Ö Ò Ì Ø ØÓ Ú Ö Ò Ö F ¹ ÓÖ Ð Ò Ò ÀÝÔÓØ Ø

ÇÚ Ö Ø ½ ¾ ÅÓØ Ú Ö Ò ÑÔ Ð Ø Ñ ØÓÖ ÓÖ Ú Ö Ò Ö χ 2 ¹ ÓÖ Ð Ò Ò ÃÓÒ Ò ÒØ ÖÚ Ð ÓÖ Ò Ú Ö Ò ÀÝÔÓØ Ø Ø Ú Ö Ò Ö Ì Ø Ò Ú Ö Ò Ì Ø ØÓ Ú Ö Ò Ö F ¹ ÓÖ Ð Ò Ò ÀÝÔÓØ Ø ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò ÁÒ Ö Ò ÓÖ Ú Ö Ò Ö Ô µ Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ Ù

Læs mere

ÇÚ Ö Ø ½ ¾ ÃÓÒØ ÒÙ ÖØ ËØÓ Ø Ú Ö Ð Ó ÓÖ Ð Ò Ö ÌØ ÙÒ Ø ÓÒ ÓÖ Ð Ò ÙÒ Ø ÓÒ Å ÐÚÖ Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð Î Ö Ò Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð ÍÒ ÓÖÑ ÓÖ Ð Ò Ò ÑÔ Ð

ÇÚ Ö Ø ½ ¾ ÃÓÒØ ÒÙ ÖØ ËØÓ Ø Ú Ö Ð Ó ÓÖ Ð Ò Ö ÌØ ÙÒ Ø ÓÒ ÓÖ Ð Ò ÙÒ Ø ÓÒ Å ÐÚÖ Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð Î Ö Ò Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð ÍÒ ÓÖÑ ÓÖ Ð Ò Ò ÑÔ Ð ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò Ã Ô Ø Ð ÃÓÒØ ÒÙ ÖØ ÓÖ Ð Ò Ö Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgaesættet (incl. forsiden): 7 (sy) Eksamensdag: Mandag den 20. juni 2005, kl. 9.00-13.00

Læs mere

ËÓÑ ³ Ü ³ ÚÐ ÖÓÙÔº ËÓÑ ³ Ü ³ ÚÐ Ñ Ö Ò ÐÐ Ö Ú Ö Ú Ö Ö Ø Ó ÔÖÓ ÔÐÓØ Ø Ù ÖºÞ Ð ÞÓ ÔÐÓØ Ñ Ö Ò ÖÓÙÔ» Ü Ü ½ Ú Ü Ü ¾ Ö Ñ Ü ½ Ó Ø µ Ð Ð À µ Ú ÐÙ À ¾µ Ñ ÒÓÖ ÆÇ

ËÓÑ ³ Ü ³ ÚÐ ÖÓÙÔº ËÓÑ ³ Ü ³ ÚÐ Ñ Ö Ò ÐÐ Ö Ú Ö Ú Ö Ö Ø Ó ÔÖÓ ÔÐÓØ Ø Ù ÖºÞ Ð ÞÓ ÔÐÓØ Ñ Ö Ò ÖÓÙÔ» Ü Ü ½ Ú Ü Ü ¾ Ö Ñ Ü ½ Ó Ø µ Ð Ð À µ Ú ÐÙ À ¾µ Ñ ÒÓÖ ÆÇ ÇÔ Ú Ú Ö Ð Ú Ö Ò Ò ÐÝ ÇÔ º½ Ð Ö Ú Ò Ø Ö Ú Ö Ø Ò º º Ð Ø Ù ÖºÞ Ð ÞÓ ÒÔÙØ ÖÓÙÔ Ñ Ö Ò Ø Ð Ò Ø Ú º¼¼ Ø Ú º ¼ Ø Ú º Ø Ú ½¼º¼¼ Ø Ú ½ º¼¼ Ø Ú º ¼ Ô Ú ½½º¼¼ Ô Ú ½¼º¼¼ Ô Ú ½¼º¼¼ Ô Ú ½½º Ô Ú ½¼º ¼ Ô Ú ½ º¼¼ Ò Ò

Læs mere

w j p j 1 w j / p / = 1

w j p j 1 w j / p / = 1 ÆÝ Ö Ö ÙÐØ Ø Ö Ò Ò ÓÖ ÔÖÓ Ð Ñ Ø Ë ÙÐ Ö Ò Ñ Ö Ú Ð Ø Ö Ô Ò ÐØ¹Ñ Ò Öº Ò Ö Ð ¹ÈÓÚÐ Ò ² Æ ÓÐ Ò Ò ½¼º ÒÙ Ö ¾¼¼ ÁÒ ÓÐ ½ ÁÒØÖÓ Ù Ø ÓÒ ¾ ÈÖÓ Ð Ñ Ø Ð ÓÖ ØÑ Ö º½ Ã Ö Ø º º º º º º º º º º º º º º º º º º º º º º

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DTLOS NSTTUT, RUS UNVERSTET Det Naturvidenskabelige akultet ESMEN rundkurser i Datalogi ntal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag: Torsdag den 14. juni 007, kl. 9.00-1.00 Eksamenslokale:

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning)

Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning) Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning) Datalogisk Institut Aarhus Universitet Fredag den 28. maj 2004, kl. 9.00 13.00 Opgave 1 (20%) En (r, k) kryds-graf er en orienteret graf

Læs mere

ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ö ÙÐØ Ø Ø Ø Ñ Ö Ñ ÈÓ Ø ÒÑ Ö ÓÑ Ø ÐÓ ¹ Ð Ö Ò ÔÖÓ Ð Ñ ÓÖ Ô ÒØÖ ÆÓÖ ÐÐ Ò º Î Ð Ø Ø Ù Ö ÚÓÖ Ñ Ò ÔÖÓ Ø Ñ Ö Ñ Ò Ú Ö ÓÑ Ö ÓÖ ÚÓÖ Ú ÓÑÑ Ò ÚÖ Ø

ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ö ÙÐØ Ø Ø Ø Ñ Ö Ñ ÈÓ Ø ÒÑ Ö ÓÑ Ø ÐÓ ¹ Ð Ö Ò ÔÖÓ Ð Ñ ÓÖ Ô ÒØÖ ÆÓÖ ÐÐ Ò º Î Ð Ø Ø Ù Ö ÚÓÖ Ñ Ò ÔÖÓ Ø Ñ Ö Ñ Ò Ú Ö ÓÑ Ö ÓÖ ÚÓÖ Ú ÓÑÑ Ò ÚÖ Ø ÅÙÐØ Ñ ØÓ ÓÐÓ Ø ÐÓ Ð Ö Ò ÔÖÓ Ð Ñ ¹ ØÖÙ ØÙÖ Ö Ò Ó ÓÔØ Ñ Ö Ò À ÒÒ Ä Ñ ÒÒ È Ø Ö Ò ½¼¾½ Ë Ö Ö Ã Ñ Ë ÙÐ Ð ½¼ Ä Æ ÂÍÆÁ ¾¼¼ ÃË Å ÆËÈÊÇ ÃÌ Æʺ IMM ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ö ÙÐØ Ø Ø Ø Ñ Ö Ñ ÈÓ Ø ÒÑ Ö ÓÑ Ø ÐÓ ¹ Ð Ö Ò ÔÖÓ

Læs mere

ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ Ê Ò Ö Ï Ð ÐÑ ÍÒ Ú Ö ØØ Ë ÖÐ Ò Û Ð ÐÑ ºÙÒ ¹ º ½ º Þ Ñ Ö ¾¼¼

ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ Ê Ò Ö Ï Ð ÐÑ ÍÒ Ú Ö ØØ Ë ÖÐ Ò Û Ð ÐÑ ºÙÒ ¹ º ½ º Þ Ñ Ö ¾¼¼ Ê Ò Ö Ï Ð ÐÑ ÍÒ Ú Ö ØØ Ë ÖÐ Ò Û Ð ÐÑ ºÙÒ ¹ º ½ º Þ Ñ Ö ¾¼¼ Ó Ò Ö Ø ÓÒ Ê Ð Ñ Ò Ò Ø Ó ØÖ Ø Ñ Ò Ê Ø Ö Ñ Ò Ä Ñ Ø Ö ÓÙÖ Ö Ø Ö Ñ ÑÓÖݵ Ü ÛÓÖ Þ ËØÓÖ Ö Ö Ý ÁÒØÖ ÔÖÓ ÓÖ Ô Ö ÐРРѺ È Ò Ó Ò Ö Ø ÓÒ Ó Ð Ø ÓÒ Ð Ø Ò

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): (fjorten) Eksamensdag: Mandag den. juni 0, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i

Læs mere

ÈÐ ÒÐ Ò Ò Ó ÓÔØ Ñ Ö Ò ÐÓ Ø ÔÖÓ Ð Ñ Ø ÐÐ Ò Ö Ø ÙÐØÙÖ ÐØ Ú Ö ÒØ Ñ Ð ÔÖ Ð ¾¼¼ Ö ØØ ÇØØ Ò ¼½½ ¾µ ÄÓÙ ÌÖ Ò Ö ½ µ ÁÒ ÓÖÑ Ø Ó Å Ø Ñ Ø ÅÓ ÐÐ Ö Ò Ê Ò Î ØÓÖ Î ÐÕÙ Î Ð ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ö ÙÐØ Ø Ø ÚÓÖ Ñ Ö Ñ ØÖ Ò ÔÓÖع

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag:

Læs mere

JOB-SHOP- SKEDULERING OG TOGSKEDULERING Christian Sc hmidt L YNGBY 2002 EKSAMENSPR OJEKT NR. 34/02 IMM

JOB-SHOP- SKEDULERING OG TOGSKEDULERING Christian Sc hmidt L YNGBY 2002 EKSAMENSPR OJEKT NR. 34/02 IMM ÂÇ ¹ËÀÇȹ Ëà ÍÄ ÊÁÆ Ç ÌÇ Ëà ÍÄ ÊÁÆ Ö Ø Ò Ë Ñ Ø Ä Æ ¾¼¼¾ ÃË Å ÆËÈÊÇ ÃÌ Æʺ»¼¾ IMM ÌÖÝ Ø ÁÅÅ ÌÍ ÓÖÓÖ ÒÒ Ö ÔÔÓÖØ ÔÖ ÒØ Ö Ö Ö ÙÐØ Ø ÖÒ Ñ Ø Ñ Ò ÔÖÓ Ø Ú Ë ¹ Ø ÓÒ ÓÖ ÇÔ Ö Ø ÓÒ Ò ÐÝ ÁÒ Ø ØÙØ ÓÖ Å Ø Ñ Ø ÅÓ ÐÐ

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 25. juni 200, kl. 9.00-.00

Læs mere

Faggruppe Landmåling og faggruppe trafikstudier. Jakob Jakobsen c958320

Faggruppe Landmåling og faggruppe trafikstudier. Jakob Jakobsen c958320 *36WLO. UVHOVDIJLIWVV\VWHPHU (NVDPHQVSURMHNW,QVWLWXWIRU3ODQO JQLQJ Faggruppe Landmåling og faggruppe trafikstudier 'DQPDUNV7HNQLVNH8QLYHUVLWHW Jakob Jakobsen c958320 ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ø ¼ ÔÓ ÒØ Ñ Ò ÔÖÓ Ø

Læs mere

¾

¾ ½ ¾ ÁÒ ÓÐ ½ ÆÓÑ Ò Ð ØÙÖ ¾ ØÖ Ø ÁÒ Ð Ò Ò ½½ º½ ÓÖÓÖ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½½ º¾ ÁÒ Ð Ò Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½½ º Ä Ú Ð Ò Ò º º

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

xi ; ˆσ 2 =, s/ n t(n 1)

xi ; ˆσ 2 =, s/ n t(n 1) ÃÙÖ Ù ¼¾¼¾ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÃÔØÐ ÀÝÔÓØ Ø Ø ÓÖ ÒÒÑ ÒØ ÓÒ¹ ÑÔÐ ØÙÔµº º¹º ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ¾½ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¾¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø

Læs mere

Ð ÓÖ ØÙ Ö Å Ø Ñ Ø ¹ ÓÒÓÑ Ó ËØ Ø Ø ½ º Ö Ò ÒÖº ½ Ó ØÓ Ö ¾¼¼

Ð ÓÖ ØÙ Ö Å Ø Ñ Ø ¹ ÓÒÓÑ Ó ËØ Ø Ø ½ º Ö Ò ÒÖº ½ Ó ØÓ Ö ¾¼¼ Ð ÓÖ ØÙ Ö Å Ø Ñ Ø ¹ ÓÒÓÑ Ó ËØ Ø Ø ½ º Ö Ò ÒÖº ½ Ó ØÓ Ö ¾¼¼ ÁÒ ÓÐ ËÓ ÃÓÚ Ð Ú Ý º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Ð ÖØ Ð Ö ØÓ Ô ÐØ Ø µ ÈÖÑ ÓÔ Ú Ö º º º º º º º º º º º º º º º

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 5 (fem) Eksamensdag: Fredag den 10. august 007, kl.

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag:

Læs mere

ÇÚÖ Ø ½ ¾ ÁÒØÖÓ ÃÓÒÒ ÒØÖÚÐ ÓÖ Ò ÒÐ ÑÔÐ ½ ØÑÑÐ ØÔÖÚ ØÖÖÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ Ò ÒÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÐ ÑÔÐ ¾ ÀÝÔÓØ Ø Ø ÓÖ Ö ÒÐ ÑÔÐ ¾

ÇÚÖ Ø ½ ¾ ÁÒØÖÓ ÃÓÒÒ ÒØÖÚÐ ÓÖ Ò ÒÐ ÑÔÐ ½ ØÑÑÐ ØÔÖÚ ØÖÖÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ Ò ÒÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÐ ÑÔÐ ¾ ÀÝÔÓØ Ø Ø ÓÖ Ö ÒÐ ÑÔÐ ¾ ÃÙÖ Ù ¼¾¼ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÁÒÖÒ ÓÖ ÒÐ ÔØÐ ½¼µ ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ¾½ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¾¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÂÙÒ ¾¼½½ ½» ÇÚÖ Ø

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) Eksamensdag: Torsdag den 1. juni 01,

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Mandag den 11. august 008, kl.

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSMEN ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Mandag den. august 07, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

ÇÚÖ Ø ÁÒÖÒ ÓÖ ÒÒÑ ÒØ ÇÒ¹ ÑÔÐ ØÙÔµ ½ ÁÒØÖÓ Ó ÒÖÐÐ ÖÖ ¾ Å ÑÐ Ð Ô Ø ØÑØ ØÑÑÐ ØÔÖÚ ØÖÖÐ ÃÓÒÒ ÒØÖÚÐ ÍÚÐ ØÐ ÙÒØ ÚÖÒ ¹ ØÙÔ ÃÒØ ÐÐÖ ÙÒØ ÚÖÒ Ê Ê ÒÓØ µ ÂÒ Ãº ÅÐ

ÇÚÖ Ø ÁÒÖÒ ÓÖ ÒÒÑ ÒØ ÇÒ¹ ÑÔÐ ØÙÔµ ½ ÁÒØÖÓ Ó ÒÖÐÐ ÖÖ ¾ Å ÑÐ Ð Ô Ø ØÑØ ØÑÑÐ ØÔÖÚ ØÖÖÐ ÃÓÒÒ ÒØÖÚÐ ÍÚÐ ØÐ ÙÒØ ÚÖÒ ¹ ØÙÔ ÃÒØ ÐÐÖ ÙÒØ ÚÖÒ Ê Ê ÒÓØ µ ÂÒ Ãº ÅÐ ÃÙÖ Ù ¼¾¼ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÃÔØÐ ÁÒÖÒ ÓÖ ÒÒÑ ÒØ ÇÒ¹ ÑÔÐ ØÙÔµ ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ¾½¼ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¾¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÂÙÒ

Læs mere

V e l k o m m e n T i l M a t e m a t i k s t u d i e t! P P α ) ν xν αν ϕ(xν ϕ P P αν αν M a t e m a t i s k R u s m a p p e

V e l k o m m e n T i l M a t e m a t i k s t u d i e t! P P α ) ν xν αν ϕ(xν ϕ P P αν αν M a t e m a t i s k R u s m a p p e Î Ð Ó Ñ Ñ Ò Ì Ð Å Ø Ñ Ø Ø Ù Ø ϕ ( αν x ν αν ) αν ϕ(x ν ) αν Å Ø Ñ Ø Ê Ù Ñ Ô Ô ¾ ¼ ¼ ¼ ÁÒ ÓÐ ½ Î Ð ÓÑÑ Ò ¾ Ò Ö Ø Ù ¾º½ Ö Ø Ò Ñ ÐÐ Ñ Ø Ö Ò ØÖÙ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ Ò Ò

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTOI, RUS UNIVERSITET Science and Technology ESEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er)

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er) Algoritmeanalyse Identificer essentiel(le) operation(er) Øvre grænse for algoritme Find øvre grænse for antallet af gange de(n) essentielle operation(er) udføres. Øvre grænse for problem Brug øvre grænse

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 0205. Varighed: 4 timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Nogle anvendelser af programmel R, bl.a. til hypotesetest

Nogle anvendelser af programmel R, bl.a. til hypotesetest Frank Bengtson 2013 ÖÒºÒØ ÓÒÑкÓÑ Nogle anvendelser af programmel R, bl.a. til hypotesetest R er specielt egnet til statistik og simulering og kan frit installeres på egen pc. R udfører en programlinje

Læs mere

LØSNING AF OPENSHOP OG FLO WSHOP PR OBLEMER Susanne Hjorth Tønder Rasm ussen L YNGBY 2001 EKSAMENSPR OJEKT NR. 00/00 IMM

LØSNING AF OPENSHOP OG FLO WSHOP PR OBLEMER Susanne Hjorth Tønder Rasm ussen L YNGBY 2001 EKSAMENSPR OJEKT NR. 00/00 IMM Ä ËÆÁÆ ÇÈ ÆËÀÇÈ Ç ÄÇÏËÀÇÈ ÈÊÇ Ä Å Ê ËÙ ÒÒ À ÓÖØ Ì Ò Ö Ê ÑÙ Ò Ä Æ ¾¼¼½ ÃË Å ÆËÈÊÇ ÃÌ Æʺ ¼¼»¼¼ IMM ÌÖÝ Ø ÁÅÅ ÌÍ ÓÖÓÖ ÒÒ Ö ÔÔÓÖØ Ö Ö Ú Ø ÓÑ ÙØØ Ò ÔÖÓ Ø Ò Ò Ö ØÙ Ø ÓÖ ÓÔÒ¹ Ò Ú Ò Ò Ö Ö Ò Ö ÒÑ Ö Ì Ò ÍÒ Ú Ö

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Ý ÓÖ ÄÁ ½º Í Ú ËØ Ò À Ò Ò ÁÒ Ø ØÙØ ÓÖ ÖÙÒ Ú Ò Ó Å Ð Ø ÓÚ Ò Ð ÙÐØ Ø Ã Ò ÚÒ ÍÒ Ú Ö Ø Ø ¾¼¼

Ý ÓÖ ÄÁ ½º Í Ú ËØ Ò À Ò Ò ÁÒ Ø ØÙØ ÓÖ ÖÙÒ Ú Ò Ó Å Ð Ø ÓÚ Ò Ð ÙÐØ Ø Ã Ò ÚÒ ÍÒ Ú Ö Ø Ø ¾¼¼ Ý ÓÖ ÄÁ ½º Í Ú ËØ Ò À Ò Ò ÁÒ Ø ØÙØ ÓÖ ÖÙÒ Ú Ò Ó Å Ð Ø ÓÚ Ò Ð ÙÐØ Ø Ã Ò ÚÒ ÍÒ Ú Ö Ø Ø ¾¼¼ Ý ÓÖ ÄÁ ËØ Ò À Ò Ò ¾¼¼ ÁË Æ ÜÜÜÜÜÜÜÜÜ ËĹ Ó Ð Ò Ì ÓÖÚ Ð Ò Ú ¼ ½ ½ Ö Ö Ö ÓÖ ÓØÓ È Ø Ö º È Ø Ö Ò ÆÝ ÖÓ ÓØÓ Á»Ë Ô Ø

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 0205. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT FR DTG, RUS UVERSTET Science and Technology ESE ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00 Tilladte medbragte hjælpemidler: lle sædvanlige

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

02105 Eksamensnoter. Lasse Herskind S maj Sortering 3

02105 Eksamensnoter. Lasse Herskind S maj Sortering 3 02105 Eksamensnoter Lasse Herskind S153746 12. maj 2017 Indhold 1 Sortering 3 2 Analyse af algoritme 4 2.1 Køretid.......................................... 4 2.2 Pladsforbrug.......................................

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ù Ö Ø ÓÑ Ø ÐÓÖ ÔÖÓ Ø Ó Ö Ö ØØ Ø ÑÓ Ô Ö ÓÒ Ö Ñ Ø Ò Ø Ð Ð Ñ Ò º Â Ú Ð ÖÒ Ø Ñ Ò Ú Ð Ö È Ø Ö ÌÓÙ ÓÖ ÓÖ Ø Ú Ø ÒÖ Ø Ö Ò Ú Ò Ø ÓÖ ÐØ Ø ÚÖ ØÖ

ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ù Ö Ø ÓÑ Ø ÐÓÖ ÔÖÓ Ø Ó Ö Ö ØØ Ø ÑÓ Ô Ö ÓÒ Ö Ñ Ø Ò Ø Ð Ð Ñ Ò º Â Ú Ð ÖÒ Ø Ñ Ò Ú Ð Ö È Ø Ö ÌÓÙ ÓÖ ÓÖ Ø Ú Ø ÒÖ Ø Ö Ò Ú Ò Ø ÓÖ ÐØ Ø ÚÖ ØÖ Ì Ø Ð Í Ö Ø Î Ð Ö ÁÒ Ø ØÙØ Ú Ö Ò ØÓ Ð Ò Ñ Ò È Ø Ö ÌÓÙ ÓÖ ÁÒ Ø ØÙØ ÓÖ Ý Ó Ã Ñ ËÝ Ò ÍÒ Ú Ö Ø Ø ½º Ñ ¾¼¼ ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ù Ö Ø ÓÑ Ø ÐÓÖ ÔÖÓ Ø Ó Ö Ö ØØ Ø ÑÓ Ô Ö ÓÒ Ö Ñ Ø Ò Ø Ð Ð Ñ Ò º Â Ú Ð ÖÒ Ø Ñ Ò Ú Ð Ö

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 7. undervisningsuge, mandag 1 Estimation og konfidensintervaller

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Onsdag den. august 200, kl. 9.00.00 Opgave (25%) Lad A = A[] A[n] være et array af heltal. Længden af det længste

Læs mere

ÓÖÑ Ð Ô Ø ÓÒ Ò ÔÖÓÓ ÓÖ Ø ØÓÔÓÐÓ Ý Ò Ð Ø ÓÒ Ó ÓÑ Ò ØÓÖ Ð ÙÖ Ö ØÓÔ Ð Ò Ö Ò Â Ò¹ Ö ÒÓ Ù ÓÙÖ Ä ÓÖ ØÓ Ö Á Í ÍÒ Ú Ö Ø ËØÖ ÓÙÖ ÆÊË ÈÐ ³ÁÒÒÓÚ Ø ÓÒ Ì ÒÓÐÓ ÕÙ Ó

ÓÖÑ Ð Ô Ø ÓÒ Ò ÔÖÓÓ ÓÖ Ø ØÓÔÓÐÓ Ý Ò Ð Ø ÓÒ Ó ÓÑ Ò ØÓÖ Ð ÙÖ Ö ØÓÔ Ð Ò Ö Ò Â Ò¹ Ö ÒÓ Ù ÓÙÖ Ä ÓÖ ØÓ Ö Á Í ÍÒ Ú Ö Ø ËØÖ ÓÙÖ ÆÊË ÈÐ ³ÁÒÒÓÚ Ø ÓÒ Ì ÒÓÐÓ ÕÙ Ó ÓÖÑ Ð Ô Ø ÓÒ Ò ÔÖÓÓ ÓÖ Ø ØÓÔÓÐÓ Ý Ò Ð Ø ÓÒ Ó ÓÑ Ò ØÓÖ Ð ÙÖ Ö ØÓÔ Ð Ò Ö Ò Â Ò¹ Ö ÒÓ Ù ÓÙÖ Ä ÓÖ ØÓ Ö Á Í ÍÒ Ú Ö Ø ËØÖ ÓÙÖ ÆÊË ÈÐ ³ÁÒÒÓÚ Ø ÓÒ Ì ÒÓÐÓ ÕÙ ÓÙÐ Ú Ö Ëº Ö ÒØ È½¼ ½ ¼¼ ÁÐÐ Ö Ö Ò Ñ Ð ÙÒ ØÖ º Ö Ö ØÓÔ

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 24. juni 2011, kl.

Læs mere

Ò Ð Þ Ñ ÒØ ØÓ Ø Ò ÐÓ ÙÐ Óѹ ÐÙÐ ØÓÖ ÈÖÓ Ø ÔÐÓÑ Ò Ó Ù ÁÙÒ ¾¼¼¼ Ô ÖØ Ñ ÒØÙÐ ÐÙÐ ØÓ Ö ÙÐØ Ø ÙØÓÑ Ø ÐÙÐ ØÓ Ö ÍÒ Ú Ö Ø Ø ÈÓÐ Ø Ò Ò Ì Ñ Ó Ö ÊÓÑ Ò ÓÒ Ù ØÓÖ ÔÖÓ Ø ºÐº Ò º Å Ö Ò ÓÐ ÁÒ ÓÖ Ö ØÓ ÙÒ Ö Ø Ò ÓÑ Ø Ò ÝÓÙ

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Onsdag den 11. august 2004, kl.

Læs mere

αν x ν αν αν ϕ(x ν )

αν x ν αν αν ϕ(x ν ) Î Ð Ó Ñ Ñ Ò Ì Ð Å Ø Ñ Ø Ø Ù Ø ϕ ( αν x ν αν ) αν ϕ(x ν ) αν Å Ø Ñ Ø Ê Ù Ñ Ô Ô ¾ ¼ ¼ ¼ ÁÒ ÓÐ ½ Î Ð ÓÑÑ Ò ¾ Ò Ö Ø Ù ¾º½ Ö Ø Ò Ñ ÐÐ Ñ Ø Ö Ò ØÖÙ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ Ò Ò

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

ÌÖÝ Ø ÁÅÅ ÌÍ

ÌÖÝ Ø ÁÅÅ ÌÍ Ì ÓÖ Ö Ø Ù Ú Ð Ò ÔÐ Ð Û Ö Ý Ø Ñ Ö Ì ÓÖÝ Ú ÐÓÔÑ ÒØ Ó Ö Ð Ð Û Ý Ø Ñ ÌÙ Ö Â Ò Ò Ì Ö Ð ÃÖ Ø Ò ÌÓÐ ØÖÙÔ Ä Æ ¾¼¼ ÃË Å ÆËÈÊÇ ÃÌ Æʺ ½ ÁÅÅ ÌÖÝ Ø ÁÅÅ ÌÍ ÓÖÓÖ ÒÒ Ö ÔÔÓÖØ Ö Ø Ñ Ò ÔÖÓ Øº ÈÖÓ Ø Ø Ö Ù Ö Ø Ú ÁÒ Ø ØÙØ

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT R T, RUS UVRSTT Science and Technology S lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) ksamensdag: Tirsdag den. august 0, kl. 9.00-.00 Tilladte medbragte

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag     susanne Statistik og Sandsynlighedsregning 1 Repetition MS kapitel 1 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Hvad er sandsynlighed? - beskriver systemer

Læs mere

Effektivisering af det industrielle byggeri

Effektivisering af det industrielle byggeri Effektivisering af det industrielle byggeri Kandidatspeciale Byggeri og anlægssektoren Byggeledelse Aalborg universitet Sonja Dissing Pedersen Det Ingeniør-, Natur- og Sundhedsvidenskabelige Fakultet Civilingeniøruddannelsen

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT R T, RUS UVERSTET Science and Technology ESE ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: redag den. juni 0, kl..00-3.00 Tilladte medbragte hjælpemidler: lle sædvanlige hjælpemidler

Læs mere

Ð ÓÖ ØÙ Ö Å Ø Ñ Ø ¹ ÓÒÓÑ Ó ËØ Ø Ø ½½º Ö Ò ÒÖº ¾ Ñ Ö ½

Ð ÓÖ ØÙ Ö Å Ø Ñ Ø ¹ ÓÒÓÑ Ó ËØ Ø Ø ½½º Ö Ò ÒÖº ¾ Ñ Ö ½ Ð ÓÖ ØÙ Ö Å Ø Ñ Ø ¹ ÓÒÓÑ Ó ËØ Ø Ø ½½º Ö Ò ÒÖº ¾ Ñ Ö ½ ÑÓ ½½º¾ Ñ Ö ½ º Ð ÓÖ ØÙ Ö¹ Å Ø Ñ Ø ¹ ÓÒÓÑ ¹ Ó ËØ Ø Ø ØÙ Ö Ò Ú Ã Ò ÚÒ ÍÒ Ú Ö Ø Øº Ê Ø ÓÒ ÖÙÔÔ À ÒÖ Ö Ø Ò ÖÓÚ Ê ÑÙ ÓÖÙÔ À Ò Ò Ò Ú ºµ Ê Ò Â Ò Ò Å ÖØ Ò

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 6. juni 2016, kl. 15:00 19:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Invarianter. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen.

Invarianter. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af)

Læs mere

ÇÚÖ Ø ½ ¾ ÑÔÐ À Ó ÚØ ÃÓÖÖÐØÓÒ ÊÖ ÓÒ ÒÐÝ Ô ½½µ ÅÒ Ø ÚÖØÖ ÑØÓ ÁÒÖÒ ÖÖ ÓÒ ÑÓÐ ÁÒÖÒ ÓÖ ÖÒ Ó ÐÒÒ ÃÓÒÒ ÒØÖÚÐ ÓÖ ÐÒÒ ÈÖØÓÒ ÒØÖÚÐ ÓÖ ÐÒÒ ÃÓÖÖÐØÓÒ Ó ÖÖ ÓÒ Ê Ê

ÇÚÖ Ø ½ ¾ ÑÔÐ À Ó ÚØ ÃÓÖÖÐØÓÒ ÊÖ ÓÒ ÒÐÝ Ô ½½µ ÅÒ Ø ÚÖØÖ ÑØÓ ÁÒÖÒ ÖÖ ÓÒ ÑÓÐ ÁÒÖÒ ÓÖ ÖÒ Ó ÐÒÒ ÃÓÒÒ ÒØÖÚÐ ÓÖ ÐÒÒ ÈÖØÓÒ ÒØÖÚÐ ÓÖ ÐÒÒ ÃÓÖÖÐØÓÒ Ó ÖÖ ÓÒ Ê Ê ÃÙÖ Ù ¼¾¼ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ½½ ÃÔØÐ ½½ ÊÖ ÓÒ ÒÐÝ ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ¾½ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¾¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ½½ ÂÙÒ ¾¼½½ ½» ÇÚÖ

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Ñ ½¾º¾ Ñ Ö ½ º Ð ÓÖ ØÙ Ö¹ Å Ø Ñ Ø ¹ ÓÒÓÑ ¹ Ó ËØ Ø Ø ØÙ Ö Ò Ú Ã Ò ÚÒ ÍÒ Ú Ö Ø Øº Ê Ø ÓÒ ÖÙÔÔ À ÒÖ Ö Ø Ò ÖÓÚ Ò Ú ºµ È Ø Ö ÄÙÒ Ò Ö Ó Æ Ð Ò Ö Ì ÖÒÕÙ Ø ÁÒ

Ñ ½¾º¾ Ñ Ö ½ º Ð ÓÖ ØÙ Ö¹ Å Ø Ñ Ø ¹ ÓÒÓÑ ¹ Ó ËØ Ø Ø ØÙ Ö Ò Ú Ã Ò ÚÒ ÍÒ Ú Ö Ø Øº Ê Ø ÓÒ ÖÙÔÔ À ÒÖ Ö Ø Ò ÖÓÚ Ò Ú ºµ È Ø Ö ÄÙÒ Ò Ö Ó Æ Ð Ò Ö Ì ÖÒÕÙ Ø ÁÒ Ð ÓÖ ØÙ Ö Å Ø Ñ Ø ¹ ÓÒÓÑ Ó ËØ Ø Ø ½¾º Ö Ò ÒÖº ¾ Ñ Ö ½ Ñ ½¾º¾ Ñ Ö ½ º Ð ÓÖ ØÙ Ö¹ Å Ø Ñ Ø ¹ ÓÒÓÑ ¹ Ó ËØ Ø Ø ØÙ Ö Ò Ú Ã Ò ÚÒ ÍÒ Ú Ö Ø Øº Ê Ø ÓÒ ÖÙÔÔ À ÒÖ Ö Ø Ò ÖÓÚ Ò Ú ºµ È Ø Ö ÄÙÒ Ò Ö Ó Æ Ð Ò Ö Ì ÖÒÕÙ Ø

Læs mere

Ð ÓÖ ØÙ Ö Å Ø Ñ Ø ¹ ÓÒÓÑ Ó ËØ Ø Ø ½½º Ö Ò ÒÖº Ñ ÖØ ½

Ð ÓÖ ØÙ Ö Å Ø Ñ Ø ¹ ÓÒÓÑ Ó ËØ Ø Ø ½½º Ö Ò ÒÖº Ñ ÖØ ½ Ð ÓÖ ØÙ Ö Å Ø Ñ Ø ¹ ÓÒÓÑ Ó ËØ Ø Ø ½½º Ö Ò ÒÖº Ñ ÖØ ½ Ñ ½½º Ñ ÖØ ½ º Ð ÓÖ ØÙ Ö¹ Å Ø Ñ Ø ¹ ÓÒÓÑ ¹ Ó ËØ Ø Ø ØÙ Ö Ò Ú Ã Ò ÚÒ ÍÒ Ú Ö Ø Øº Ê Ø ÓÒ ÖÙÔÔ À ÒÖ Ö Ø Ò ÖÓÚ Ê ÑÙ ÓÖÙÔ À Ò Ò Ò Ú ºµ Ê Ò Â Ò Ò È Ø Ö ÄÙÒ

Læs mere

È Ö Ö ÓÑÑÙÒ Ø ÓÒ Â Ò Ä ÙØ Ö Ê ÑÙ ÃÒ ÔÔ Ó Æ Ð ØÐ Ò Ö Ò Î Ð Ö ÖÒ Ä ÙÖ Ò ÃÓÑÑÙÒ Ø ÓÒ ÑÓ ÙÐ ¾ ÊÓ Ð ÍÒ Ú Ö Ø Ø ÒØ Ö º ÒÙ Ö ¾¼¼¼ Ê ÙÑ ÈÖÓ Ø Ø Ö Ö Ñ Ñ Ö Ö Ò ØÓÐ ÙÑ Ð ÖØ ÐÚ ÒÖ ÓÔØÖ¹ Ö Ô Ö ÖØ ÑÓ Ø Ö Ò Ú Ø º ÈÖÓ

Læs mere