A. Appendix: Løse ender.

Størrelse: px
Starte visningen fra side:

Download "A. Appendix: Løse ender."

Transkript

1 Løse ender A.1 A. Appendix: Løse ender. (A.1). I dette appendix giver vi et bevis for Bertrand s Postulat, nævnt i Kapitel 1. Som nævnt følger Postulatet af en tilstræelig nøjagtig vurdering af primtalsfuntionen π(x). I forbindelse med primtallenes fordeling er der en ræe andre funtioner, der spiller en vigtig rolle, bl.a. følgende: ϑ(x) = logp og ψ(x) = logp. p x p m x Den første sum er over alle primtal p x, den anden over alle primtalspotenser p m x. I den første sum er antallet af led lig med π(x), og hvert led er højst lig med logx. Altså er ϑ(x) π(x) logx. Vurderinger af π(x) medfører altså vurderinger af ϑ(x), og omvendt. Det er ie så dybtliggende at vise, at π(x) logx ϑ(x) ψ(x). Primtalssætningen er altså ævivalent med enhver af relationerne ϑ(x) x og ψ(x) x. Af vurderingen i Kapitel 1 følger, at ϑ(n) 3n for alle n 1. Den efterfølgende vurdering er lidt bedre; vi vil bruge den i beviset for Bertrand s Postulat. (A.2) Sætning. For alle n 1 er ϑ(n) (2 log 2)n. Bevis. Beviset, ganse parallelt til beviset for (1.5), forløber ved fuldstændig indution efter n. Uligheden er trivielt opfyldt for n = 1. Lad der nu være givet en værdin > 1, og antag, at uligheden gælder for alle mindre værdier. Sæt := (n + 1)/2. Specielt er så n/2 (n + 1)/2. Betragt binomialoefficienten, b := ( ) n n = n(n 1) ( + 1) (n )(n 1) 2 1. Da + 1 > n, er fatorerne i tælleren er større end fatorerne i nævneren. Specielt an primtallene blandt fatorerne i tælleren ie forortes med fatorer fra nævneren. Derfor er b delelig med produtet af disse primtal, og følgelig er log b mindst lig med logaritmen til produtet, dvs mindst lig med logp, hvor summen er over primtallene p med < p n. Den sidste sum er øjensynlig lig med ϑ(n) ϑ(). Altså er ϑ(n) ϑ() logb. Videre er b, som en binomialoefficienterne ( n l) for n 1, højst lig med 2 n 1. Under brug af indutionsforudsætningen får vi derfor, at som ønset. ϑ(n) = ϑ(n) ϑ() + ϑ() log 2 n 1 + (2 log 2) (n 1) log 2 + (2 log 2)(n + 1)/2 = (2 log 2)n, /local/notes/elmtal/ata.tex :15:10

2 27. otober 2008 Løse ender A.2 (A.3) Bertand s Postulat. For ethvert n 1 findes et primtal p med n < p 2n. Bevis. Uligheden p 2n må naturligvis være sarp, med mindre n = 1 og p = 2. Af postulatet fremgår specielt, at hvis p er det te primtal, så er p +1 < 2p. Den sidste påstand er fatis ævivalent med Bertrand s postulat. Mere generelt er det let at se, at hvis q 1, q 2, q 3,... er en vosende følge af primtal, der opfylder ulighederne q +1 < 2q for = 1,..., l 1, så gælder Bertrand s Postulat for alle n med q 1 /2 n < q l. Øjensynlig er uligheden q +1 < 2q opfyldt for det te primtal i følgen, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631. Derfor gælder Bertrand s postulat for alle n < 631. Nu vises påstanden med et indirete bevis. Antag, at der for et naturligt tal n ie findes primtal p med n < p 2n. Specielt er så n 631. Betragt binomialoefficienten, b = ( ) 2n = n (2n)(2n 1) (n + 1) n(n 1) 2 1 Lad p være en primdivisor i b, og lad p ν p være den potens, der indgår i primopløsningen af b. Af antagelsen følger, at ingen af fatorerne i tælleren er primtal. Derfor er p n. Yderligere er p 2 3 n. Et primtal q med 2 3n < q n foreommer nemlig én gang blandt fatorerne i nævneren, og i tælleren går q un op i fatoren 2q. De to foreomster af q forortes mod hinanden; derfor er b ie delelig med q. Altså er p 2 3n for enhver primfator p i b. Af (A.2) følger derfor: logp logp = ϑ( 2 3 n) ( 4 3 log 2)n. (A.3.1) p b p 3 2n. Da p ν p b, følger det af (1.6), at p ν p 2n. Hvis ν p 2, så er p 2 2n, og derfor er p 2n; specielt er der højst 2n primdivisorer p i b med ν p 2, og for hver af dem er ν p logp log(2n). Derfor får vi vurderingen, p b, ν p 2 ν p logp < 2n log(2n). Af denne vurdering og (A.3.1) fås: logb = logp + ν p logp < ( 4 3 log 2)n + 2n log(2n). p b, ν p =1 p b, ν p 2 (A.3.2) På den anden side giver binomialformlen: ( ) ( ) 2n 2n 2 2n = ( ) 2n +, 2n 1

3 27. otober 2008 Løse ender A.3 hvor de to yderste binomialoefficienter er slået sammen til = 2. Der er 2n led på højesiden, og b er det største. Derfor er 2 2n (2n)b, og altså Af (A.3.2) og (A.3.3) følger: (2 log 2)n log(2n) + logb. (A.3.3) (2 log 2)n log(2n) logb < ( 4 3 log 2)n + 2n log(2n). (A.3.4) Den opnåede ulighed an omsrives til ( 2 3 log 2)n (1 + 2n) log(2n), eller 1 3 log n 2n log(2n) 2n. (A.3.5) De to brøer på højresiden er aftagende som funtioner af n (den sidste for 2n e 2 ). Værdien på højresiden, for n 631, er derfor mindre end værdien for n = 512 = 2 9. Altså er log 2 3 log 2 < = log 2. Men den ulighed er øjensynlig gal. Hermed er den søgte modstrid opnået, hvormed Bertrand s Postulat er bevist. (A.4) Sætning. For alle naturlige tal n 7 er (log 2)n ψ(n). Ævivalent, hvis LCM(n) betegner det mindste fælles multiplum af alle tallene 1, 2,..., n, så er 2 n LCM(n) for n 7. (A.4.1) Bevis. (Efter [Nair].) Det mindste fælles multiplum LCM(n) er øjensynlig lig med produtet af primtalspotenserne p n med, for hvert primtal p, den størst mulige esponent. Alternativt er LCM(n) lig med produtet af primfatorer p, hvor hver fator p medtages én gang for hver potens p m med p m n. Med den alternative besrivelse er det lart, at log LCM(n) = ψ(n). Derfor er de to anførte uligheder ævivalente. Beviset for den sidste ulighed tager udgangspunt i følgende formel, for 1 n: n r=0 ( 1) r ( n r ) 1 r + = 1 ( n). For at vise formlen bemæres, at begge formlens sider er lig med det bestemte integral I := 1 0 x 1 (1 x) n dx: At integralet er lig med venstresiden fås ved at anvende binomialformlen på fatoren (1 x) n og så integrere de fremomne potenser x i. At integralet er lig med højresiden ses ved gentagne partielle integrationer: integrer potensen x i og differentier potensen (1 x) j.

4 27. otober 2008 Løse ender A.4 For at vise den anførte ulighed bemæres, at alle nævnerne r + på venstresiden er mindre end eller lig med n. Derfor er alle nævnerne r + divisorer i LCM(n). Multipliceres med LCM(n), fås altså et helt tal ud fra venstresiden, og derfor også ud fra højresiden. Det sidste betyder, at nævneren på højresiden er divisor i LCM(n), altså Relationen (A.4.2) medfører følgende to relationer, for 1: ( ) n LCM(n). (A.4.2) ( ) 2 ( ) 2 LCM(2 + 1) og (2 + 1) LCM(2 + 1). (A.4.3) Den første relation i (A.4.3) fås nemlig ved at anvende (A.4.2) med n := 2 og udnytte, at LCM(2) LCM(2 + 1). Den anden relation i (A.4.3) fås ved at anvende (A.4.2) med n := og := + 1; udnyt, at ( + 1) ( 2+1) ( +1 = (2 + 1) 2 ). I de to relationer i (A.4.3) er de to fatorer og primise. De to relationer medfører derfor følgende: ( ) 2 (2 + 1) LCM(2 + 1). (A.4.4) Øjensynlig er 2 2 = ( 2 ) ( i i. I summen er der binomialoefficienter 2 ) i for i = 0,...,2, og af dem er ( 2) den største. Derfor er 2 2 (2 + 1) ( 2). Relationen i (A.4.4) medfører derfor uligheden, 2 2 LCM(2 + 1). (A.4.5) Heraf ses, for 2, at LCM(2 + 1); uligheden (A.4.1) gælder derfor, når n er ulige og n 5. Videre er LCM(2 + 1) LCM(2 + 2), så af (A.4.5) følger, for 4, at LCM(2 + 2); uligheden (A.4.1) gælder derfor, når n er lige og n 10. I området n 7 mangler altså un uligheden for n = 8. Her finder vi: 2 8 = = LCM(8), hvormed også den manglende ulighed er eftervist. (A.5) Opgaver. 1. Vis, at ψ(x) = p x logx/ logp logp, og at ψ(x) π(x) logx. 2. Gælder uligheden 2 n LCM(n) for n = 6? Vis, at uligheden π(n) (log 2)n/ logn gælder for naturlige tal n Brug Lemma (1.6) til at vise, at enhver binomialoefficient ( n ) er divisor i LCM(n), og giv herved et simpelt bevis for (den svagere ulighed) 2 n (n + 1) LCM(n).

5 27. otober 2008 Løse ender A.5 4. Vis følgende særpede form af Bertrand s postulat: For alle n 4 findes et primtal p med n < p < 2n 2. [Vin: Kig på beviset i (A.3). For at vise den særpede form for små værdier af n ræves en følge q i af primtal med q i+1 < 2q i 2. En sådan følge er 5, 7, 11, 19, 31, 59, 113, 223, 443, 883. Det fremgår, at den særpede form gælder for n < 882. I et modesempel må der altså gælde n 882, og specielt, at n 2 9. Kig nu på de følgende argumenter i beviset for (A.3). De fleste er uændrede, men i tælleren på b an det foreomme, at n + 1 er et primtal. Det medfører, at man til højresiden i (A.3.1) må lægge leddet log(n+1). Det samme led sal herefter lægges til på højresiden i (A.3.2) og (A.3.4), og til højresiden i (A.3.5) må man lægge brøen (log(n + 1))/(2n). Også den sidste brø er aftagende som funtion af n. Vurder den opad ved værdien i 2 9, som an vurderes videre: (log( ))/2 10 < (log 2 10 )/2 10 = (10/1024) log 2. Med dette estra bidrag fås den afsluttende ulighed log 2 < 1024 log 2; og det er stadig er en modstrid.]

2. Gruppen af primiske restklasser.

2. Gruppen af primiske restklasser. Primiske restklasser 2.1 2. Gruppen af primiske restklasser. (2.1) Setup. I det følgende betegner n et naturligt tal større end 1. Den additive gruppe af restklasser modulo n betegnes Z/n, og den multiplikative

Læs mere

UGESEDDEL 7 LØSNINGER. Opgave 7.2.1

UGESEDDEL 7 LØSNINGER. Opgave 7.2.1 UGESEDDEL 7 LØSNINGER Opgave 7.2.1 Definition 1. En følge {x } in R n onvergerer mod puntet x, dersom der, for ethvert ɛ > 0, findes et N N sådan at x x < ɛ for alle N. Her definerer vi 1) x x 2 = x 1)

Læs mere

Foldningsintegraler og Doobs martingale ulighed

Foldningsintegraler og Doobs martingale ulighed Foldningsintegraler og Doobs martingale ulighed N.J. Nielsen Indledning I dette notat vil vi vise en sætning om foldningsintegraler, som blev benyttet trin 2 i onstrutionen af Itointegralet, gennemgå esempel

Læs mere

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Talteoriopgaver Træningsophold ved Sorø Akademi 2007 Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2

Læs mere

UGESEDDEL 7 LØSNINGER. ) og ɛ > 0 N N : (1 + konvergerer ikke, thi følgen x 1 + = ( 1)k

UGESEDDEL 7 LØSNINGER. ) og ɛ > 0 N N : (1 + konvergerer ikke, thi følgen x 1 + = ( 1)k UGESEDDEL 7 LØSNINGER Opgave 7.2. Definition. En følge {x } in R n onvergerer mod puntet x, dersom der, for ethvert ɛ > 0, findes et N N sådan at x x < ɛ for alle N. Her definerer vi ) x x 2 = x ) x )

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

ElmTal Primtallene 1.1

ElmTal Primtallene 1.1 Primtallene.. Primtallene. (.) Setup. Et tal p kaldes som bekendt et primtal, hvis p 2 og p kun har trivielle divisorer, dvs hvis de eneste (positive) divisorer i p er og p. De første primtal er tallene

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

Projekt 5.3 De reelle tal og 2. hovedsætning om kontinuitet

Projekt 5.3 De reelle tal og 2. hovedsætning om kontinuitet Projet 53 De reelle tal og 2 hovedsætning om ontinuitet Mens den 1 hovedsætning om ontinuerte funtioner om forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2 hovedsætning betydeligt vanseligere

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe. Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger

Læs mere

Numerisk løsning af differentialligninger

Numerisk løsning af differentialligninger KU-LIFE; Matemati og modeller 009 Numeris løsning af differentialligninger Thomas Vils Pedersen 1 Numerise metoder Ved numeris analyse forstås tilnærmet, talmæssig løsning af problemer, som ie, eller un

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Anders Thorup. Elementær talteori. Algebra og talteori, F2001

Anders Thorup. Elementær talteori. Algebra og talteori, F2001 Anders Thorup Elementær talteori Algebra og talteori, F2001 1. Primtallene... 1 2. Gruppen af primiske restklasser... 15 3. Cirkeldelingspolynomier. Endelige legemer... 21 4. Reciprocitetssætningen...

Læs mere

Tallet π er irrationalt Jens Siegstad

Tallet π er irrationalt Jens Siegstad 32 Tallet π er irrationalt Jens Siegstad At tallet π er irrationalt har været kendt i pænt lang tid Aristoteles postulerede det da han påstod at diameteren og radius i en cirkel er inkommensurable størrelser

Læs mere

cos( x) dt = 3.1 Vi udregner integralet: sin( x) 2 + cos( x) sin( x) 2 t cos( x)

cos( x) dt = 3.1 Vi udregner integralet: sin( x) 2 + cos( x) sin( x) 2 t cos( x) 6x-MA 7 (4..8) opg () Cec om den angivne værdi er orret b) ( sin( x) + cos( x) ) 3. Vi udregner integralet: sin( x) + cos( x) + sin( x) + sin( x) [x] + ( ) cos( x) sin( ) t cos( x) cos( x) cos( x) + sin(

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

Differentiation af Potensfunktioner

Differentiation af Potensfunktioner Differentiation af Potensfunktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

t x 1 e t dt. Man kan let vise, at dette integral er endeligt for positive x- værdier (se f.eks. [EA, s ]).

t x 1 e t dt. Man kan let vise, at dette integral er endeligt for positive x- værdier (se f.eks. [EA, s ]). Artikel 35 Gammafunktionen En introduktion Jacob Stevne Jørgensen I 1700-tallet var interolation en vigtig discilin blandt matematikere. Det handler om ud fra et givet datasæt at finde en funktion, hvis

Læs mere

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser Analyse 2 Øvelser Rasmus Sylvester Bryder 24. og 27. september 203 Bevis af Fatous lemma (Theorem 9.) Hvis (u j ) j er en følge af positive, målelige, numeriske funktioner (dvs. med værdier i [, ]) over

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Matematiske metoder - Opgavesæt

Matematiske metoder - Opgavesæt Matematiske metoder - Opgavesæt Anders Friis, Anne Ryelund, Mads Friis, Signe Baggesen 24. maj 208 Beskrivelse af opgavesættet I dette opgavesæt vil du støde på opgaver, der er markeret med enten 0, eller

Læs mere

J n (λ) = dvs. n n-jordan blokken med λ i diagonalen. Proposition 1.2. For k 0 gælder. nullity (J n (λ) λi) k 1) 1 for 1 k n. n for k n.

J n (λ) = dvs. n n-jordan blokken med λ i diagonalen. Proposition 1.2. For k 0 gælder. nullity (J n (λ) λi) k 1) 1 for 1 k n. n for k n. . Jordan normalform Målet med dette notat er at vise hvorledes man ud fra en given matrix beregner dens Jordan normalform. Definition.. For n og λ C sættes λ 0... 0. 0 λ... J n λ).......... 0....... λ

Læs mere

Indhold. Litteratur 11

Indhold. Litteratur 11 Indhold Forord ii 00-sættet 1 Opgave 1....................................... 1 Spørgsmål (a).................................. 1 Spørgsmål (b).................................. 1 Spørgsmål (c)..................................

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

fordi de to sider ligger over for vinkler af samme størrelse (vist på tegningen med dobbeltbue.)

fordi de to sider ligger over for vinkler af samme størrelse (vist på tegningen med dobbeltbue.) Opgave Da treanterne ABC og DEF er ensvinlede, er de også ligedannede. Forstørrelsesfatoren findes med formlen DE = AB fordi de to sider ligger over for vinler af samme størrelse (vist på tegningen med

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

83 - Karakterisation af intervaller

83 - Karakterisation af intervaller 83 - Karakterisation af intervaller I denne opgave skal du bevise, at hvis A er en delmængde af R med følgende egenskab: x, y, z R : x, y A og x < z < y z A (1) så er A enten et interval eller en mængde

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 Sættet består af 3 opgaver med ialt 15 delopgaver. Besvarelsen vil blive forkastet, medmindre der er gjort et

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer (af samme type). 2. Løs delproblemerne ved rekursion (dvs. kald algoritmen

Læs mere

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10 Bernoullis differentialligning v/ Bjørn Grøn Side af 0 Bernoullis differentialligning Den logistise differentialligning er et esempel på en ie-lineær differentialligning Den logistise differentialligning

Læs mere

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4 Indhold 1 Vindermængde og tabermængde 2 2 Kopier modpartens træk 4 3 Udnyt modpartens træk 5 4 Strategityveri 6 5 Løsningsskitser 7 Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen. december 16 1 Numerisk integration og differentiation 1.1 Simpsons regel Antag, at vi har en funktion f på intervallet I = [a,

Læs mere

Opgave Firkantet E F. Opgave Trekantet

Opgave Firkantet E F. Opgave Trekantet 1 Opgave Firantet E F Lad være et vilårligt punt på liniestyet mellem og, og tegn halvcirler til samme side over diametrene, og. Lad være det punt på halvcirlen, der har vinelret på, og lad EF være fællestangenten

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Algebra. Anders Thorup. Matematisk Afdeling Københavns Universitet

Algebra. Anders Thorup. Matematisk Afdeling Københavns Universitet Algebra Anders Thorup Matematisk Afdeling Københavns Universitet Anders Thorup, e-mail: thorup@math.ku.dk Algebra, 3. udgave Matematisk Afdeling Universitetsparken 5 2100 København Ø ISBN 87-91180-28-7

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Projekt 7.9 Euklids algoritme, primtal og primiske tal

Projekt 7.9 Euklids algoritme, primtal og primiske tal Projekter: Kapitel 7 Projekt 79 Euklids algoritme, primtal og primiske tal Projekt 79 Euklids algoritme, primtal og primiske tal Projektet giver et kig ind i metodee i modee talteori Det kan udbygges med

Læs mere

Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1

Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1 Analyse Reeksamen 00 Rasmus Sylvester Bryder 5. august 0 Opgave Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. ( ) n n +3n+7 n= n + For alle n N vil

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2018

Besvarelser til Calculus Ordinær Eksamen Juni 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =

Læs mere

BOSK F2012, 1. del: Prædikatslogik

BOSK F2012, 1. del: Prædikatslogik ε > 0. δ > 0. x. x a < δ f (x) L < ε February 8, 2012 Prædikater Vi skal lære om prædikatslogik lad os starte med prædikater. Et prædikat er et orakel der svarer ja eller nej. Eller mere præcist: Prædikater

Læs mere

13 Markovprocesser med transitionssemigruppe

13 Markovprocesser med transitionssemigruppe 13 Markovprocesser med transitionssemigruppe I nærværende kapitel vil vi antage at tilstandsrummet er polsk, hvilket sikrer, at der findes regulære betingede fordelinger. Vi skal se på eksistensen af Markovprocesser.

Læs mere

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Johan P. Hansen 18. april 2013 Indhold 1 Indbyrdes primiske hele tal 1 2 Regning med rester 3 3 Kryptering

Læs mere

Varmepumpen. Eksempel på anvendelse af Termodynamikkens 1. og 2. hovedsætning

Varmepumpen. Eksempel på anvendelse af Termodynamikkens 1. og 2. hovedsætning Varmepumpen Esempel på anvendelse af ermodynamiens. og. hovedsætning Indhold. Syrlig indledning om 005 reformen (Kan overspringes).... Varmepumpen anven i fysiundervisningen i gymnasiet... 3. eoretis besrivelse

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

En undersøgelse af faktoriseringsalgoritmen Pollard p-1

En undersøgelse af faktoriseringsalgoritmen Pollard p-1 itsi 009, proetopgave Torsten Jordt, 9754 00009 En undersøgelse af fatoriseringsalgoritmen Pollard p- Indhold: Opgavens mål og rammer Introdution til fatoriseringsalgoritmer og Pollard p- 3 Pollard p-

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Statistisk mekanik 1 Side 1 af 11 Introduktion. Indledning

Statistisk mekanik 1 Side 1 af 11 Introduktion. Indledning Statistis meani Side af Indledning Statisti er et uundværligt matematis redsab til besrivelsen af et system med uoversueligt mange bestanddele. F.es. er der så mange luftmoleyler i blot mm 3 luft, at det

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen. Talteori. Georg Mohr-Konkurrencen

Tip til 1. runde af Georg Mohr-Konkurrencen. Talteori. Georg Mohr-Konkurrencen Tip til 1. runde af Georg Mohr-Konkurrencen Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal går op i et andet helt tal. Derfor spiller primtallene en helt central rolle i talteori,

Læs mere

ANALYSE 1, 2014, Uge 5

ANALYSE 1, 2014, Uge 5 ANALYSE, 204, Uge 5 Afleveringsfrist for Prøve 2 er Tirsdag den 20/5 kl 0:5. Forelæsninger Tirsdag Vi går videre med Afsnit 4 om uniform konvergens af Fourierrækker, hvor hovedsætningen er Sætning 4.3.

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil

Læs mere

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016 Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen Bilag 5: DEA-modellen Bilaget indeholder en tenis besrivelse af DEA-modellen FRSYNINGSSERETARIATET INDLEDNING... 3 INPUTSTYRET DEA-MDEL... 3 UTPUTSTYRET DEA-MDEL... 7 SALAAFAST... 12 2 Indledning Data

Læs mere

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Definition: Et primtal er et naturligt tal større end 1, som kun 1 og tallet selv går op i. Eksempel 1: Tallet 1 ikke et primtal fordi det ikke

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man

Læs mere

Matematikken bag kryptering og signering RSA

Matematikken bag kryptering og signering RSA Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Udeladelse af én observation. Note til kapitlerne 4, 5 og 6

Udeladelse af én observation. Note til kapitlerne 4, 5 og 6 Udeladelse af én observation Note til kapitlerne 4, 5 og 6 I de følgende resultater 1-10 bevises en række resultater, der alle vedrører udeladelse af én observation. Derved bevises og uddybes en række

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første studieår ved Det Teknisk-Naturvidenskabelige Fakultet 23. august, 2016, 9.00-13.00 Dette eksamenssæt består af 11 nummerede sider med 16 opgaver. Alle opgaver er multiple

Læs mere

Rettevejledning til Georg Mohr-Konkurrencen runde

Rettevejledning til Georg Mohr-Konkurrencen runde Rettevejledning til Georg Mohr-Konkurrencen 2006 2. runde Det som skal vurderes i bedømmelsen af en opgave, er om deltageren har formået at analysere problemstillingen, kombinere de givne oplysninger til

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

Spilstrategier, Kirsten Rosenkilde, september 2007 1. Spilstrategier

Spilstrategier, Kirsten Rosenkilde, september 2007 1. Spilstrategier Spilstrategier, Kirsten Rosenkilde, september 2007 1 1 Spilstrategier Spilstrategier De spiltyper vi skal se på her, er spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at

Læs mere

Eksamen i Calculus Fredag den 8. januar 2016

Eksamen i Calculus Fredag den 8. januar 2016 Eksamen i Calculus Fredag den 8. januar 2016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Besvarelser til Calculus Ordinær Eksamen Januar 2019

Besvarelser til Calculus Ordinær Eksamen Januar 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Januar 19 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polynomier, Kirsten Rosenkilde, Marts 2006 1 Polynomier Disse noter giver en kort introduktion til polynomier, og de fleste sætninger nævnes uden bevis. Undervejs er der forholdsvis nemme opgaver,

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 10. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 10. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 10. september 2018 Oversigt Relle tal Notation Tal Største og mindste element, mindste overtal og største undertal

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2019

Besvarelser til Calculus Ordinær Eksamen Juni 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018

Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Januar 18 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Random Walk-kursus 2014 Jørgen Larsen 14. oktober 2014 Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Dette notat giver et bevis for at en symmetrisk random walk på Z eller Z 2 og

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Her er der en kort introduktion til forskellige teknikker efterfulgt af opgaver hvor man kan

Læs mere

n=1 er veldefineret for alle følger for hvilke højresiden er endelig. F.eks. tilhører følgen

n=1 er veldefineret for alle følger for hvilke højresiden er endelig. F.eks. tilhører følgen 2 Hilbert rum 2. Eksempler på Hilbert rum Vi skal nu først forsøge at begrunde, at de indre produkt rum af funktioner eller følger, som blev indført i Kapitel, ikke er omfattende nok til vores formål.

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

Archimedes Princip. Frank Nasser. 12. april 2011

Archimedes Princip. Frank Nasser. 12. april 2011 Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 2 2 n 1/n (logn) n. n 2

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 2 2 n 1/n (logn) n. n 2 Side af sider Opgave (%) Ja Nej n er O(n n)? n er O(n+n )? ( n ) er O( n )? logn er O(n / )? n +n er O(n)? Opgave (%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn)

Læs mere

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive

Læs mere