CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : Kursus navn: Sandsynlighedsregning

Størrelse: px
Starte visningen fra side:

Download "CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning"

Transkript

1 CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: 2. juni 2009 Kursus nr : Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift) (bord nr) Der er i alt 0 spørgsmål fordelt på 0 opgaver, benævnt opgave 1,2,..., 0 i teksten. De enkelte spørgsmål er ligeledes nummereret og angivet som spørgsmål 1,2,...,0 i teksten. Bevarelserne af de 0 spørgsmål føres ind i nedenstående skema. Spørgsmål Svar Spørgsmål Svar Svarmulighederne for hvert spørgsmål er nummereret fra 1 til 6. Indføres et forkert nummer i skemaet, kan dette rettes ved at sværte det forkerte nummer over og anføre det rigtige nedenunder. Er der tvivl om meningen med en rettelse, betragtes spørgsmålet som ubesvaret. Kun forsiden skal afleveres. Afleveres blankt eller forlades eksamen i utide, skal forsiden alligevel afleveres. Kladde, mellemregninger og bemærkninger tillægges ingen betydning, kun tallene indført ovenfor registreres. Der gives 5 point for et korrekt svar og 1 for et ukorrekt svar. Ubesvarede spørgsmål eller et 6-tal (svarende til ved ikke ) giver 0 point. Det antal point, der kræves for, at et sæt anses for tilfredstillende besvaret, afgøres endeligt ved censureringen af sættene. Husk at forsyne opgaveteksten med navn, underskrift og bordnummer. Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder er meningsfulde. Sættets sidste side er nr 18; blad lige om og se, at den er der. I teksten benyttes betegnelsen log( ) for naturlige logaritmer, dvs. logaritmer med grundtal e. 1

2 Opgave 1 Om de to stokastiske variable X og Y oplyses det, at E(X) = 4, E(Y ) = 7, SD(X) = 10, SD(Y ) = 5 og Cov(X, Y ) = 0, 5. Endvidere indføres U = X 2Y + 1. Spørgsmål 1 E(U) bestemmes til , Opgave 2 To drenge spiller et spil, hvor det gælder om at få det højeste tal. I hver runde slår Hans med en almindelig sekssidet terning, imedens John kaster med en mønt. Plat svarer til et point og krone til 0 point. John skal dog gange sit kast med to, og så finde kvadratet af dette tal for at udregne sit antal point i hver runde. Spørgsmål 2 Hvad er den forventede værdi af de to drenges kast i hver runde? 1 Hans: ; John: 1 2 Hans: ; John: 2 Hans:,5 ; John: 2 4 Hans:,5 ; John: 4 5 Hans:4 ; John: 4 2

3 Opgave I et GPS system benyttes en tidsangivelse baseret på fremkomsten af forskellige satellitsignaler. Disse signalers fremkomsttid har en mindre gensidig variation. Man interesserer sig for fordelingen af tidsangivelsen, der beregnes på basis af gennemsnittet af de forskellige signalers fremkomsttider. Spørgsmål Den mest oplagte model blandt nedennævte kontinuerte fordelinger til beskrivelse af tidsangivelsen er 1 Normalfordelingen 2 Gammafordelingen Eksponentialfordelingen 4 Rayleighfordelingen 5 Betafordelingen Opgave 4 Tiden mellem afgivelser af partikler fra en radioaktiv kilde antages ekponentielt fordelt med middelværdi 0, 2s. Antallet af afgivede partikler tælles fra tiden t 0. Spørgsmål 4 Bestem eventuelt approksimativt sandsynligheden for, at partikel nummer bliver afgivet inden, der er gået minutter fra t Φ(1) 2 ( ,2 60 ) i i= i! e t0, e e hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel.

4 Opgave 5 Karen skal lave kødsovs til sin madklub og vil regne på sandsynligheden for, at hun når det til tiden. Risikoen for, at løg ikke er færdige til tiden er 0,. Når løgene er færdige kan kødet blandes i, hvis blusset er blevet varmt nok. Sandsynligheden for, at blusset er varmt, når løgene er færdige, er 0,8. Kun hvis blusset er varmt nok, når løgene er færdige, bliver sovsen færdig, så der er tid til at smage den til. Sandsynligheden for, at Karen ikke er fortabt i TV et og opdager, når sovsen er færdig så hun kan smage den til og blive færdig til tiden, er 0,4. Spørgsmål 5 Hvad er sandsynligheden for, at alt går op i en højere enhed, og, Karen kan servere kødsovsen til tiden? 1 0, ,500 0, ,6 5 0,800 Opgave 6 Vi vil betragte tre hændelser A, B og C. Spørgsmål 6 Sandsynligheden P(A B C) findes til 1 P(A) + P(B) + P(C) 2 P(A) + P(B) + P(C) + P(A B) + P(A C) + P(B C) P(A B C) P(A) + P(B) + P(C) P(A B) P(A C) P(B C) 4 P(A) + P(B) + P(C) P(A B C) 5 P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) 4

5 Opgave 7 En spiller slår seks gange med en almindelig sekssidet terning. Spørgsmål 7 Middelværdi og varians af det totale antal af seksere i de seks slag er henholdsvis 1 1 ; ; ; ; ; 1 6 Opgave 8 Om de stokastiske variable X og Y oplyses E(X) = 2, E(Y ) =, E ( X 2) = 5, E ( Y 2) = 10 og E(XY ) = Man danner Z = X 2Y. Spørgsmål 8 Man finder variansen V ar(z) til 1 V ar(z) = 0 2 V ar(z) = 7 V ar(z) = 1 4 V ar(z) = 19 5 V ar(z) = 25 5

6 Opgave 9 Lad X være en eksponential fordelt stokastisk variabel med rate λ. Man danner da Y = log (X). Spørgsmål 9 Tætheden f Y (y) findes til 1 f Y (y) = λe λey 2 f Y (y) = 2λe 2λey f Y (y) = e y e ey 4 f Y (y) = e y e λey 5 f Y (y) = λe y λey Opgave 10 En vindmøllefarmbestyrer ønsker at beregne sandsynligheden for, at hans vindmøller stopper givet, at vindhastigheden er over en maximal værdi. Fra tidligere observationer ved han, at sandsynligheden for, at vinden var over den maximale værdi, givet, at vindmøllerne stoppede, er 0,9, og, at sandsynligheden for, at vinden overskred grænsen, givet, at de ikke stoppede, er 0,2. Ydermere har han beregnet, at sandsynligheden for, at vindmøllerne stopper, er 0,1. Spørgsmål 10 Hvad er sandsynligheden for, at vindmøllerne stopper givet, at vinden overskrider maximum værdien?

7 Opgave 11 Vi betragter en Rayleigh fordelt stokastisk variabel R. Spørgsmål 11 Hazard rate for R er 1 Strengt voksende 2 Strengt aftagende Først voksende, siden aftagende 4 Først aftagende, siden voksende 5 Konstant Opgave 12 Sandsynligheden for, at der kommer en kraftig nedbørshændelse på en given lokalitet en given dag i juli er 1 9. På et nærliggende rensningsanlæg anslår man, at sandsynligheden for overløb af anlægget givet en kraftig nedbørshændelse er 1 4, medens sandsynligheden for overløb uden en kraftig nedbørshændelse er forsvindende. Spørgsmål 12 Sandsynligheden for, at der opleves overløb på rensningsanlægget en given dag i juli, findes til

8 Opgave 1 En systemadministrator har behov for at tilgå en database, men denne er overbelastet. Alle der prøver at komme ind på siden har lige stor sandsynlighed for at blive ladt igennem, og der er en sandsynlighed på 1 20 for at komme ind ved det enkelte forsøg. Spørgsmål 1 Hvad er sandsynligheden for, at systemadministratoren kommer igennem netop i tredje forsøg? 1 e 0,95 0,95! 2 e 0,05 0,05! Opgave 14 En opdrætter af racekatte har en hvid hunkat, der skal have killinger. Han ved, at hver killing bliver hvid med sandsynlighed 0,4, og, at kuldet bliver på 5 killinger. Han står og snakker med en sælger, der er interesseret i at købe så mange af de hvide killinger som muligt. Spørgsmål 14 Hvad er det mest sandsynlige antal hvide killinger i kuldet?

9 Opgave 15 Man har givet X og Y, der er to uafhængige geometrisk fordelte variable, således at P(X = x) = P(Y = x) = p(1 p) x 1 for x = 1, 2,.... Spørgsmål 15 Man beregner P(X = x X + Y = n) til 1 P(X = x X + Y = n) = ( n x ) 2 n 2 P(X = x X + Y = n) = 1 n P(X = x X + Y = n) = p(1 p)x 1 p(1 p) n x ( ) n + 1 p n 2 (1 p) n 1 4 P(X = x X + Y = n) = 1 n 1 5 P(X = x X + Y = n) = i=1 p(1 p) x 1 np(1 p)i 1 9

10 Opgave 16 Størrelsen af bankers indlånsunderskud umiddelbart inden en recession og varigheden af den efterfølgende recession kan beskrives ved en bivariat normalfordeling. Middelværdien og variansen af indlånsunderskuddet kan antages at være henholdsvis 120 og 10 2, medens middelværdi og varians af varigheden kan antages at være henholdsvis 2 og 1 9. Korrelationskoefficienten kan antages at være 0,6. Spørgsmål 16 Umiddelbart inden en recession er indlånsunderskuddet 150. Sandsyligheden for, at recession har en varighed på over 2, findes til 1 1 Φ(6) 2 (2Φ(6) 1) 1 Φ ( ) Φ ( 1 ) Φ ( ) 27 8 hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 10

11 Opgave 17 En bioteknologistuderende skal udføre nogle forsøg, som hun skal bruge mindst en bakteriekoloni til at udføre. Hun sætter tre kolonier på samme størrelse igang med at vokse. Kolonierne udvider deres radius med 6mm i timen i gennemsnit med en varians på 4mm 2. Denne udvidelse kan antages normalfordelt. Om en time skal den studerende bruge mindst en koloni til sit eksperiment. For at kunne bruge en koloni skal den have vokset 10mm, siden hun satte dem igang. Spørgsmål 17 Hvad er sandsynligheden for, at den hurtigst voksende har opnået mindst denne størrelse? 1 1 Φ(2) 2 1 Φ(1) 1 Φ(2) 4 Φ(2) hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 11

12 Opgave 18 I en kasse på 50 nyhøstede æbler er der talt 5 rådne æbler. Man antager, at denne kasse er repræsentativ for æbleplantagen, den kommer fra. Spørgsmål 18 Angiv, eventuelt approksimativt, sandsynligheden for, at der er mere end 00 rådne æbler i en høst på 600 æbler? 1 1 Φ ( ) 00, ( i=0 i 1 ( i=0 i 4 Φ ( 299, ( i=0 i ) ) 0, 1 i 0, i ) 0, 1 i 0, i ) 0, 1 i 0, 9 01 i hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 12

13 Opgave 19 En elektroingeniør bygger en robot. Hun har en kasse med 10 skruer. Der er tre af den mindste størrelse, fem af den mellemste, og to af de største. Hun skal nu bruge to af de mindste skruer, men kan ikke flytte fokus fra robotten. Spørgsmål 19 Hvad er sandsynligheden for, at hun, når hun trækker to tilfældige skruer, får de to, hun skal bruge? 1 2 ( ) A 1 A ( 10 5 ( 2 ) 2 ) 2 Opgave 20 Vi betragter 10 uniformt fordelte variable på intervallet [0, 1]. Spørgsmål 20 Tætheden, f (7) (x), for den 4. største af de 10 findes til 1 10(1 x) ! 6!! x6 (1 x) 10! 6!4! x6 (1 x) 4 4 ( ) 10 (1 x) ( 10 4 ) x 7 (1 x) 1

14 Opgave 21 En bygningsingeniør skal udarbejde en motorvejssammenfletning. Det vides fra observationer af denne strækning, at sandsynligheden for, at der går mere end t sekunder imellem to biler på tilkørslen, er e 2t. For at fastsætte antallet af spor i tilkørslen skal han vide noget om sandsynligheder for antallet af biler, der kan ankomme inden for kort tid. Spørgsmål 21 Hvad er sandsynligheden for, at mere end tre biler ankommer inden for et sekund? e e e e e 2 Opgave 22 CampusService vil regne på sandsynligheden for, at en pære i et svært tilgængeligt hjørne i hallen går i stykker under årsfesten. Antag, at sandsynligheden for, at netop en pære går indenfor et bestemt område er uniformt fordelt. Loftet antages at have dimensioner 50m gange 0m. Spørgsmål 22 Sandsynligheden for, at pæren går i et hjørne på m gange m findes til

15 Opgave 2 En ingeniør i medicin og teknologi skal bruge nogle lysdioder til at reparere nogle tilstandslamper på en fmri scanner i et andet rum. Hun står med en kasse med tre gule dioder og skal også bruge 2 røde. I det rum, hun står i, er der en stor kasse med røde dioder. Desværre er 70% af disse i stykker uden, at hun ved det. Hun trækker to og ligger dem ned i kassen til de andre dioder (der er så mange røde dioder, at man bør se dem som at være blevet trukket med tilbagelægning). Spørgsmål 2 Når hun kommer ind i rummet med scanneren skal hun først bruge de to røde dioder. Hvis hun tager to tilfældige dioder fra kassen, uden at se på deres farver, hvad er så det forventede antal af røde, funktionsdygtige dioder hun får fat i? 1 0, , (2 0, 7 + 0, ) 0, 4 4 0, , 0, 7 + 0, Opgave 24 Årligt dør tre kvinder i gennemsnit i Danmark af kræft i læberne. Spørgsmål 24 Hvad er sandsynligheden for, at fem kvinder et år dør af kræft i læberne? Φ( 5 ) Φ(5) 4 e 5 5! 5 e 5 5! hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 15

16 Opgave 25 Vi betragter Y, der er maksimum af 4 uafhængige uniform(0, 1) variable og X, der er minimum af de samme 4 uniform(0, 1) variable. Spørgsmål 25 Den simultane fordelingsfunktion F(x, y) findes til 1 F(x, y) = y 4 (1 (1 x) 4 ) 2 F(x, y) = y (y x) F(x, y) = 16y (1 x) 4 F(x, y) = y 4 (y x) 4 5 F(x, y) = 1 (y x) 4 Opgave 26 Et punkt vælges i planen, således at koordinaterne kan beskrives som uafhængige normalfordelte variable hvor E(X) = 1 og E(Y ) =. Variansen af både X og Y koordinaten er 4. Spørgsmål 26 Sansyndligheden for, at det valgte punkt ligger uden for cirklen (X 1) 2 + (Y ) 2 = 4, findes til (x 1) 2 x 2 + y 2 e 1 4 (x 1) 2 2 (x2 +y 2) dydx 2 (1 Φ(1)) 2 e 2 4 e 1 5 e 1 2 hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 16

17 Opgave 27 De stokastiske variable X og Y har simultan tæthedsfunktion f(x, y) = e x y for 0 ) < x 2 y 2x. Den marginale tæthed er for både X og Y givet ved f(x) = (e x 2 e x. Man danner nu den stokastiske variabel Z = X + Y. Spørgsmål 27 Tætheden f Z (z) findes ved 1 f Z (z) = z 0 e x (z x) dx 2 f Z (z) = 2z z f Z (z) = 2z z 4 f Z (z) = z 2 z 5 f Z (z) = 4z z Opgave 28 e z dx ) ) 9 (e x 2 e (e x (z x) 2 e (z x) dx e x (x z) dx ) ) 9 (e x 2 e (e x (z x) 2 e (z x) dx Den gennemsnitlige varighed af økonomiske kriser anslåes til at være ca. 2 år. Spørgsmål 28 Sandsynligheden for, at varigheden af en økonomisk krise overstiger 4 år kan maksimalt være Φ Φ ( ) 4 q 2 2 ( ) hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 17

18 Opgave 29 Lise har i tidligere eksaminer set, at hendes chance for at bestå er 0,7 når Rikke består og 0,4 hvis Rikke ikke består. De skal nu begge til eksamen, og Rikke skyder hendes sandsynlighed for at bestå til at være 0,9. Hvad er sandsynligheden for, at Lise består? Spørgsmål ,6 2 0,70 0,59 4 0,96 5 0,67 Opgave 0 En netværksadministrator vil udregne den forventede tid mellem nedbrud af netværket. Det vides erfaringsmæssigt, at givet en rate Λ er tiden mellem nedbrud eksponentialfordelt med denne rate. Raten Λ er variabel og følger en uniform fordeling mellem 1 og 5. Spørgsmål 0 Hvad er den forventede tid mellem nedbrud af netværket? e log (5) (log (5) 1) 5 1 x Slut på opgavesættet. 18

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 16. december 2010 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 0. maj 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 27. maj 20 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift) (bord

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 20. december 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 20. december 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 20. december 2011 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. maj 05 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider Skriftlig prøve, den: 17. december 015 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 8. august 06 Kursus nr : 005 Kursus navn: Sandsynlighedsregning Varighed : timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 6 sider Skriftlig prøve, den: 24. maj 2 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen

Læs mere

Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :...

Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :... År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik Skriftlig prøve, den 5. december 3. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige. "Vægtning":

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@imm.dtu.dk Dagens nye emner afsnit 6.3 (og 6.4 Betingede

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede) fordelingsfunktion

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 0. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6. og 6. Betingede diskrete

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 9. januar 1997. Kursus navn : 04250 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner 5.1 og 5.2 Ligefordeling med to

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar Side 1 af 26 sider Skriftlig prøve, den 14. december 2013. Kursus navn: Billedanalyse. Kursus nummer: 02502 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. 4 timer Alle opgaver vægtes ligeligt.

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 29 sider. Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041. (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 29 sider. Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041. (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 29 sider Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041 Kursus navn: Statistik 1 Tilladte hjælpemidler: Alle sædvanlige Dettesæterbesvaretaf: (navn) (underskrift)

Læs mere

Alle hjælpemidler er tilladt. Computer med Matlab kræves. Navn :.Læreren... Underskrift :... Bord nr. :... Ogave

Alle hjælpemidler er tilladt. Computer med Matlab kræves. Navn :.Læreren... Underskrift :... Bord nr. :... Ogave Skriftlig prøve, den 14. december 015. Kursus navn: Billedanalyse. Kursus nummer: 050 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. Computer med Matlab kræves. 4 timer Alle opgaver vægtes

Læs mere

StatDataN: Middelværdi og varians

StatDataN: Middelværdi og varians StatDataN: Middelværdi og varians JLJ StatDataN: Middelværdi og varians p. 1/33 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle egetræer,

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

Nanostatistik: Opgaver

Nanostatistik: Opgaver Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable: udfald

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 19. december 1998. Kursus navn : 04250 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet DTU. Kursus 02511. Forside + 25 sider. 30. Maj 2011. 1 Danmarks Tekniske Universitet Skriftlig prøve, den 30. maj 2011 Kursus navn: Indledende Medicinsk Billedanalyse Kursusnr: 02511 Varighed: 4 timer

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/29 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Vejledende løsninger til opgaver i kapitel 6

Vejledende løsninger til opgaver i kapitel 6 Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer

Læs mere

Nanostatistik: Middelværdi og varians

Nanostatistik: Middelværdi og varians Nanostatistik: Middelværdi og varians JLJ Nanostatistik: Middelværdi og varians p. 1/28 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle

Læs mere

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Løsninger til kapitel 5

Løsninger til kapitel 5 1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere