CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : Kursus navn: Sandsynlighedsregning

Størrelse: px
Starte visningen fra side:

Download "CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning"

Transkript

1 CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: 2. juni 2009 Kursus nr : Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift) (bord nr) Der er i alt 0 spørgsmål fordelt på 0 opgaver, benævnt opgave 1,2,..., 0 i teksten. De enkelte spørgsmål er ligeledes nummereret og angivet som spørgsmål 1,2,...,0 i teksten. Bevarelserne af de 0 spørgsmål føres ind i nedenstående skema. Spørgsmål Svar Spørgsmål Svar Svarmulighederne for hvert spørgsmål er nummereret fra 1 til 6. Indføres et forkert nummer i skemaet, kan dette rettes ved at sværte det forkerte nummer over og anføre det rigtige nedenunder. Er der tvivl om meningen med en rettelse, betragtes spørgsmålet som ubesvaret. Kun forsiden skal afleveres. Afleveres blankt eller forlades eksamen i utide, skal forsiden alligevel afleveres. Kladde, mellemregninger og bemærkninger tillægges ingen betydning, kun tallene indført ovenfor registreres. Der gives 5 point for et korrekt svar og 1 for et ukorrekt svar. Ubesvarede spørgsmål eller et 6-tal (svarende til ved ikke ) giver 0 point. Det antal point, der kræves for, at et sæt anses for tilfredstillende besvaret, afgøres endeligt ved censureringen af sættene. Husk at forsyne opgaveteksten med navn, underskrift og bordnummer. Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder er meningsfulde. Sættets sidste side er nr 18; blad lige om og se, at den er der. I teksten benyttes betegnelsen log( ) for naturlige logaritmer, dvs. logaritmer med grundtal e. 1

2 Opgave 1 Om de to stokastiske variable X og Y oplyses det, at E(X) = 4, E(Y ) = 7, SD(X) = 10, SD(Y ) = 5 og Cov(X, Y ) = 0, 5. Endvidere indføres U = X 2Y + 1. Spørgsmål 1 E(U) bestemmes til , Opgave 2 To drenge spiller et spil, hvor det gælder om at få det højeste tal. I hver runde slår Hans med en almindelig sekssidet terning, imedens John kaster med en mønt. Plat svarer til et point og krone til 0 point. John skal dog gange sit kast med to, og så finde kvadratet af dette tal for at udregne sit antal point i hver runde. Spørgsmål 2 Hvad er den forventede værdi af de to drenges kast i hver runde? 1 Hans: ; John: 1 2 Hans: ; John: 2 Hans:,5 ; John: 2 4 Hans:,5 ; John: 4 5 Hans:4 ; John: 4 2

3 Opgave I et GPS system benyttes en tidsangivelse baseret på fremkomsten af forskellige satellitsignaler. Disse signalers fremkomsttid har en mindre gensidig variation. Man interesserer sig for fordelingen af tidsangivelsen, der beregnes på basis af gennemsnittet af de forskellige signalers fremkomsttider. Spørgsmål Den mest oplagte model blandt nedennævte kontinuerte fordelinger til beskrivelse af tidsangivelsen er 1 Normalfordelingen 2 Gammafordelingen Eksponentialfordelingen 4 Rayleighfordelingen 5 Betafordelingen Opgave 4 Tiden mellem afgivelser af partikler fra en radioaktiv kilde antages ekponentielt fordelt med middelværdi 0, 2s. Antallet af afgivede partikler tælles fra tiden t 0. Spørgsmål 4 Bestem eventuelt approksimativt sandsynligheden for, at partikel nummer bliver afgivet inden, der er gået minutter fra t Φ(1) 2 ( ,2 60 ) i i= i! e t0, e e hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel.

4 Opgave 5 Karen skal lave kødsovs til sin madklub og vil regne på sandsynligheden for, at hun når det til tiden. Risikoen for, at løg ikke er færdige til tiden er 0,. Når løgene er færdige kan kødet blandes i, hvis blusset er blevet varmt nok. Sandsynligheden for, at blusset er varmt, når løgene er færdige, er 0,8. Kun hvis blusset er varmt nok, når løgene er færdige, bliver sovsen færdig, så der er tid til at smage den til. Sandsynligheden for, at Karen ikke er fortabt i TV et og opdager, når sovsen er færdig så hun kan smage den til og blive færdig til tiden, er 0,4. Spørgsmål 5 Hvad er sandsynligheden for, at alt går op i en højere enhed, og, Karen kan servere kødsovsen til tiden? 1 0, ,500 0, ,6 5 0,800 Opgave 6 Vi vil betragte tre hændelser A, B og C. Spørgsmål 6 Sandsynligheden P(A B C) findes til 1 P(A) + P(B) + P(C) 2 P(A) + P(B) + P(C) + P(A B) + P(A C) + P(B C) P(A B C) P(A) + P(B) + P(C) P(A B) P(A C) P(B C) 4 P(A) + P(B) + P(C) P(A B C) 5 P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) 4

5 Opgave 7 En spiller slår seks gange med en almindelig sekssidet terning. Spørgsmål 7 Middelværdi og varians af det totale antal af seksere i de seks slag er henholdsvis 1 1 ; ; ; ; ; 1 6 Opgave 8 Om de stokastiske variable X og Y oplyses E(X) = 2, E(Y ) =, E ( X 2) = 5, E ( Y 2) = 10 og E(XY ) = Man danner Z = X 2Y. Spørgsmål 8 Man finder variansen V ar(z) til 1 V ar(z) = 0 2 V ar(z) = 7 V ar(z) = 1 4 V ar(z) = 19 5 V ar(z) = 25 5

6 Opgave 9 Lad X være en eksponential fordelt stokastisk variabel med rate λ. Man danner da Y = log (X). Spørgsmål 9 Tætheden f Y (y) findes til 1 f Y (y) = λe λey 2 f Y (y) = 2λe 2λey f Y (y) = e y e ey 4 f Y (y) = e y e λey 5 f Y (y) = λe y λey Opgave 10 En vindmøllefarmbestyrer ønsker at beregne sandsynligheden for, at hans vindmøller stopper givet, at vindhastigheden er over en maximal værdi. Fra tidligere observationer ved han, at sandsynligheden for, at vinden var over den maximale værdi, givet, at vindmøllerne stoppede, er 0,9, og, at sandsynligheden for, at vinden overskred grænsen, givet, at de ikke stoppede, er 0,2. Ydermere har han beregnet, at sandsynligheden for, at vindmøllerne stopper, er 0,1. Spørgsmål 10 Hvad er sandsynligheden for, at vindmøllerne stopper givet, at vinden overskrider maximum værdien?

7 Opgave 11 Vi betragter en Rayleigh fordelt stokastisk variabel R. Spørgsmål 11 Hazard rate for R er 1 Strengt voksende 2 Strengt aftagende Først voksende, siden aftagende 4 Først aftagende, siden voksende 5 Konstant Opgave 12 Sandsynligheden for, at der kommer en kraftig nedbørshændelse på en given lokalitet en given dag i juli er 1 9. På et nærliggende rensningsanlæg anslår man, at sandsynligheden for overløb af anlægget givet en kraftig nedbørshændelse er 1 4, medens sandsynligheden for overløb uden en kraftig nedbørshændelse er forsvindende. Spørgsmål 12 Sandsynligheden for, at der opleves overløb på rensningsanlægget en given dag i juli, findes til

8 Opgave 1 En systemadministrator har behov for at tilgå en database, men denne er overbelastet. Alle der prøver at komme ind på siden har lige stor sandsynlighed for at blive ladt igennem, og der er en sandsynlighed på 1 20 for at komme ind ved det enkelte forsøg. Spørgsmål 1 Hvad er sandsynligheden for, at systemadministratoren kommer igennem netop i tredje forsøg? 1 e 0,95 0,95! 2 e 0,05 0,05! Opgave 14 En opdrætter af racekatte har en hvid hunkat, der skal have killinger. Han ved, at hver killing bliver hvid med sandsynlighed 0,4, og, at kuldet bliver på 5 killinger. Han står og snakker med en sælger, der er interesseret i at købe så mange af de hvide killinger som muligt. Spørgsmål 14 Hvad er det mest sandsynlige antal hvide killinger i kuldet?

9 Opgave 15 Man har givet X og Y, der er to uafhængige geometrisk fordelte variable, således at P(X = x) = P(Y = x) = p(1 p) x 1 for x = 1, 2,.... Spørgsmål 15 Man beregner P(X = x X + Y = n) til 1 P(X = x X + Y = n) = ( n x ) 2 n 2 P(X = x X + Y = n) = 1 n P(X = x X + Y = n) = p(1 p)x 1 p(1 p) n x ( ) n + 1 p n 2 (1 p) n 1 4 P(X = x X + Y = n) = 1 n 1 5 P(X = x X + Y = n) = i=1 p(1 p) x 1 np(1 p)i 1 9

10 Opgave 16 Størrelsen af bankers indlånsunderskud umiddelbart inden en recession og varigheden af den efterfølgende recession kan beskrives ved en bivariat normalfordeling. Middelværdien og variansen af indlånsunderskuddet kan antages at være henholdsvis 120 og 10 2, medens middelværdi og varians af varigheden kan antages at være henholdsvis 2 og 1 9. Korrelationskoefficienten kan antages at være 0,6. Spørgsmål 16 Umiddelbart inden en recession er indlånsunderskuddet 150. Sandsyligheden for, at recession har en varighed på over 2, findes til 1 1 Φ(6) 2 (2Φ(6) 1) 1 Φ ( ) Φ ( 1 ) Φ ( ) 27 8 hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 10

11 Opgave 17 En bioteknologistuderende skal udføre nogle forsøg, som hun skal bruge mindst en bakteriekoloni til at udføre. Hun sætter tre kolonier på samme størrelse igang med at vokse. Kolonierne udvider deres radius med 6mm i timen i gennemsnit med en varians på 4mm 2. Denne udvidelse kan antages normalfordelt. Om en time skal den studerende bruge mindst en koloni til sit eksperiment. For at kunne bruge en koloni skal den have vokset 10mm, siden hun satte dem igang. Spørgsmål 17 Hvad er sandsynligheden for, at den hurtigst voksende har opnået mindst denne størrelse? 1 1 Φ(2) 2 1 Φ(1) 1 Φ(2) 4 Φ(2) hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 11

12 Opgave 18 I en kasse på 50 nyhøstede æbler er der talt 5 rådne æbler. Man antager, at denne kasse er repræsentativ for æbleplantagen, den kommer fra. Spørgsmål 18 Angiv, eventuelt approksimativt, sandsynligheden for, at der er mere end 00 rådne æbler i en høst på 600 æbler? 1 1 Φ ( ) 00, ( i=0 i 1 ( i=0 i 4 Φ ( 299, ( i=0 i ) ) 0, 1 i 0, i ) 0, 1 i 0, i ) 0, 1 i 0, 9 01 i hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 12

13 Opgave 19 En elektroingeniør bygger en robot. Hun har en kasse med 10 skruer. Der er tre af den mindste størrelse, fem af den mellemste, og to af de største. Hun skal nu bruge to af de mindste skruer, men kan ikke flytte fokus fra robotten. Spørgsmål 19 Hvad er sandsynligheden for, at hun, når hun trækker to tilfældige skruer, får de to, hun skal bruge? 1 2 ( ) A 1 A ( 10 5 ( 2 ) 2 ) 2 Opgave 20 Vi betragter 10 uniformt fordelte variable på intervallet [0, 1]. Spørgsmål 20 Tætheden, f (7) (x), for den 4. største af de 10 findes til 1 10(1 x) ! 6!! x6 (1 x) 10! 6!4! x6 (1 x) 4 4 ( ) 10 (1 x) ( 10 4 ) x 7 (1 x) 1

14 Opgave 21 En bygningsingeniør skal udarbejde en motorvejssammenfletning. Det vides fra observationer af denne strækning, at sandsynligheden for, at der går mere end t sekunder imellem to biler på tilkørslen, er e 2t. For at fastsætte antallet af spor i tilkørslen skal han vide noget om sandsynligheder for antallet af biler, der kan ankomme inden for kort tid. Spørgsmål 21 Hvad er sandsynligheden for, at mere end tre biler ankommer inden for et sekund? e e e e e 2 Opgave 22 CampusService vil regne på sandsynligheden for, at en pære i et svært tilgængeligt hjørne i hallen går i stykker under årsfesten. Antag, at sandsynligheden for, at netop en pære går indenfor et bestemt område er uniformt fordelt. Loftet antages at have dimensioner 50m gange 0m. Spørgsmål 22 Sandsynligheden for, at pæren går i et hjørne på m gange m findes til

15 Opgave 2 En ingeniør i medicin og teknologi skal bruge nogle lysdioder til at reparere nogle tilstandslamper på en fmri scanner i et andet rum. Hun står med en kasse med tre gule dioder og skal også bruge 2 røde. I det rum, hun står i, er der en stor kasse med røde dioder. Desværre er 70% af disse i stykker uden, at hun ved det. Hun trækker to og ligger dem ned i kassen til de andre dioder (der er så mange røde dioder, at man bør se dem som at være blevet trukket med tilbagelægning). Spørgsmål 2 Når hun kommer ind i rummet med scanneren skal hun først bruge de to røde dioder. Hvis hun tager to tilfældige dioder fra kassen, uden at se på deres farver, hvad er så det forventede antal af røde, funktionsdygtige dioder hun får fat i? 1 0, , (2 0, 7 + 0, ) 0, 4 4 0, , 0, 7 + 0, Opgave 24 Årligt dør tre kvinder i gennemsnit i Danmark af kræft i læberne. Spørgsmål 24 Hvad er sandsynligheden for, at fem kvinder et år dør af kræft i læberne? Φ( 5 ) Φ(5) 4 e 5 5! 5 e 5 5! hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 15

16 Opgave 25 Vi betragter Y, der er maksimum af 4 uafhængige uniform(0, 1) variable og X, der er minimum af de samme 4 uniform(0, 1) variable. Spørgsmål 25 Den simultane fordelingsfunktion F(x, y) findes til 1 F(x, y) = y 4 (1 (1 x) 4 ) 2 F(x, y) = y (y x) F(x, y) = 16y (1 x) 4 F(x, y) = y 4 (y x) 4 5 F(x, y) = 1 (y x) 4 Opgave 26 Et punkt vælges i planen, således at koordinaterne kan beskrives som uafhængige normalfordelte variable hvor E(X) = 1 og E(Y ) =. Variansen af både X og Y koordinaten er 4. Spørgsmål 26 Sansyndligheden for, at det valgte punkt ligger uden for cirklen (X 1) 2 + (Y ) 2 = 4, findes til (x 1) 2 x 2 + y 2 e 1 4 (x 1) 2 2 (x2 +y 2) dydx 2 (1 Φ(1)) 2 e 2 4 e 1 5 e 1 2 hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 16

17 Opgave 27 De stokastiske variable X og Y har simultan tæthedsfunktion f(x, y) = e x y for 0 ) < x 2 y 2x. Den marginale tæthed er for både X og Y givet ved f(x) = (e x 2 e x. Man danner nu den stokastiske variabel Z = X + Y. Spørgsmål 27 Tætheden f Z (z) findes ved 1 f Z (z) = z 0 e x (z x) dx 2 f Z (z) = 2z z f Z (z) = 2z z 4 f Z (z) = z 2 z 5 f Z (z) = 4z z Opgave 28 e z dx ) ) 9 (e x 2 e (e x (z x) 2 e (z x) dx e x (x z) dx ) ) 9 (e x 2 e (e x (z x) 2 e (z x) dx Den gennemsnitlige varighed af økonomiske kriser anslåes til at være ca. 2 år. Spørgsmål 28 Sandsynligheden for, at varigheden af en økonomisk krise overstiger 4 år kan maksimalt være Φ Φ ( ) 4 q 2 2 ( ) hvor Φ som sædvanligt angiver fordelingsfunktionen for en standard normalfordelt variabel. 17

18 Opgave 29 Lise har i tidligere eksaminer set, at hendes chance for at bestå er 0,7 når Rikke består og 0,4 hvis Rikke ikke består. De skal nu begge til eksamen, og Rikke skyder hendes sandsynlighed for at bestå til at være 0,9. Hvad er sandsynligheden for, at Lise består? Spørgsmål ,6 2 0,70 0,59 4 0,96 5 0,67 Opgave 0 En netværksadministrator vil udregne den forventede tid mellem nedbrud af netværket. Det vides erfaringsmæssigt, at givet en rate Λ er tiden mellem nedbrud eksponentialfordelt med denne rate. Raten Λ er variabel og følger en uniform fordeling mellem 1 og 5. Spørgsmål 0 Hvad er den forventede tid mellem nedbrud af netværket? e log (5) (log (5) 1) 5 1 x Slut på opgavesættet. 18

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 0. maj 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 20. december 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 20. december 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 20. december 2011 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider Skriftlig prøve, den: 17. december 015 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 8. august 06 Kursus nr : 005 Kursus navn: Sandsynlighedsregning Varighed : timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 6 sider Skriftlig prøve, den: 24. maj 2 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :...

Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :... År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik Skriftlig prøve, den 5. december 3. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige. "Vægtning":

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 9. januar 1997. Kursus navn : 04250 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar Side 1 af 26 sider Skriftlig prøve, den 14. december 2013. Kursus navn: Billedanalyse. Kursus nummer: 02502 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. 4 timer Alle opgaver vægtes ligeligt.

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 29 sider. Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041. (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 29 sider. Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041. (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 29 sider Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041 Kursus navn: Statistik 1 Tilladte hjælpemidler: Alle sædvanlige Dettesæterbesvaretaf: (navn) (underskrift)

Læs mere

Alle hjælpemidler er tilladt. Computer med Matlab kræves. Navn :.Læreren... Underskrift :... Bord nr. :... Ogave

Alle hjælpemidler er tilladt. Computer med Matlab kræves. Navn :.Læreren... Underskrift :... Bord nr. :... Ogave Skriftlig prøve, den 14. december 015. Kursus navn: Billedanalyse. Kursus nummer: 050 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. Computer med Matlab kræves. 4 timer Alle opgaver vægtes

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 19. december 1998. Kursus navn : 04250 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Skriftlig eksamen BioMatI (MM503)

Skriftlig eksamen BioMatI (MM503) INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen BioMatI (MM503) 14. januar 2009 2 timer med alle sædvanlige hjælpemidler, inklusive brug af lommeregner/computer. OPGAVESÆTTET

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet DTU. Kursus 02511. Forside + 25 sider. 30. Maj 2011. 1 Danmarks Tekniske Universitet Skriftlig prøve, den 30. maj 2011 Kursus navn: Indledende Medicinsk Billedanalyse Kursusnr: 02511 Varighed: 4 timer

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Nanostatistik: Middelværdi og varians

Nanostatistik: Middelværdi og varians Nanostatistik: Middelværdi og varians JLJ Nanostatistik: Middelværdi og varians p. 1/28 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/29 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Løsninger til kapitel 5

Løsninger til kapitel 5 1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 21 sider Skriftlig prøve: 15. december 2003 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet DTU. Kursus 02511. Forside + 25 sider. 2. juni 2014. 1 Danmarks Tekniske Universitet Skriftlig prøve, den 2. juni 2014 Kursus navn: Indledende Medicinsk Billedanalyse Kursusnr: 02511 Varighed: 4 timer

Læs mere

År: 2000 Kursusnr: 04250 Indledende Billedbehandling NAVN :... Underskrift :... Bord nr. :... Opgave 11 12 13 14 15 16 17 18 19 20

År: 2000 Kursusnr: 04250 Indledende Billedbehandling NAVN :... Underskrift :... Bord nr. :... Opgave 11 12 13 14 15 16 17 18 19 20 Skriftlig prøve, den 19. December 2000. Kursus navn: Indledende billedbehandling. Tilladte hjælpemidler: Alle sædvanling. "Vægtning": Alle opgaver vægtes ligeligt. NAVN :..................................................

Læs mere

Repetition Stokastisk variabel

Repetition Stokastisk variabel Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg. Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504) For et givent positivt heltal n og en given mængde af familier, antages at sandsynligheden for at familien har i børn, for 1 i n, er p i, således at n i=1 p i = 1. Endvidere er de 2 i mulige måder at få

Læs mere

Fordelinger. En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave. Udvidet version. Ulrich Fahrenberg uli@math.auc.

Fordelinger. En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave. Udvidet version. Ulrich Fahrenberg uli@math.auc. Fordelinger En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave Udvidet version Ulrich Fahrenberg uli@math.auc.dk Da denne fordelingsoversigt's første udgave så verdens lys

Læs mere

Matematik 3 SS. Københavns Universitet Naturvidenskabelig kandidateksamen, sommeren Opgaver til besvarelse i 3 timer fredag den 18. juni 1993.

Matematik 3 SS. Københavns Universitet Naturvidenskabelig kandidateksamen, sommeren Opgaver til besvarelse i 3 timer fredag den 18. juni 1993. Københavns Universitet Opgaver til besvarelse i 3 timer fredag den 18. juni 1993. Opgave 1 (50%) Det bemærkes, at en række af nedenstående spørgsmål kan besvares uafuængigt af de Øvrige spørgsmål (resultaterne,

Læs mere

Betingede sandsynligheder Aase D. Madsen

Betingede sandsynligheder Aase D. Madsen 1 Uge 12 Teoretisk Statistik 15. marts 2004 1. Betingede sandsynligheder Definition Loven om den totale sandsynlighed Bayes formel 2. Betinget middelværdi og varians 3. Kovarians og korrelationskoefficient

Læs mere

Teoretisk Statistik, 13 april, 2005

Teoretisk Statistik, 13 april, 2005 Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Oversigt over nyttige fordelinger

Oversigt over nyttige fordelinger Oversigt over nyttige fordelinger Helene Regitze Lund Wandsøe November 14, 2011 1 Bernoulli-fordelingen 1 Når et eksperiment har to mulige udfald: succes eller fiasko. X er en stokastisk variabel med følgende

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Kiosk-modellen (News vendor s model) og EOQ modellen

Kiosk-modellen (News vendor s model) og EOQ modellen Kiosk-modellen (News vendor s model) og EOQ modellen Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet September 17, 2014 1/15 Stokastiske modeller i økonomi Fundamentale modeller i

Læs mere

Almindelige kontinuerte fordelinger

Almindelige kontinuerte fordelinger Almindelige kontinuerte fordelinger Den uniforme fordeling Symbol: X Uniform a,b Beskrivelse: Et tilfældigt tal mellem a og b. Støtte: V X a, b. Tæthedsfunktion: f x 1/ b a for x a,b Fordelingsfunktion:

Læs mere

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434)

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Opgave Vi kan selv vælge, om vi vil arbejde med ordnet eller uordnet udtagelse, hvis vi blot sikrer, at vi er konsekvente i vores valg,

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

Test nr. 4 af centrale elementer 02402

Test nr. 4 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 4 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

Mat2SS Vejledende besvarelse uge 11

Mat2SS Vejledende besvarelse uge 11 MatSS Vejledende besvarelse uge Eksamen V99/00 opg. a Kønsfordelingen 996 den samme for de tre skoler Mænd Kvinder I alt København 5 = n x 56 = x 8 = n Odense 9 = n x 06 = x 5 = n Århus 0 = n x 40 = x

Læs mere

Modeller for ankomstprocesser

Modeller for ankomstprocesser Modeller for ankomstprocesser Eric Bentzen Institut for Produktion og Erhvervsøkonomi Handelshøjskolen i København November 2007 1 . Afsnit Indhold Side 1 Indledning 3 2 Ankomstprocessen 3 3 Servicesystemet

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl. 9.00 12.00 IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 5

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

2011.09.20 lth@campus.dk

2011.09.20 lth@campus.dk 2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk

Læs mere

Eksamen i Calculus Fredag den 8. januar 2016

Eksamen i Calculus Fredag den 8. januar 2016 Eksamen i Calculus Fredag den 8. januar 2016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere