02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

Størrelse: px
Starte visningen fra side:

Download "02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5"

Transkript

1 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: side 201 og 6ed: side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling og normalfordelingen, nemlig at X LN(α, β 2 ) log(x) N(α, β 2 ) hvor log(x) betyder den naturlige logaritme N(0,1) og LN(0,1) fordelinger Log-normalfordelingen har en lang højre hale. Når man tager logaritmen af observationerne, bliver logaritmens fordeling normal og symmetrisk. Det benytter man ofte for data med kun positive værdier, som har en lang højre hale. I opgaven er X LN(8.85, ). Vi skal finde a) P r {X > 200} = P r {log(x) > log(200)} = P r {Y > } hvor Y N(8.85, ). P r {Y > } = P r { Y > } = P {N(0, 1) > } = idet P r {N(0, 1) > } = 1 P {N(0, 1) } = 1 Φ( ) I R > 1-plnorm(200,8.85,1.03) [1] b) På samme måde: P r {X < 300} = P r {log(x) < log(300)} = P r {Y < } hvor Y N(8.85, ). P r {Y < } = P r { Y < } = P r {N(0, 1) < 3.05} = Φ( 3.05) =

2 I R > plnorm(300,8.85,1.03) [1] Opgave 5.120, side 171 (7ed: 5.119, side 201 og 6ed: 5.119, side 197) Vi har følgende data: X = {12, 30, 30, 27, 30, 39, 18, 27, 48, 24, 18}. Vi ønsker at vurdere, om det er tænkeligt, at disse data kan stamme fra en normalfordeling. I følgende figur er tegnet den empiriske fordelingsfunktion og den normale fordelingsfunktion med dataenes gennemsnit og spredning som middelværdi og standard afvigelse: N(27.55, ); Det ser for så vidt nydeligt ud, men vi tegner nu det normalfordelings plot, der er bedt om i opgaveteksten. Ordnede data x ( i) Orden i p i = (i 0.5)/ Normal scores z i Værdierne z i er udregnede, så Φ(z i ) = p i. For eksempel er Φ(0.23) = Vi kan nu tegne den ønskede figur, idet der også er tegnet den linie ind, som svarer til N(27.55, )-fordelingen; den går gennem punkterne ( 2.00, ) og (+2.00, ). 2

3 (i 0.5)/n Standard normal fractiles Observations sorted På baggrund af plottet vil man ikke afvise, at data med rimelighed kan antages normalfordelte. På figuren er z erne afsat på abscisse aksen, medens observationerne er afsat på ordinataksen. Læg mærke til, at z erne er beregnet lidt anderledes end i bogen (og f.eks. også anderledes end i opgave 5.95). Den viste metode anses af de fleste for den bedste. I R Du kan også lave et normal score plot i R. Her bliver den dog beregnet lidt anderledes end i R, og resultatet vil derfor heller ikke ligne ovenstå ende plot eksakt. Vi benytter funktionen qqnorm, der tegner et normalscoreplot. I R behøver vi ikke at sortere vores data eller udregne normalscorerne. R har også en indbygget funktion kaldet qqline, som vi også vil benytte her. Den tegner en linje gennem 1. og 3. kvartil. Grunden til dette er robusthed, og princippet er lidt det samme som i boxplot. Vi ønsker ikke, at lade halerne af dataene influere vores linje. velocity = c(12,30,30,27,30,39,18,27,48,24,18) normalscore = qqnorm(velocity) qqline(velocity) 3

4 Normal Q Q Plot Sample Quantiles Theoretical Quantiles Opgave 6.2, side 186 (7ed: side 214 og 6ed: side 210) For 8.ed.: Hvis man systematisk KUN måler pådet samme lille sted påalle rullerne, kan stikprøven være fejlagtig, hvis f.eks. klarheden er anderledes i kanten end påmidten. Der ud over skal der tages hã jde for stikprøve udtagningen af de 7 ruller. Hvis de 7 ruller udtages fra produktionslinien i rækkefølge, dvs. at netop disse 7 ruller er produceret lige efter hinanden, såvil denne stikprøve ikke være tilfældig. For 6.ed og 7.ed.: I 1932 havde flertallet ikke telefon. Når man spurgte via telefoninterview, fik man kun kontakt med meget velhavende mennesker. Disse stemte imidlertid slet på samme måde som den almindelige amerikaner. Vejledende løsning 6.11 Variansen pågennemsnittet X baseret påen stikprøve af størrelse n er σ 2 /n. Dermed er standard afvigelsen (eller spredningen) σ/ n a) 1 2 b) 2 3 c) 3 d) 4 4

5 Opgave 6.17, side 187 (7ed: side 216 og 6ed: side 212) I denne opgave skal vi benytte to resultater. Det ene er, hvordan vi finder fordelingen af en sum af stokastiske variable, og det andet er, hvorledes fordelingen af en sum kan antages at være. Endelig er der et opslag i normalfordelingen. Vægten af en tilfældigt udvalgt person kalder vi X i. Vi har ifølge teksten, at E{X i } = µ = 163 pund. Og variansen af X i er V {X i } = σ 2 = 18 2 pund 2. Vi har nu summen af n personer Y = X 1 + X X n Vi benytter formlen for en sum af stokastiske variables middelværdi og varians, f.eks. som vi benyttede den i opgave 5.91, og som det står bogen side 185 (183). E{Y } = µ + µ + + µ = n µ V {Y } = 1 2 σ σ σ 2 = n σ 2 fordi alle X er har middelværdien µ og variansen σ 2 (de stammer alle fra samme fordeling, men er naturligvis ikke ens). Ifølge Den centrale grænseværdi sætning, side 212 (208), gælder for en sum (i bogen står der gennemsnittet, men det samme gælder selvfølgelig også summen), at den tilnærmelsesvist vil følge en normalfordeling. Er data fra starten normalfordelte, vil resultatet gælde eksakt. Vi har altså µ = 163 og σ 2 x = 18 2, hvoraf, da 36 Y = X i at E{Y } = = 5868 og V {Y } = = i=1 Dvs, at Y N(5868, ) eventuelt tilnærmelsesvist. P r {Y > 6000} = 1 P r {Y 6000} = 1 P r { Y } 108 = 1 P r {N(0, 1 2 ) 1.222} = 1 Φ(1.222) = = eventuelt tilnærmelsesvist (stadig på grund af normalfordelingsantagelsen). opgave 7.4 side 213 (for 7ed og 6ed se nedenfor) Fra data har vi x = og s = 1.25 ud fra n = 52 observationer. Fra bogen side 210 (7ed: 232) har vi fã lgende: P r {X + z α/2 s/ n > µ > X z α/2 s/ n} = 1 α (ved at flytte X ud og gange med -1). Derved bliver intervallet I(µ) 1 α = X ± z α/2 s/ n I R I(µ) 1 α = ± / 52 = ± = [1.5252, ] 5

6 > x=c(2.15,2.27,0.99,0.63,2.45,1.3,2.63,2.2,0.99,1,1.05, ,0.49,0.93,2.52,1.05,1.39,1.22,3.17,0.85,1.18,2.27, ,0.48,1.33,4.2,1.37,2.7,0.63,1.13,3.81,0.2,1.08, ,2.87,2.62,1.03,2.76,0.97,0.78,4.68,5.2,1.9,0.55, + 1,2.95,0.45,0.7,2.43,3.65,4.55,0.33) > t.test(x,mu=1.865,alt="two.sided",conf.level=0.95) One Sample t-test data: x t = , df = 51, p-value = alternative hypothesis: true mean is not equal to percent confidence interval: sample estimates: mean of x opgave 7.5 side 213 (for 7ed og 6ed se nedenfor) Opgaven går ud på at angive en mulig estimationsfejl for µ, idet vi vil estimere µ ved µ = x på sædvanlig måde. Vi benytter (ligesom i bogen side 207), at fordi X µ s/ t(n 1). n Dvs P r { t(n 1) α/2 < X µ s/ n < t(n 1) α/2} = 1 α P r { t(n 1) α/2 s/ n < X µ < t(n 1) α/2 s/ n} = 1 α P r { X µ < t(n 1) α/2 s/ n} = 1 α Den maximale estimationsfejl er altså t(n 1) α/2 s/ n med konfidensgrad 1 α. Fra data har vi s = ud fra n = 45 observationer. E 0.98 = t(44) / 45 = / 45 = (Bemærk, at de t(44) kommer fra en aflæsning i nederste række i Tabel 3, mens en præcis beregning fra R ville give: t(44) 0.01 = ) opgave 7.4 og 7.5, 7ed: side 235 og 6ed: side 231 Opgaven går ud på at angive en mulig estimationsfejl for µ, idet vi vil estimere µ ved µ = x på sædvanlig måde. Vi benytter (ligesom i bogen side 231 (226)), at P r { t(n 1) α/2 < X µ s/ n < t(n 1) α/2} = 1 α 6

7 fordi X µ s/ t(n 1). n Dvs P r { t(n 1) α/2 s/ n < X µ < t(n 1) α/2 s/ n} = 1 α P r { X µ < t(n 1) α/2 s/ n} = 1 α Den maximale estimationsfejl er altså t(n 1) α/2 s/ n med konfidensgrad 1 α. Fra data har vi s = ud fra n = 50 observationer. E 0.95 = t(49) / 50 = / 50 = 3896 Et (1 α) konfidensinterval konstrueres på praktisk taget samme måde: P r { t(n 1) α/2 s/ n < X µ < t(n 1) α/2 s/ n} = 1 α P r {X + t(n 1) α/2 s/ n > µ > X t(n 1) α/2 s/ n} = 1 α (ved at flytte X ud og gange med -1). Derved bliver intervallet I(µ) 1 α = X ± t(n 1) α/2 s/ n Fra data har vi x = og s = ud fra n = 50 observationer. I(µ) 1 α = ± / 50 = ± 3896 = [7899, 15691] Opgave 7.11, side 213 (7ed: side 236 og 6ed side 231) Vi har principielt samme problematik som i opgave 7.4, bortset fra, at vi nu forudsætter forhåndskendskab til σ 2, idet det antages, at σ 2 = (praksis ville man måske indsamle nogle data og benytte s 2 som skøn over σ 2 ). Vi kræver et konfidensniveau på (1 α) = 0.99, dvs at α = = 0.01 og α/2 = Vi har formlen for den maximale estimationsfejl med konfidensgrad (1 α) og det stillede krav σ E 1 α = z α/ n som ved at isolere n og kvadrere giver n ( σ ) 2 z α/ Vi regner med σ = 1.40, og har det krævede z = 2.58, hvoraf n ( ) 2 =

8 Opgave 7.15, side 213 (for 7ed og 6ed se nedenfor Konfidensintervallet er givet ved P r {X + t 1 s/ n < µ < X + t 2 s/ n} = 1 (α) Nu har vi så x = 114 og s = 69.5 = baseret på n = 9, dvs.: I(µ) 1 α = 114±t(8) / 9 = 114± / 9 = 114± = [107.59, ] I R > x=c(123,106,114,128,113,109,120,102,111) > t.test(x,mu=1.865,alt="two.sided",conf.level=0.95) One Sample t-test data: x t = , df = 8, p-value = 1.565e-10 alternative hypothesis: true mean is not equal to percent confidence interval: sample estimates: mean of x 114 Opgave 7.15 (7ed: side 236 og 6ed: side 232) I denne opgave har vi forelagt et interval [ ], og vi forstiller os, at det er beregnet som et konfidensinterval. Vi benytter (ligesom i bogen side 231 (226)), at fordi generelt X µ s/ t(n 1) n gælder P r {t 1 < X µ s/ n < t 2} = 1 (α 1 + α 2 ) hvor t 1 og t 2 er fraktiler i t(99)-fordelingen. Situationen er som vist i følgende figur: t(99) α 1 α 2 t 1 t 2 8

9 Konfidensintervallet er givet ved P r {X + t 1 s/ n < µ < X + t 2 s/ n} = 1 (α 1 + α 2 ) Grænserne er altså X + t 1 s/ n og X + t 2 s/ n hhv. Nu har vi så x = 487 og s = 48 baseret på n = 100. Intervallets grænser 472 = x + t 1 s/ n = t 1 48/ 100 = t 1 = = x + t 2 s/ n = t 1 48/ 100 = t 2 = Nu skal vi så slå og op i t(99)-fordelingen. Hvis vi går ind i tabellen side 587 (576), ender den ved v = inf., som betyder infinitum, dvs v = mange frihedsgrader. Men, hvis antal frihedgrader, v, bliver stort, kan vi approximere t-fordelingen med en N(0,1)-fordeling (skriv det til i tabellen!) N(0,1 2 ) Fra tabellen over normalfordelingen aflæser vi, at i en N(0,1)-fordeling er der sandsynligheden α 1 = under Over er der ligeledes α 2 = Det foreslåede intervals konfidensgrad er derfor ca 1 (α 1 + α 2 ) = = %. Opgave 7.24, side 214 (7ed: side 237 og 6ed: side 232) Vi har nu data X = {2.2, 1.8, 3.1, 2.0, 2.4, 2.0, 2.1, 1.2}, og vi beregner x = og s = Vi benytter (som sædvanligt) et tosidet symmetrisk konfidensinterval. Konfidensintervallet er da givet ved P r {X + t 1 s/ n < µ < X + t 2 s/ n} = 1 (α 1 + α 2 ) idet t 1 = t(n 1) α/2 og t 2 = t(n 1) α/2, dvs at t 1 = t 2. Grænserne er altså X t 2 s/ n og X + t 2 s/ n hhv. I opgaven er n = 8 og kravet til konfidensgraden er 1 α = Dvs α = 0.05, og α/2 = Ved opslag i t-fordelingen findes t(8 1) =

10 Konfidensintervallet bliver derved: I R I(µ) 0.95 = ± = ± [1.65, 2.55] > x=c(2.2,1.8,3.1,2,2.4,2,2.1,1.2) > t.test(x,mu=1.865,alt="two.sided",conf.level=0.95) One Sample t-test data: x t = , df = 7, p-value = alternative hypothesis: true mean is not equal to percent confidence interval: sample estimates: mean of x 2.1 dec04.1 Lad Y = X 1 + X 2. Såer: EY = 6, Var(Y ) = 8 Og dermed P (Y > 10) = P (Z > Og dermed er svarmulighed 1) det korrekte svar. dec kunder i timen er det samme som λ = 2/3 kunde pr. 2 minutter. Dermed kan vi bruge at Y = antal kunder i 2 minutter er poisson-fordelt, og hændelsen svarer til at der kommer mindst een kunde indefir de 2 minutter: Og det korrekte svar er 3. I R > 1-ppois(0,2/3) [1] P (Y 1) = 1 P (Y = 0) = 1 e 2/3 Vejledende løsning Ropg6.3.1 Begge kommandoer angiver en 97.5% fraktil for en t-fordeling. I første tilfælde med 17 frihedsgrader: P (t ) = I andet tilfælde med 1000 frihedsgrader: P (t ) = hvilket således i praksis svarer til standard normalfordelingen. 10

11 Vejledende løsning Ropg6.3.2 Kommandoen angiver sandsynligheden, der er givet ved fã lgende: P (t 2.75) hvor t altsåer t-fordelt med 17 frihedsgrader. Vejledende løsning 6.3 (a) Luxury cruise people are not average persons (b) Most likely NOT all questionaires are returned AND there is the risk that there is a bias in this: maybe graduates with low (or even no) income is more reluctant to return the quetionaire. And secondly there COULD be a overenthusiastic reporting for those who do return. (c) The question is sending some values ( Værdiladet ) Solution 6.5, 8Ed (a) The binomial coefficient 2 out of 7 : ( ) 7 7! = 2 (5!)(2!) = 6 7 = 21 2 > choose(7,2) [1] 21 (b) The binomial coefficient 2 out of 24 : ( ) 24 24! = = = (22!)(2!) 2 > choose(24,2) [1] 276 Solution 6.5, 7Ed (a) The binomial coefficient 2 out of 6 : ( ) 6 6! = 2 (4!)(2!) = 6 5 = 15 2 > choose(6,2) [1] 15 (b) The binomial coefficient 2 out of 25 : ( ) 25 25! = = = (23!)(2!) 2 > choose(25,2) [1]

12 Vejledende løsning 6.15 For 8. udgave af bogen: Idet σ/ n = / 40 og P ( X ) = P ( X / ) F (1.51) F ( 0.75) 40 = = > pnorm(0.226,0.225,0.0042/sqrt(40))-pnorm(0.2245,0.225,0.0042/sqrt(40)) [1] Der gœres opmærksom på, at facit i bogen IKKE er korrekt, idet der ikke er taget hœjde for n = 40. For 7. og 6. udgave af bogen: Idet σ/ n = 16/10 og P (75 X 78) = P ( X 76 16/10 > pnorm(78,76,1.6)-pnorm(75,76,1.6) [1] Vejledende løsning ) F (1.25) F ( 0.625) = a) Hvis X har tæthedsfunktion f(x) og Y = X µ, sågælder Idet µ Y = (x µ)f(x)dx = xf(x)dx µ f(x)dx og fås µ Y = µ µ = 0 b) σ 2 Y = E((X µ) 0) 2 = xf(x)dx = µ f(x)dx = 1 (x µ) 2 f(x)dx = σ 2 12

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Besvarelser til øvelsesopgaver i uge 6

Besvarelser til øvelsesopgaver i uge 6 Besvarelser til øvelsesopgaver i uge 6 Opgave 7.46, side 228 (7ed 7.28, side 244 og 6ed: 7.28, side 240) Vi tænker os, at vi har data for emissionen {x 1, x 2,..., x n }, når det pågældende device er monteret.

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel 4 0202 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel Hjemmeopgaver Vejledende løsning.2 Eksperimentet kan beskrives ved binomialfordelingen, X b(x; n, p), hvor n = og p = 1 2. Dermed kan man

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve

Læs mere

2 X 2 = gennemsnitligt indhold af aktivt stof i én tablet fra et glas med 200 tabletter

2 X 2 = gennemsnitligt indhold af aktivt stof i én tablet fra et glas med 200 tabletter Opgave I I mange statistiske undersøgelser benytter man binomialfordelingen til at beskrive den tilfældige variation. Spørgsmål I.1 (1): For hvilken af følgende 5 stokastiske variable kunne binomialfordelingen

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Nanostatistik: Opgaver

Nanostatistik: Opgaver Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 22 sider. Skriftlig prøve: 13. december 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet!

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet! Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 2. juni 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Matematisk Modellering 1 Cheat Sheet

Matematisk Modellering 1 Cheat Sheet By a team of brave computer scientists: Mads P. Buch, Tobias Brixen, Troels Thorsen, Peder Detlefsen, Mark Gottenborg, Peter Krogshede - 1 Contents 1 Basalt 3 1.1 Varianser...............................

Læs mere

2 X 2 = Antal mygstik på enpersoniløbetaf1minut

2 X 2 = Antal mygstik på enpersoniløbetaf1minut Opgave I I mange statistiske undersøgelser bygger man analysen på anvendelse af normalfordelingen til (eventuelt tilnærmelsesvist) at beskrive den tilfældige variation. Spørgsmål I.1 (1): Forén af følgende

Læs mere

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel:

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel: Normal fordeling Tæthedsfunktion for normalfordeling med middelværdi µ og varians σ 2 : Program (8.15-10): f() = 1 µ)2 ep( ( 2πσ 2 2σ 2 ) E µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4 1. vigtige sandsynlighedsfordelinger:

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14 Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. maj 05 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

Lidt om fordelinger, afledt af normalfordelingen

Lidt om fordelinger, afledt af normalfordelingen IMM, 2002-10-10 Poul Thyregod Lidt om fordelinger, afledt af normalfordelingen 1 Introduktion I forbindelse med inferens i normalfordelinger optræder forskellige fordelinger, der er afledt af normalfordelingen,

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Løsninger til kapitel 9

Løsninger til kapitel 9 Opgave 9.1 a) test for spredning, ensidet b) test for middelværdi, ensidet c) test for andel, ensidet d) test for to andele, ensidet e) test for spredning, tosidet f) test for middelværdi, ensidet g) test

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

MM501/MM503 forelæsningsslides

MM501/MM503 forelæsningsslides MM501/MM503 forelæsningsslides uge 50, 2009 Produceret af Hans J. Munkholm 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen dx Eksempler = et udtryk, der indeholder

Læs mere